“Green” Synthesis of Substituted Tetraketones with Prominent Bactericide Effect
  • * (Excluding Mailing and Handling)

Abstract

Effective and “green” synthesis of tetraketone derivatives was elaborated. The last compounds developed prominent bactericide activity against both MIC and MBC S. aureus (ATCC-6538P) bacteria. The novelty of this approach is concluded in the application of Al(OH)3 catalyst for the Knoevenagel-Michael cascade reaction of aromatic aldehydes and 1,3-cyclic diketones in water. The process is chemoselective and affords high yield of tetraketones under benign conditions. The catalyst maintained 80% of initial activity within four cycles. The proposed method can be regarded as an alternative to the existing syntheses of biologically active tetraketones that utilize homogeneous and expensive heterogeneous catalysts.

[1]
Khan, K.M.; Maharvi, G.M.; Khan, M.T.H.; Jabbar Shaikh, A.; Perveen, S.; Begum, S.; Choudhary, M.I. Tetraketones: A new class of tyrosinase inhibitors. Bioorg. Med. Chem., 2006, 14(2), 344-351.
[http://dx.doi.org/10.1016/j.bmc.2005.08.029] [PMID: 16198580]
[2]
Kantevari, S.; Bantu, R.; Nagarapu, L. HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. J. Mol. Catal. Chem., 2007, 269(1-2), 53-57.
[http://dx.doi.org/10.1016/j.molcata.2006.12.039]
[3]
Kamali, F.; Shirini, F. Melamine: An efficient promoter for some of the multi-component reactions. Polycycl. Aromat. Compd., 2021, 41(1), 73-94.
[http://dx.doi.org/10.1080/10406638.2019.1570949]
[4]
Li, J.T.; Li, Y.W.; Song, Y.L.; Chen, G.F. Improved synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives catalyzed by urea under ultrasound. Ultrason. Sonochem., 2012, 19(1), 1-4.
[http://dx.doi.org/10.1016/j.ultsonch.2011.05.001] [PMID: 21622016]
[5]
Li, W.L.; Wu, L.Q.; Yan, F.L. Alum-catalyzed one-pot synthesis of dihydropyrano[3,2-b]chromenediones. J. Braz. Chem. Soc., 2011, 22(11), 2202-2205.
[http://dx.doi.org/10.1590/S0103-50532011001100025]
[6]
Das, P.; Kumar, A.; Howlader, P.; Mukherjee, P.S. A self‐assembled trigonal prismatic molecular vessel for catalytic dehydration reactions in water. Chemistry, 2017, 23(51), 12565-12574.
[http://dx.doi.org/10.1002/chem.201702263] [PMID: 28644555]
[7]
Rosati, O.; Pelosi, A.; Temperini, A.; Pace, V.; Curini, M. Potassium-exchanged zirconium hydrogen phosphate [α-Zr(KPO4)2]-catalyzed synthesis of 2-amino-4H-pyran derivatives under solvent-free conditions. Synthesis, 2016, 48(10), 1533-1540.
[http://dx.doi.org/10.1055/s-0035-1560411]
[8]
Ilangovan, A.; Muralidharan, S.; Sakthivel, P.; Malayappasamy, S.; Karuppusamy, S.; Kaushik, M.P. Simple and cost effective acid catalysts for efficient synthesis of 9-aryl-1,8-dioxooctahydroxanthene. Tetrahedron Lett., 2013, 54(6), 491-494.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.058]
[9]
Ferreira, I.M.; Casagrande, G.A.; Pizzuti, L.; Raminelli, C. Ultrasound-promoted rapid and efficient iodination of aromatic and heteroaromatic compounds in the presence of iodine and hydrogen peroxide in water. Synth. Commun., 2014, 44(14), 2094-2102.
[http://dx.doi.org/10.1080/00397911.2013.879900]
[10]
Gallo, R.D.C.; Ferreira, I.M.; Casagrande, G.A.; Pizzuti, L.; Oliveira-Silva, D.; Raminelli, C. Efficient and eco-friendly synthesis of iodinated aromatic building blocks promoted by iodine and hydrogen peroxide in water: A mechanistic investigation by mass spectrometry. Tetrahedron Lett., 2012, 53(40), 5372-5375.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.102]
[11]
Neves, F.B.; Zanin, L.L.; Pereira, R.R.; Júnior, J.O.C.S.; Costa, R.M.R.; Porto, A.L.M.; Yoshioka, S.A.; Oliveira, A.N.; Jimenez, D.E.Q.; Ferreira, I.M. Chitin and silk fibroin biopolymers modified by oxone: efficient heterogeneous catalysts for knoevenagel reaction. Catalysts, 2022, 12(8), 904-918.
[http://dx.doi.org/10.3390/catal12080904]
[12]
Jimenez, D.E.Q.; Ferreira, I.M.; Birolli, W.G.; Fonseca, L.P.; Porto, A.L.M. Synthesis and biocatalytic ene-reduction of Knoevenagel condensation compounds by the marine-derived fungus Penicillium citrinum CBMAI 1186. Tetrahedron, 2016, 72(46), 7317-7322.
[http://dx.doi.org/10.1016/j.tet.2016.02.014]
[13]
Lasemi, Z.; Tajbakhsh, M.; Alinezhad, H.; Mehrparvar, F. 1,8-Diazabicyclo [5.4.0] undec-7-ene functionalized cellulose nanofibers as an efficient and reusable nanocatalyst for the synthesis of tetraketones in aqueous medium. Res. Chem. Intermed., 2020, 46(7), 3667-3682.
[http://dx.doi.org/10.1007/s11164-020-04167-y]
[14]
Lopes, S.Q.; Holanda, F.H.; Jimenez, D.E.Q.; do Nascimento, L.A.S.; Oliveira, A.N.; Ferreira, I.M. Use of oxone® as a potential catalyst in biodiesel production from palm fatty acid distillate (PFAD). Catal. Lett., 2022, 152(4), 1009-1019.
[http://dx.doi.org/10.1007/s10562-021-03698-2]
[15]
de Oliveira, A.N.; de Oliveira, D.T.; Angélica, R.S.; Andrade, E.H.A.; da Silva, J.K.R.; Rocha Filho, G.N.; Coral, N.; Pires, L.H.O.; Luque, R.; do Nascimento, L.A.S. Efficient esterification of eugenol using a microwave-activated waste kaolin. React. Kinet. Mech. Catal., 2020, 130(2), 633-653.
[http://dx.doi.org/10.1007/s11144-020-01797-6]
[16]
de Oliveira, A.N.; Ferreira, I.M.; Jimenez, D.E.Q.; da Silva, L.S.; da Costa, A.A.F.; Lima, E.T.L.; Costa, F.F.; da Luz, P.T.S.; Rocha Filho, G.N.; Osman, S.M.; Luque, R.; Nascimento, L.A.S. Mining waste valorisation to catalytically active mesoporous materials for the esterification of fatty acid palm oil waste. Molecu. Cataly., 2022, 528, 112504.
[http://dx.doi.org/10.1016/j.mcat.2022.112504]
[17]
Safaei-Ghomi, J.; Asadian, S.; Nazemzadeh, S.H.; Shahbazi-Alavi, H. Synthesis of tetraketones using ZnS nanoparticles as an efficient catalyst. J. Chin. Chem. Soc., 2018, 65(4), 430-434.
[http://dx.doi.org/10.1002/jccs.201700250]
[18]
Fallah, A.; Tajbakhsh, M.; Vahedi, H.; Bekhradnia, A. Natural phosphate as an efficient and green catalyst for synthesis of tetraketone and xanthene derivatives. Res. Chem. Intermed., 2017, 43(1), 29-43.
[http://dx.doi.org/10.1007/s11164-016-2603-y]
[19]
Khurana, J.M.; Vij, K. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins. J. Chem. Sci., 2012, 124(4), 907-912.
[http://dx.doi.org/10.1007/s12039-012-0275-8]
[20]
Tajbakhsh, M.; Heidary, M.; Hosseinzadeh, R. Nano Fe/NaY zeolite: An efficient and reusable solid-supported catalyst for synthesis of 1-oxo-hexahydroxanthene and tetraketone derivatives. Res. Chem. Intermed., 2016, 42(2), 1425-1439.
[http://dx.doi.org/10.1007/s11164-015-2094-2]
[21]
Attar, S.R.; Shinde, B.; Kamble, S.B. Enhanced catalytic activity of bio-fabricated ZnO NPs prepared by ultrasound-assisted route for the synthesis of tetraketone and benzylidenemalonitrile in hydrotropic aqueous medium. Res. Chem. Intermed., 2020, 46(10), 4723-4748.
[http://dx.doi.org/10.1007/s11164-020-04233-5]
[22]
Hasanzadeh Banakar, S.; Dekamin, M.G.; Yaghoubi, A. Selective and highly efficient synthesis of xanthenedione or tetraketone derivatives catalyzed by ZnO nanorod-decorated graphene oxide. New J. Chem., 2018, 42(17), 14246-14262.
[http://dx.doi.org/10.1039/C8NJ01053F]
[23]
Jimenez, D.E.Q.; Zanin, L.L.; Ferreira, I.M.; Deflon, V.M.; Diniz, L.F.; Ellena, J.; Haiduke, R.L.A.; Porto, A.L.M. Sustainable synthesis of benzylidenemalononitrile compounds under microwave- irradiation. Curr. Org. Chem., 2022, 26(16), 1552-1564.
[http://dx.doi.org/10.2174/1385272827666221125091631]
[24]
Araujo, J.T.C.; Martin-Pastor, M.; Pérez, L.; Pinazo, A.; Sousa, F.F.O. Development of anacardic acid-loaded zein nanoparticles: Physical chemical characterization, stability and antimicrobial improvement. J. Mol. Liq., 2021, 332, 115808.
[http://dx.doi.org/10.1016/j.molliq.2021.115808]