Letters in Organic Chemistry

Author(s): K. Venkatapathy and C.J. Magesh*

DOI: 10.2174/0115701786333234240725110033

DownloadDownload PDF Flyer Cite As
Synthesis, Spectral Characterization, Molecular Docking Studies, and Biological Evaluation of Pyranoquinolinyl Acrylic Acid (PQAA) Diastereomers as Antibacterial Agents Promoted by Indium (III) Triflate in 1-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid

Page: [154 - 167] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

In the present investigation, we report the multistep synthesis of pyranoquinolinyl acrylic acid (PQAA)/furoquinolinyl acrylic acid (FQAA) diastereomers via perkin condensation and reduction, followed by one-pot inverse electron demand Diels-Alder reaction among 2,3 dihydropyran, amine, and aromatic aldehyde mediated by indium (III) triflate in 1-butyl-3-methylimidazolium tetrafluoroborate (In(OTf)3/ [bmim]BF4) at 25.0-27.0oC. The pyranoquinolinyl acrylic acid/furoquinolinyl acrylic acid diastereomers were evaluated for their in vitro antibacterial activity. Molecular docking studies were carried out employing iGEMDOCK software to evaluate the mode of binding between UDP-N-acetylenolpyruvoyl glucosamine reductase and PQAA adducts. All the pyranoquinolinyl/ furoquinolinyl/tetrahydro-cyclopentaquinolinyl acrylic acid (PQAA/FQAA/CPQAA) diastereomers were thoroughly characterized by NMR, FT-IR, mass spectral, and CHN analysis.

Keywords: Pyranoquinolinyl/furoquinolinyl/tetrahydro-cyclopentaquinolinyl acrylic acid diastereomers, antibacterial activity, molecular docking, In(OTf)3/[bmim]BF4 ionic liquid, spectral characterization, imino diels alder reaction, UDP-N-acetyl enolpyruvoyl glucosamine reductase.

Graphical Abstract

[1]
Wang, Y.N.; Bheemanaboina, R.R.Y.; Gao, W.W.; Kang, J.; Cai, G.X.; Zhou, C.H. ChemMedChem, 2018, 13(10), 1004-1017.
[http://dx.doi.org/10.1002/cmdc.201700739] [PMID: 29512892]
[2]
Bricker, S.L.; Langlais, R.P.; Miller, C.S., II Eds.; Oral diagnosis, oral medicine, and treatment planning, 2nd ed; Hamilton, Ont. London UK, 2002.
[3]
Katzung, B.G.; Masters, S.B.; Trevor, A.J. Mc-Graw Hill Medical, 12th ed; Minneapolis, MN, USA, 2012.
[4]
Chow, K.M.; Szeto, C.C.; Hui, A.C.F.; Li, P.K.T. Int. J. Antimicrob. Agents, 2004, 23(3), 213-217.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.11.004] [PMID: 15164960]
[5]
Hantzsch, A. Ber. Dtsch. Chem. Ges., 1881, 14(2), 1637-1638.
[http://dx.doi.org/10.1002/cber.18810140214]
[6]
Hantzsch, A. Justus Liebigs Ann. Chem., 1882, 215(1), 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[7]
Arasakumar, T.; Mathusalini, S.; Gopalan, S.; Shyamsivappan, S.; Ata, A.; Mohan, P.S. Bioorg. Med. Chem. Lett., 2017, 27(7), 1538-1546.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.042] [PMID: 28262524]
[8]
Watpade, R.; Bholay, A.; Toche, R. J. Heterocycl. Chem., 2017, 54(6), 3434-3439.
[http://dx.doi.org/10.1002/jhet.2966]
[9]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[10]
Schmitt, F.; Schobert, R.; Biersack, B. Med. Chem. Res., 2019, 28(10), 1694-1703.
[http://dx.doi.org/10.1007/s00044-019-02406-5]
[11]
Dgachi, Y.; Sokolov, O.; Luzet, V.; Godyń, J.; Panek, D.; Bonet, A.; Martin, H.; Iriepa, I.; Moraleda, I.; García-Iriepa, C.; Janockova, J.; Richert, L.; Soukup, O.; Malawska, B.; Chabchoub, F.; Marco-Contelles, J.; Ismaili, L. Eur. J. Med. Chem., 2017, 126, 576-589.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.050] [PMID: 27918993]
[12]
Grande, F.; Yamada, R.; Cao, X.; Aiello, F.; Garofalo, A.; Neamati, N. Expert Opin. Investig. Drugs, 2009, 18(5), 555-568.
[http://dx.doi.org/10.1517/13543780902858815] [PMID: 19388873]
[13]
Wang, W.; Lei, L.; Liu, Z.; Wang, H.; Meng, Q. Molecules, 2019, 24(5), 877.
[http://dx.doi.org/10.3390/molecules24050877] [PMID: 30832266]
[14]
Kella, C.R.; Balachandran, C.; Arun, Y.; Kaliyappan, E.; Mahalingam, S.M.; Ignacimuthu, S.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Perumal, P.T. Arab. J. Chem., 2020, 13(12), 9047-9057.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.026]
[15]
Kalkhambkar, R.G.; Kulkarni, G.M.; Kamanavalli, C.M.; Premkumar, N.; Asdaq, S.M.B.; Sun, C.M. Eur. J. Med. Chem., 2008, 43(10), 2178-2188.
[http://dx.doi.org/10.1016/j.ejmech.2007.08.007] [PMID: 17959273]
[16]
Al-Ghorbani, M.; Gouda, M.A.; Baashen, M.; Alharbi, O.; Almalki, F.A.; Ranganatha, L.V. Pharm. Chem. J., 2022, 56(1), 29-37.
[http://dx.doi.org/10.1007/s11094-022-02597-z]
[17]
Venkatapathy, K.; Magesh, C.J.; Lavanya, G.; Perumal, P.T.; Sathishkumar, R. New J. Chem., 2019, 43(27), 10989-11002.
[http://dx.doi.org/10.1039/C9NJ02139F]
[18]
Venkatapathy, K.; Magesh, C.J.; Lavanya, G.; Perumal, P.T.; Prema, S. J Heterocyclic Chem., 2020.
[19]
Lavanya, G.; Venkatapathy, K.; Magesh, C.J.; Ramanathan, M.; Jayasudha, R. Bioorg. Chem., 2019, 84, 125-136.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.026] [PMID: 30500522]
[20]
Wen, S.Q.; Jeyakkumar, P.; Avula, S.R.; Zhang, L.; Zhou, C.H. Bioorg. Med. Chem. Lett., 2016, 26(12), 2768-2773.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.070] [PMID: 27156777]
[21]
Zhang, L.; Kumar, K.V.; Rasheed, S.; Zhang, S.L.; Geng, R.X.; Zhou, C.H. MedChemComm, 2015, 6, 1301.
[22]
(a) Perez, C.; Pauli, M.; Bazerque, P. Acta Biol. Med. Exp., 1990, 15, 113.;
(b) Erdemoglu, N. J. Ethnopharmacol., 2003, 89, 123.
[http://dx.doi.org/10.1016/S0378-8741(03)00282-4] [PMID: 14522443];
(c) Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Food Microbiol., 2004, 21(1), 33-42.
[http://dx.doi.org/10.1016/S0740-0020(03)00046-7]