[3]
Sahoo BM, Banik BK, Borah P, Jain A. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer Agents Med Chem 2022; 22(2): 215-22.
[4]
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular mechanisms of Sanguinarine in cancer prevention and treatment. Anticancer Agents Med Chem 2023; 23(7): 765-78.
[5]
Fatima M, Iqubal MK, Iqubal A, et al. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer. Anticancer Agents Med Chem 2022; 22(4): 668-86.
[16]
Shahidi M, Abazari O, Dayati P, et al. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment. J Nanotechnol Rev 2022; 11(1): 2875-90.
[17]
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer, Seminars in cancer biology. Elsevier 2021; pp. 349-64.
[18]
Unnisa A, Chettupalli AK, Hussain T, Kamal MA. Recent advances in epidermal growth factor receptor inhibitors (EGFRIs) and their role in the treatment of cancer: A review. Anticancer Agents Med Chem 2022; 22(20): 3370-81.
[19]
Mehraj U, Qayoom H, Shafi S, Farhana P, Asdaq S, Mir MA. Cryptolepine targets TOP2A and inhibits tumor cell proliferation in breast cancer cells-an in vitro and in silico study. Anticancer Agents Med Chem 2022; 22(17): 3025-37.
[20]
Shams ul Hassan S, Abbas SQ, Hassan M, Jin H-Z. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies. Anticancer Agents Med Chem 2022; 22(4): 731-46.
[21]
Criscitiello C, Guerini-Rocco E, Viale G, et al. Immunotherapy in breast cancer patients: A focus on the use of the currently available biomarkers in oncology. Anticancer Agents Med Chem 2022; 22(4): 787-800.
[25]
Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 59(1): 78-86.
[32]
Werner ME, Cummings ND, Sethi M, et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2013; 86(3): 463-8.
[43]
Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL. Harrison’s Principles of Internal Medicine. McGraw-Hill 2001.
[44]
Moss WT, Cox JD. Moss’ radiation oncology: Rationale, technique, results. No Title 1994.
[46]
Ferlay J, Soerjomataram I, Ervik M. GLOBOCAN 2012 v10 Cancer Incidence and Mortality Worldwide: IARC Cancer Base Number 11. Lyon, France: International Agency for Research on Cancer 2013.
[48]
Lemjabbar-Alaoui H, Hassan OU, Yang Y-W, Buchanan P. Lung cancer: Biology and treatment options. Biochim Biophys Acta 2015; 1856(2): 189-210.
[70]
Arany I, Safirstein RL. Cisplatin nephrotoxicity, Seminars in nephrology. Elsevier 2003; pp. 460-4.
[97]
Kesharwani P. Nanotechnology-based targeted drug delivery systems for lung cancer. Academic Press 2019.
[98]
Ram Prasad RP, Rishikesh Pandey RP, Ajit Varma AV, Ishan Barman IB. Polymer-based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural polymers for drug delivery. UK: CABI Wallingford 2017; pp. 53-70.
[101]
Nag S, Bhatt M, Ghosh S, et al. Drug Delivery for Neurological Disorders Using Nanotechnology, Theranostic Applications of Nanotechnology in Neurological Disorders. Springer 2024; pp. 135-65.
[111]
YN Dou. Thermosensitive Liposome Formulation of Cisplatin for Cancer Treatment. Canada: University of Toronto 2017.
[113]
Skupin-Mrugalska P. Liposome-based drug delivery for lung cancer, Nanotechnology-based Targeted Drug Delivery Systems for Lung Cancer. Elsevier 2019; pp. 123-60.
[135]
Liu J, Wang Z, Li F, Gao J, Wang L, Huang G. Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: Characterization and evaluation. Asian J Pharm Sci 2015; 10(3): 212-22.
[145]
Singhai M, Pandey V, Ashique S, et al. Design and evaluation of SLNs encapsulated curcumin-based topical formulation for the management of cervical cancer. Anticancer Agents Med Chem 2023; 23(16): 1866-79.
[163]
Graves EE, Maity A, Le Q-T. The tumor microenvironment in non-small-cell lung cancer, Seminars in radiation oncology. Elsevier 2010; pp. 156-63.
[169]
Liang K, Ang KK, Milas L, Hunter N, Fan Z. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys 2003; 57(1): 246-54.
[171]
Ansell SM, Harasym TO, Tardi PG, Buchkowsky SS, Bally MB, Cullis PR. Antibody conjugation methods for active targeting of liposomes. Methods Mol Med 2000; 51-68.
[185]
Padhi S, Behera A. Cellular Internalization and Toxicity of Polymeric Nanoparticles. In: Padhi S, Behera A, Lichtfouse E, Eds. Polymeric nanoparticles for the treatment of solid tumors Environmental Chemistry for a Sustainable World. Cham: Springer 2022; 71: pp. 473-88.
[190]
Kundu A, Padhi S, Behera A, Hasnain MS, Nayak AK. Tumor targeting strategies by chitosan-based nanocarriers. In: Chitosan in Biomedical Applications. Elsevier 2022; pp. 163-88.
[192]
Behera A, Padhi S. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: Concept and recent advances. Nanomedicine 2022; 9(3): 487-99.
[195]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2020; 2(12): 751-60.
[216]
Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S, Barghi S, Maroufi NF, Taheri RA. Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif Cell Nanomed Biotechnol 2018; 46(sup1): 283-92.
[219]
Padhi S, Behera A. Nanotechnology based targeting strategies for the delivery of Camptothecin, Sustainable Agriculture Reviews 44: Pharmaceutical Technology for Natural Products Delivery. Impact Nanotechnol 2020; 2: 243-72.
[249]
Jozefczuk J, Adjaye J. Quantitative real-time PCR-based analysis of gene expression. In: Methods in Enzymology. Elsevier 2011; pp. 99-109.
[266]
Zhao T, Huang G, Li Y, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat biomed eng 2016; 1(1): 0006.
[270]
Zhang J, Lai Z, Huang W, et al. Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells. Anti-Canc Agent Med Chem 2017; 17(10): 1374-82.
[273]
Li S-D, Huang L. Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. Elsevier 2010; pp. 178-81.
[283]
Deshmukh RR, Gawale SV, Bhagwat MK, Ahire PA, Derle ND. A review on: Liposomes. World J Pharm Pharm Sci 2016; 5(3): 506-17.
[284]
Jone A. Liposomes: A short review. J Pharmac Sci Res 2013; 5(9): 181.
[297]
Vujaskovic Z, Poulson JM, Gaskin AA, et al. Temperature-dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment. Int J Radiat Oncol Biol Phys 2000; 46(1): 179-85.
[301]
Collins D. pH-sensitive liposomes as tools for cytoplasmic delivery. In: Liposomes as Tools in Basic Research and Industry. CRC Press 1994; pp. 201-14.
[303]
Hospers G, Mulder N, De Jong B, Zijlstra J, De Vries E. Comparison between a human small cell lung carcinoma cell line (GLC4) and an Adriamycin (GLC4-ADR) and a CDDP (GLC4-CDDP) resistant subline. A Preliminary Report, Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy: Proceedings of the Fifth International Symposium on Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy Abano. Padua, ITALY-June 29-July 2, 1987, Springer, 1988, pp. 479-483.
[312]
Hang Z, Cooper MA, Ziora ZM. Platinum-based anticancer drugs encapsulated liposome and polymeric micelle formulation in clinical trials. Biochem Comp 2016; 4(1): 1.
[324]
Cho LC, Dowell JE, Garwood D, Spangler A, Choy H. Prophylactic cranial irradiation with combined modality therapy for patients with locally advanced non-small cell lung cancer. In: Seminars in oncology. Elsevier 2005; pp. 293-8.