Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks
  • * (Excluding Mailing and Handling)

Abstract

In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.

[1]
Arrigoni R, Ballini A, Santacroce L, et al. Another look at dietary polyphenols: Challenges in cancer prevention and treatment. Curr Med Chem 2022; 29(6): 1061-82.
[http://dx.doi.org/10.2174/1875533XMTE3kMjUp2] [PMID: 34375181]
[2]
Ozkan E, Bakar-Ates F. Ferroptosis: A trusted ally in combating drug resistance in cancer. Curr Med Chem 2022; 29(1): 41-55.
[http://dx.doi.org/10.2174/0929867328666210810115812] [PMID: 34375173]
[3]
Sahoo BM, Banik BK, Borah P, Jain A. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer Agents Med Chem 2022; 22(2): 215-22.
[4]
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular mechanisms of Sanguinarine in cancer prevention and treatment. Anticancer Agents Med Chem 2023; 23(7): 765-78.
[5]
Fatima M, Iqubal MK, Iqubal A, et al. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer. Anticancer Agents Med Chem 2022; 22(4): 668-86.
[6]
Fatima N, Ashique S, Upadhyay A, et al. Current landscape of therapeutics for the management of hypertension: A review. Curr Drug Deliv 2024; 21(5): 662-82.
[http://dx.doi.org/10.2174/1567201820666230623121433] [PMID: 37357524]
[7]
Ao C, Gao L, Yu L. Research progress in predicting DNA methylation modifications and the relation with human diseases. Curr Med Chem 2022; 29(5): 822-36.
[http://dx.doi.org/10.2174/0929867328666210917115733] [PMID: 34533438]
[8]
Pohanka M. New uses of melatonin as a drug; A review. Curr Med Chem 2022; 29(20): 3622-37.
[http://dx.doi.org/10.2174/0929867329666220105115755] [PMID: 34986763]
[9]
Rostán S, Mahler G, Otero L. Selenosemicarbazone metal complexes as potential metal-based drugs. Curr Med Chem 2023; 30(5): 558-72.
[http://dx.doi.org/10.2174/0929867329666211222115035] [PMID: 34951353]
[10]
Raza F, Siyu L, Zafar H, et al. Recent advances in gelatin-based nanomedicine for targeted delivery of anti-cancer drugs. Curr Pharm Des 2022; 28(5): 380-94.
[http://dx.doi.org/10.2174/1381612827666211102100118] [PMID: 34727851]
[11]
Garshasbi HR, Naghib SM. Smart stimuli-responsive alginate nanogels for drug delivery systems and cancer therapy: A review. Curr Pharm Des 2023; 29(44): 3546-62.
[http://dx.doi.org/10.2174/0113816128283806231211073031] [PMID: 38115614]
[12]
Santegoets S, Welters M, van der Burg S. Monitoring of the immune dysfunction in cancer patients. Vaccines 2016; 4(3): 29.
[http://dx.doi.org/10.3390/vaccines4030029] [PMID: 27598210]
[13]
Alshahrani MY, Alkhathami AG, Almoyad MAA, et al. Phytochemicals as potential inhibitors of interleukin-8 for anticancer therapy: In silico evaluation and molecular dynamics analysis. J Biomol Struct Dyn 2023; 2023: 1-12.
[http://dx.doi.org/10.1080/07391102.2023.2294387] [PMID: 38116764]
[14]
Singh H, Chopra H, Singh I, et al. Molecular targeted therapies for cutaneous squamous cell carcinoma: Recent developments and clinical implications. EXCLI J 2024; 23: 300-34.
[PMID: 38655092]
[15]
Salehi S, Naghib SM, Garshasbi HR, Ghorbanzadeh S, Zhang W. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Front Bioeng Biotechnol 2023; 11: 1104126.
[http://dx.doi.org/10.3389/fbioe.2023.1104126] [PMID: 36911200]
[16]
Shahidi M, Abazari O, Dayati P, et al. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment. J Nanotechnol Rev 2022; 11(1): 2875-90.
[17]
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer, Seminars in cancer biology. Elsevier 2021; pp. 349-64.
[18]
Unnisa A, Chettupalli AK, Hussain T, Kamal MA. Recent advances in epidermal growth factor receptor inhibitors (EGFRIs) and their role in the treatment of cancer: A review. Anticancer Agents Med Chem 2022; 22(20): 3370-81.
[19]
Mehraj U, Qayoom H, Shafi S, Farhana P, Asdaq S, Mir MA. Cryptolepine targets TOP2A and inhibits tumor cell proliferation in breast cancer cells-an in vitro and in silico study. Anticancer Agents Med Chem 2022; 22(17): 3025-37.
[20]
Shams ul Hassan S, Abbas SQ, Hassan M, Jin H-Z. Computational exploration of anti-cancer potential of guaiane dimers from Xylopia vielana by targeting B-RAF kinase using chemo-informatics, molecular docking, and MD simulation studies. Anticancer Agents Med Chem 2022; 22(4): 731-46.
[21]
Criscitiello C, Guerini-Rocco E, Viale G, et al. Immunotherapy in breast cancer patients: A focus on the use of the currently available biomarkers in oncology. Anticancer Agents Med Chem 2022; 22(4): 787-800.
[22]
Rahmanian M, Sartipzadeh Hematabad O, Askari E, et al. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry? J Adv Res 2023; 47: 105-21.
[http://dx.doi.org/10.1016/j.jare.2022.08.005] [PMID: 35964874]
[23]
Albain KS, Swann RS, Rusch VW, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: A phase III randomised controlled trial. Lancet 2009; 374(9687): 379-86.
[http://dx.doi.org/10.1016/S0140-6736(09)60737-6] [PMID: 19632716]
[24]
Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010; 303(11): 1070-6.
[http://dx.doi.org/10.1001/jama.2010.261] [PMID: 20233825]
[25]
Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 59(1): 78-86.
[26]
Diavati S, Sagris M, Terentes-Printzios D, Vlachopoulos C. Anticoagulation treatment in venous thromboembolism: Options and optimal duration. Curr Pharm Des 2022; 28(4): 296-305.
[http://dx.doi.org/10.2174/1381612827666211111150705] [PMID: 34766887]
[27]
Waheed A, Zameer S, Ashrafi K, et al. Insights into pharmacological potential of apigenin through various pathways on a nanoplatform in multitude of diseases. Curr Pharm Des 2023; 29(17): 1326-40.
[http://dx.doi.org/10.2174/1381612829666230529164321] [PMID: 37254541]
[28]
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375(19): 1823-33.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[29]
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373(2): 123-35.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[30]
Ye M, Zhang J, Zhang J, Miao Q, Yao L, Zhang J. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett 2015; 357(1): 196-205.
[http://dx.doi.org/10.1016/j.canlet.2014.11.028] [PMID: 25444916]
[31]
Roointan A, Sharifi-Rad M, Badrzadeh F, Sharifi-Rad J. A comparison between PLGA-PEG and NIPAAm-MAA nanocarriers in curcumin delivery for hTERT silencing in lung cancer cell line. Cell Mol Biol 2016; 62(9): 51-6.
[PMID: 27585262]
[32]
Werner ME, Cummings ND, Sethi M, et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2013; 86(3): 463-8.
[33]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[34]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[35]
Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK. Lung cancer LDCT screening and mortality reduction evidence, pitfalls and future perspectives. Nat Rev Clin Oncol 2021; 18(3): 135-51.
[http://dx.doi.org/10.1038/s41571-020-00432-6] [PMID: 33046839]
[36]
Norouzi M, Hardy P. Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater 2021; 121: 134-42.
[http://dx.doi.org/10.1016/j.actbio.2020.12.009] [PMID: 33301981]
[37]
Wu Y, Zhang J, Zhao J, Wang B. Folate-modified liposomes mediate the co-delivery of cisplatin with miR-219a-5p for the targeted treatment of cisplatin-resistant lung cancer. BMC Pulm Med 2024; 24(1): 159.
[http://dx.doi.org/10.1186/s12890-024-02938-6] [PMID: 38561695]
[38]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[39]
Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J Clin 2011; 61(2): 91-112.
[http://dx.doi.org/10.3322/caac.20102] [PMID: 21303969]
[40]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: State of the art. Nanotechnol Sci Appl 2015; 8: 55-66.
[PMID: 26640374]
[41]
Li QC, Li C, Zhang W, Pi W, Han N. Potential effects of exosomes and their MicroRNA carrier on osteoporosis. Curr Pharm Des 2022; 28(11): 899-909.
[http://dx.doi.org/10.2174/1381612828666220128104206] [PMID: 35088659]
[42]
Zielińska A, Eder P, Rannier L, et al. Hydrogels for modified-release drug delivery systems. Curr Pharm Des 2022; 28(8): 609-18.
[http://dx.doi.org/10.2174/1381612828666211230114755] [PMID: 34967292]
[43]
Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL. Harrison’s Principles of Internal Medicine. McGraw-Hill 2001.
[44]
Moss WT, Cox JD. Moss’ radiation oncology: Rationale, technique, results. No Title 1994.
[45]
Steinmaurer A, Wimmer I, Berger T, Rommer PS, Sellner J. Bruton’s tyrosine kinase inhibition in the treatment of preclinical models and multiple sclerosis. Curr Pharm Des 2022; 28(6): 437-44.
[http://dx.doi.org/10.2174/1381612827666210701152934] [PMID: 34218776]
[46]
Ferlay J, Soerjomataram I, Ervik M. GLOBOCAN 2012 v10 Cancer Incidence and Mortality Worldwide: IARC Cancer Base Number 11. Lyon, France: International Agency for Research on Cancer 2013.
[47]
Ashrafi A, Akter Z, Modareszadeh P, et al. Current landscape of therapeutic resistance in lung cancer and promising strategies to overcome resistance. Cancers 2022; 14(19): 4562.
[http://dx.doi.org/10.3390/cancers14194562] [PMID: 36230484]
[48]
Lemjabbar-Alaoui H, Hassan OU, Yang Y-W, Buchanan P. Lung cancer: Biology and treatment options. Biochim Biophys Acta 2015; 1856(2): 189-210.
[49]
Zhou J, Huang Q, Huang Z, Li J. Combining immunotherapy and radiotherapy in lung cancer: A promising future? J Thorac Dis 2020; 12(8): 4498-503.
[http://dx.doi.org/10.21037/JTD-2019-ITM-001] [PMID: 32944363]
[50]
Eberhardt WEE, De Ruysscher D, Weder W, et al. 2nd ESMO consensus conference in lung cancer: Locally advanced stage III non-small-cell lung cancer. Ann Oncol 2015; 26(8): 1573-88.
[http://dx.doi.org/10.1093/annonc/mdv187] [PMID: 25897013]
[51]
Remon J, Soria JC, Peters S. Early and locally advanced non-small-cell lung cancer: An update of the ESMO Clinical Practice Guidelines focusing on diagnosis, staging, systemic and local therapy. Ann Oncol 2021; 32(12): 1637-42.
[http://dx.doi.org/10.1016/j.annonc.2021.08.1994] [PMID: 34481037]
[52]
Renault-Mahieux M, Seguin J, Vieillard V, et al. Co-encapsulation of fisetin and cisplatin into liposomes: Stability considerations and in vivo efficacy on lung cancer animal model. Int J Pharm 2024; 651: 123744.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123744] [PMID: 38145778]
[53]
Zahednezhad F, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H. The latest advances of cisplatin liposomal formulations: Essentials for preparation and analysis. Expert Opin Drug Deliv 2020; 17(4): 523-41.
[http://dx.doi.org/10.1080/17425247.2020.1737672] [PMID: 32116060]
[54]
Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965; 205(4972): 698-9.
[http://dx.doi.org/10.1038/205698a0] [PMID: 14287410]
[55]
Huang Z, Huang Y. The change of intracellular pH is involved in the cisplatin-resistance of human lung adenocarcinoma A549/DDP cells. Cancer Invest 2005; 23(1): 26-32.
[http://dx.doi.org/10.1081/CNV-46353] [PMID: 15779865]
[56]
Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005; 4(4): 307-20.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[57]
Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin DNA adducts. Chem Rev 1999; 99(9): 2467-98.
[http://dx.doi.org/10.1021/cr980421n] [PMID: 11749487]
[58]
Pavan SR, Prabhu A. Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: A review. J Mater Sci 2022; 57(34): 16192-227.
[http://dx.doi.org/10.1007/s10853-022-07649-z]
[59]
Chougule M, Patel AR, Sachdeva P, Jackson T, Singh M. Anticancer activity of Noscapine, an opioid alkaloid in combination with Cisplatin in human non-small cell lung cancer. Lung Cancer 2011; 71(3): 271-82.
[http://dx.doi.org/10.1016/j.lungcan.2010.06.002] [PMID: 20674069]
[60]
Sukumar UK, Bhushan B, Dubey P, Matai I, Sachdev A, Packirisamy G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett 2013; 3(1): 45.
[http://dx.doi.org/10.1186/2228-5326-3-45]
[61]
Felip E, Stahel RA, Pavlidis N. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of non-small-cell lung cancer (NSCLC). Ann Oncol 2005; 16 (Suppl. 1): i28-9.
[http://dx.doi.org/10.1093/annonc/mdi821] [PMID: 15888743]
[62]
Visbal AL, Leighl NB, Feld R, Shepherd FA. Adjuvant chemotherapy for early-stage non-small cell lung cancer. Chest 2005; 128(4): 2933-43.
[http://dx.doi.org/10.1378/chest.128.4.2933] [PMID: 16236970]
[63]
Johnson BE, Rabin MS. Patient subsets benefiting from adjuvant therapy following surgical resection of non-small cell lung cancer. Clin Cancer Res 2005; 11(13): 5022s-6s.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-9001] [PMID: 16000607]
[64]
Arriagada R, Dunant A, Pignon JP, et al. Long-term results of the international adjuvant lung cancer trial evaluating adjuvant Cisplatin-based chemotherapy in resected lung cancer. J Clin Oncol 2010; 28(1): 35-42.
[http://dx.doi.org/10.1200/JCO.2009.23.2272] [PMID: 19933916]
[65]
Hartmann JT, Lipp HP. Toxicity of platinum compounds. Expert Opin Pharmacother 2003; 4(6): 889-901.
[http://dx.doi.org/10.1517/14656566.4.6.889] [PMID: 12783586]
[66]
Sastry J, Kellie SJ. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatr Hematol Oncol 2005; 22(5): 441-5.
[http://dx.doi.org/10.1080/08880010590964381] [PMID: 16020136]
[67]
Duan X, He C, Kron SJ, Lin W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(5): 776-91.
[http://dx.doi.org/10.1002/wnan.1390] [PMID: 26848041]
[68]
Mandriota G, Di Corato R, Benedetti M, De Castro F, Fanizzi FP, Rinaldi R. Design and application of cisplatin-loaded magnetic nanoparticle clusters for smart chemotherapy. ACS Appl Mater Interfaces 2019; 11(2): 1864-75.
[http://dx.doi.org/10.1021/acsami.8b18717] [PMID: 30580523]
[69]
Humes HD. Insights into ototoxicity. Ann N Y Acad Sci 1999; 884(1): 15-8.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb00278.x] [PMID: 10842580]
[70]
Arany I, Safirstein RL. Cisplatin nephrotoxicity, Seminars in nephrology. Elsevier 2003; pp. 460-4.
[71]
Stathopoulos GP, Antoniou D, Dimitroulis J, Stathopoulos J, Marosis K, Michalopoulou P. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol 2011; 68(4): 945-50.
[http://dx.doi.org/10.1007/s00280-011-1572-5] [PMID: 21301848]
[72]
Köberle B, Tomicic MT, Usanova S, Kaina B. Cisplatin resistance: Preclinical findings and clinical implications. Biochim Biophys Acta 2010; 1806(2): 172-82.
[PMID: 20647037]
[73]
Marrache S, Pathak RK, Dhar S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc Natl Acad Sci 2014; 111(29): 10444-9.
[http://dx.doi.org/10.1073/pnas.1405244111] [PMID: 25002500]
[74]
Cleare MJ, Hydes PC, Malerbi BW, Watkins DM. Anti-tumour platinum complexes: Relationships between chemical properties and activity. Biochimie 1978; 60(9): 835-50.
[http://dx.doi.org/10.1016/S0300-9084(78)80568-9]
[75]
Calvert AH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: Prospective evaluation of a simple formula based on renal function. J Clin Oncol 1989; 7(11): 1748-56.
[http://dx.doi.org/10.1200/JCO.1989.7.11.1748] [PMID: 2681557]
[76]
Raymond E, Faivre S, Woynarowski JM, Chaney SG. Oxaliplatin: Mechanism of action and antineoplastic activity. Semin Oncol 1998; 25(2)(5): 4-12.
[PMID: 9609103]
[77]
Amin A, Buratovich M. New platinum and ruthenium complexes the latest class of potential chemotherapeutic drugs: A review of recent developments in the field. Mini Rev Med Chem 2009; 9(13): 1489-503.
[http://dx.doi.org/10.2174/138955709790361566] [PMID: 20205631]
[78]
Zhou X, Wang J, Wu J, et al. Preparation and evaluation of a novel liposomal formulation of cisplatin. Eur J Pharm Sci 2015; 66: 90-5.
[http://dx.doi.org/10.1016/j.ejps.2014.10.004] [PMID: 25446511]
[79]
Ghaferi M, Asadollahzadeh MJ, Akbarzadeh A, Ebrahimi Shahmabadi H, Alavi SE. Enhanced efficacy of PEGylated liposomal cisplatin: In vitro and in vivo evaluation. Int J Mol Sci 2020; 21(2): 559.
[http://dx.doi.org/10.3390/ijms21020559] [PMID: 31952316]
[80]
Alavi SE, Mansouri H, Esfahani MKM, Movahedi F, Akbarzadeh A, Chiani M. Archaeosome: As new drug carrier for delivery of Paclitaxel to breast cancer. Indian J Clin Biochem 2014; 29(2): 150-3.
[http://dx.doi.org/10.1007/s12291-013-0305-4] [PMID: 24757295]
[81]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[82]
Iinuma H, Maruyama K, Okinaga K, et al. Intracellular targeting therapy of cisplatin‐encapsulated transferrin‐polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 2002; 99(1): 130-7.
[http://dx.doi.org/10.1002/ijc.10242] [PMID: 11948504]
[83]
Ashique S, Upadhyay A, Gulati M, Singh D, Chawla PA, Chawla V. One-dimensional polymeric nanocomposites in drug delivery systems. Curr Nanosci 2023; 19(6): 825-39.
[http://dx.doi.org/10.2174/1573413719666230110110706]
[84]
Nag S, Mitra O, Tripathi G, et al. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagn Photodyn Ther 2024; 45: 103959.
[http://dx.doi.org/10.1016/j.pdpdt.2023.103959] [PMID: 38228257]
[85]
Gholap AD, Kapare HS, Pagar S, et al. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements. Int J Biol Macromol 2024; 260(Pt 2): 129581.
[http://dx.doi.org/10.1016/j.ijbiomac.2024.129581] [PMID: 38266848]
[86]
Wu J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J Pers Med 2021; 11(8): 771.
[http://dx.doi.org/10.3390/jpm11080771] [PMID: 34442415]
[87]
Holder JE, Ferguson C, Oliveira E, et al. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer. Front Oncol 2023; 13: 1154318.
[http://dx.doi.org/10.3389/fonc.2023.1154318] [PMID: 36994202]
[88]
Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233.
[http://dx.doi.org/10.1208/s12249-023-02670-0] [PMID: 37973643]
[89]
Merino M, Lozano T, Casares N, et al. Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model. J Nanobiotechnol 2021; 19(1): 102.
[http://dx.doi.org/10.1186/s12951-021-00846-z] [PMID: 33849551]
[90]
Gunasekaran K, Vasamsetti BMK, Thangavelu P, et al. Cytotoxic effects of nanoliposomal cisplatin and diallyl disulfide on breast cancer and lung cancer cell lines. Biomedicines 2023; 11(4): 1021.
[http://dx.doi.org/10.3390/biomedicines11041021] [PMID: 37189638]
[91]
Fantini M, Gianni L, Santelmo C, et al. Lipoplatin treatment in lung and breast cancer. Chemother Res Pract 2011; 2011: 1-7.
[http://dx.doi.org/10.1155/2011/125192] [PMID: 22295201]
[92]
Tan S, Wang G. Lung cancer targeted therapy: Folate and transferrin dual targeted, glutathione responsive nanocarriers for the delivery of cisplatin. Biomed Pharmacother 2018; 102: 55-63.
[http://dx.doi.org/10.1016/j.biopha.2018.03.046] [PMID: 29549729]
[93]
Xu B, Zeng M, Zeng J, Feng J, Yu L. Meta-analysis of clinical trials comparing the efficacy and safety of liposomal cisplatin versus conventional nonliposomal cisplatin in nonsmall cell lung cancer (NSCLC) and squamous cell carcinoma of the head and neck (SCCHN). Medicine 2018; 97(46): e13169.
[http://dx.doi.org/10.1097/MD.0000000000013169] [PMID: 30431590]
[94]
Crous A, Abrahamse H. Photodynamic therapy of lung cancer, where are we? Front Pharmacol 2022; 13: 932098.
[http://dx.doi.org/10.3389/fphar.2022.932098] [PMID: 36110552]
[95]
Guo S, Wang Y, Miao L, et al. Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 2013; 7(11): 9896-904.
[http://dx.doi.org/10.1021/nn403606m] [PMID: 24083505]
[96]
Nishiyama N, Okazaki S, Cabral H, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 2003; 63(24): 8977-83.
[PMID: 14695216]
[97]
Kesharwani P. Nanotechnology-based targeted drug delivery systems for lung cancer. Academic Press 2019.
[98]
Ram Prasad RP, Rishikesh Pandey RP, Ajit Varma AV, Ishan Barman IB. Polymer-based nanoparticles for drug delivery systems and cancer therapeutics. In: Natural polymers for drug delivery. UK: CABI Wallingford 2017; pp. 53-70.
[99]
Agarwal A, Asthana A, Gupta U, Jain NK. Tumour and dendrimers: A review on drug delivery aspects. J Pharm Pharmacol 2010; 60(6): 671-88.
[http://dx.doi.org/10.1211/jpp.60.6.0001] [PMID: 18498702]
[100]
Maya S, Sarmento B, Nair A, Rejinold N, Nair S, Jayakumar R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: A review. Curr Pharm Des 2013; 19(41): 7203-18.
[http://dx.doi.org/10.2174/138161281941131219124142] [PMID: 23489200]
[101]
Nag S, Bhatt M, Ghosh S, et al. Drug Delivery for Neurological Disorders Using Nanotechnology, Theranostic Applications of Nanotechnology in Neurological Disorders. Springer 2024; pp. 135-65.
[102]
Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7: 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[103]
Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 2015; 6: 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[104]
Khan MS, Mohapatra S, Gupta V, et al. Potential of lipid-based nanocarriers against two major barriers to drug delivery-skin and blood-brain barrier. Membranes 2023; 13(3): 343.
[http://dx.doi.org/10.3390/membranes13030343] [PMID: 36984730]
[105]
Movahedi F, Ebrahimi Shahmabadi H, Alavi SE, Koohi Moftakhari Esfahani M. Release modeling and comparison of nanoarchaeosomal, nanoliposomal and pegylated nanoliposomal carriers for paclitaxel. Tumour Biol 2014; 35(9): 8665-72.
[http://dx.doi.org/10.1007/s13277-014-2125-4] [PMID: 24867099]
[106]
Al Harthi S, Alavi SE, Radwan MA, El Khatib MM, AlSarra IA. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci Rep 2019; 9(1): 9563.
[http://dx.doi.org/10.1038/s41598-019-46032-y] [PMID: 31266990]
[107]
Gribko A, Künzel J, Wünsch D, et al. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: Current knowledge and perspectives. Int J Nanomedicine 2019; 14: 4187-209.
[http://dx.doi.org/10.2147/IJN.S198319] [PMID: 31289440]
[108]
Essa ML, El-Kemary MA, Ebrahem Saied EM, Leporatti S, Nemany Hanafy NA. Nano targeted therapies made of lipids and polymers have promising strategy for the treatment of lung cancer. Materials 2020; 13(23): 5397.
[http://dx.doi.org/10.3390/ma13235397] [PMID: 33261031]
[109]
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015; 115(19): 10938-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[110]
White SC, Lorigan P, Margison GP, et al. Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer. Br J Cancer 2006; 95(7): 822-8.
[http://dx.doi.org/10.1038/sj.bjc.6603345] [PMID: 16969346]
[111]
YN Dou. Thermosensitive Liposome Formulation of Cisplatin for Cancer Treatment. Canada: University of Toronto 2017.
[112]
Boulikas T, Stathopoulos GP, Volakakis N, Vougiouka M. Systemic lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Res 2005; 25(4): 3031-9.
[PMID: 16080562]
[113]
Skupin-Mrugalska P. Liposome-based drug delivery for lung cancer, Nanotechnology-based Targeted Drug Delivery Systems for Lung Cancer. Elsevier 2019; pp. 123-60.
[114]
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 2020; 9(1): 36.
[http://dx.doi.org/10.1186/s40164-020-00192-0] [PMID: 33303029]
[115]
Stathopoulos GP, Antoniou D, Dimitroulis J, et al. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: A randomized phase III multicenter trial. Ann Oncol 2010; 21(11): 2227-32.
[http://dx.doi.org/10.1093/annonc/mdq234] [PMID: 20439345]
[116]
Boulikas T. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep 2004; 12(1): 3-12.
[http://dx.doi.org/10.3892/or.12.1.3] [PMID: 15201951]
[117]
Devarajan P, Tarabishi R, Mishra J, et al. Low renal toxicity of lipoplatin compared to cisplatin in animals. Anticancer Res 2004; 24(4): 2193-200.
[PMID: 15330160]
[118]
Wu H, Jin H, Wang C, et al. Synergistic cisplatin/doxorubicin combination chemotherapy for multidrug-resistant cancer via polymeric nanogels targeting delivery. ACS Appl Mater Interfaces 2017; 9(11): 9426-36.
[http://dx.doi.org/10.1021/acsami.6b16844] [PMID: 28247750]
[119]
Krieger ML, Eckstein N, Schneider V, et al. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int J Pharm 2010; 389(1-2): 10-7.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.061] [PMID: 20060458]
[120]
Mallick A, More P, Ghosh S, et al. Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells. ACS Appl Mater Interfaces 2015; 7(14): 7584-98.
[http://dx.doi.org/10.1021/am5090226] [PMID: 25811662]
[121]
Yang YT, Shi Y, Jay M, Di Pasqua AJ. Enhanced toxicity of cisplatin with chemosensitizer phenethyl isothiocyanate toward non-small cell lung cancer cells when delivered in liposomal nanoparticles. Chem Res Toxicol 2014; 27(6): 946-8.
[http://dx.doi.org/10.1021/tx5001128] [PMID: 24836554]
[122]
Wittgen BPH, Kunst PWA, van der Born K, et al. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res 2007; 13(8): 2414-21.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1480] [PMID: 17438100]
[123]
Foote RL, Kasperbauer JL, Okuno SH, et al. A pilot study of high‐dose intraarterial cisplatin chemotherapy with concomitant accelerated radiotherapy for patients with previously untreated T4 and selected patients with T3N0-N3M0 squamous cell carcinoma of the upper aerodigestive tract. Cancer 2005; 103(3): 559-68.
[http://dx.doi.org/10.1002/cncr.20803] [PMID: 15597408]
[124]
Osaki T, Hanagiri T, Nakanishi R, Yoshino I, Taga S, Yasumoto K. Bronchial arterial infusion is an effective therapeutic modality for centrally located early-stage lung cancer: Results of a pilot study. Chest 1999; 115(5): 1424-8.
[http://dx.doi.org/10.1378/chest.115.5.1424] [PMID: 10334163]
[125]
Alberts DS, Liu PY, Hannigan EV, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med 1996; 335(26): 1950-5.
[http://dx.doi.org/10.1056/NEJM199612263352603] [PMID: 8960474]
[126]
Maisch B, Ristić AD, Pankuweit S, Neubauer A, Moll R. Neoplastic pericardial effusion. Efficacy and safety of intrapericardial treatment with cisplatin. Eur Heart J 2002; 23(20): 1625-31.
[http://dx.doi.org/10.1053/euhj.2002.3328] [PMID: 12323163]
[127]
Markman M, Cleary S, Pfeifle C, Howell SB. Cisplatin administered by the intracavitary route as treatment for malignant mesothelioma. Cancer 1986; 58(1): 18-21.
[http://dx.doi.org/10.1002/1097-0142(19860701)58:1<18::AID-CNCR2820580105>3.0.CO;2-C] [PMID: 3708543]
[128]
Markman M. Intraperitoneal therapy of ovarian cancer. Oncologist 1996; 1(1-2): 18-21.
[http://dx.doi.org/10.1634/theoncologist.1-1-18] [PMID: 10387964]
[129]
Rusch VW, Figlin R, Godwin D, Piantadosi S. Intrapleural cisplatin and cytarabine in the management of malignant pleural effusions: A Lung Cancer Study Group trial. J Clin Oncol 1991; 9(2): 313-9.
[http://dx.doi.org/10.1200/JCO.1991.9.2.313] [PMID: 1988578]
[130]
Duvillard C, Romanet P, Beaudouin N, Cosmidis A, Chauffert B. Phase 2 study of intratumoral cisplatin and epinephrine treatment for locally recurrent head and neck tumors. Ann Otol Rhinol Laryngol 2004; 113(3): 229-33.
[http://dx.doi.org/10.1177/000348940411300312] [PMID: 15053208]
[131]
Goldberg EP, Hadba AR, Almond BA, Marotta JS. Intratumoral cancer chemotherapy and immunotherapy: Opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol 2010; 54(2): 159-80.
[http://dx.doi.org/10.1211/0022357021778268] [PMID: 11848280]
[132]
Renault-Mahieux M, Vieillard V, Seguin J, et al. Co-encapsulation of fisetin and cisplatin into liposomes for glioma therapy: From formulation to cell evaluation. Pharmaceutics 2021; 13(7): 970.
[http://dx.doi.org/10.3390/pharmaceutics13070970] [PMID: 34206986]
[133]
Liu Z, Chu W, Sun Q, et al. Micelle-contained and PEGylated hybrid liposomes of combined gemcitabine and cisplatin delivery for enhancing antitumor activity. Int J Pharm 2021; 602: 120619.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120619] [PMID: 33887396]
[134]
Ocaña-Arakachi K, Martínez-Herculano J, Jurado R, Llaguno-Munive M, Garcia-Lopez P. Pharmacokinetics and anti-tumor efficacy of PEGylated liposomes co-loaded with cisplatin and mifepristone. Pharmaceuticals 2023; 16(10): 1337.
[http://dx.doi.org/10.3390/ph16101337] [PMID: 37895808]
[135]
Liu J, Wang Z, Li F, Gao J, Wang L, Huang G. Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: Characterization and evaluation. Asian J Pharm Sci 2015; 10(3): 212-22.
[136]
Hu CMJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 2012; 83(8): 1104-11.
[http://dx.doi.org/10.1016/j.bcp.2012.01.008] [PMID: 22285912]
[137]
Fotsis T, Pepper MS, Aktas E, et al. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res 1997; 57(14): 2916-21.
[PMID: 9230201]
[138]
Bhat TA, Nambiar D, Pal A, Agarwal R, Singh RP. Fisetin inhibits various attributes of angiogenesis in vitro and in vivo implications for angioprevention. Carcinogenesis 2012; 33(2): 385-93.
[http://dx.doi.org/10.1093/carcin/bgr282] [PMID: 22139440]
[139]
Touil YS, Fellous A, Scherman D, Chabot GG. Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization. Nutr Cancer 2009; 61(3): 310-21.
[http://dx.doi.org/10.1080/01635580802521346] [PMID: 19373604]
[140]
Park JH, Jang YJ, Choi YJ, et al. Fisetin inhibits matrix metalloproteinases and reduces tumor cell invasiveness and endothelial cell tube formation. Nutr Cancer 2013; 65(8): 1192-9.
[http://dx.doi.org/10.1080/01635581.2013.828090] [PMID: 24099040]
[141]
Seguin J, Brullé L, Boyer R, et al. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm 2013; 444(1-2): 146-54.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[142]
Touil YS, Seguin J, Scherman D, Chabot GG. Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice. Cancer Chemother Pharmacol 2011; 68(2): 445-55.
[http://dx.doi.org/10.1007/s00280-010-1505-8] [PMID: 21069336]
[143]
Ansó E, Zuazo A, Irigoyen M, Urdaci MC, Rouzaut A, Martínez-Irujo JJ. Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism. Biochem Pharmacol 2010; 79(11): 1600-9.
[http://dx.doi.org/10.1016/j.bcp.2010.02.004] [PMID: 20153296]
[144]
Sahu BD, Kalvala AK, Koneru M, et al. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence. PLoS One 2014; 9(9): e105070.
[http://dx.doi.org/10.1371/journal.pone.0105070] [PMID: 25184746]
[145]
Singhai M, Pandey V, Ashique S, et al. Design and evaluation of SLNs encapsulated curcumin-based topical formulation for the management of cervical cancer. Anticancer Agents Med Chem 2023; 23(16): 1866-79.
[146]
Chi RA, van der Watt P, Wei W, Birrer MJ, Leaner VD. Inhibition of Kpnβ1 mediated nuclear import enhances cisplatin chemosensitivity in cervical cancer. BMC Cancer 2021; 21(1): 106.
[http://dx.doi.org/10.1186/s12885-021-07819-3] [PMID: 33530952]
[147]
Aktepe OH, Şahin TK, Güner G, Arik Z, Yalçin Ş. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor-kappa B (NF-κB) pathway. Turk J Med Sci 2021; 51(1): 368-74.
[http://dx.doi.org/10.3906/sag-2005-413] [PMID: 32718121]
[148]
Li H, Zhang Y, Lan X, et al. Halofuginone sensitizes lung cancer organoids to cisplatin via suppressing PI3K/AKT and MAPK signaling pathways. Front Cell Dev Biol 2021; 9: 773048.
[http://dx.doi.org/10.3389/fcell.2021.773048] [PMID: 34901018]
[149]
Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 2018; 8(1): 967.
[http://dx.doi.org/10.1038/s41598-018-19325-x] [PMID: 29343829]
[150]
Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer 2013; 2013: 1-15.
[http://dx.doi.org/10.1155/2013/137414] [PMID: 23864953]
[151]
Segovia-Mendoza M, Jurado R, Mir R, Medina LA, Prado-Garcia H, Garcia-Lopez P. Antihormonal agents as a strategy to improve the effect of chemo-radiation in cervical cancer: In vitro and in vivo study. BMC Cancer 2015; 15(1): 21.
[http://dx.doi.org/10.1186/s12885-015-1016-4] [PMID: 25622528]
[152]
Jurado R, Lopez-Flores A, Alvarez A, García-López P. Cisplatin cytotoxicity is increased by mifepristone in cervical carcinoma: An in vitro and in vivo study. Oncol Rep 2009; 22(5): 1237-45.
[PMID: 19787245]
[153]
Zamboni WC, Gervais AC, Egorin MJ, et al. Inter- and intratumoral disposition of platinum in solid tumors after administration of cisplatin. Clin Cancer Res 2002; 8(9): 2992-9.
[PMID: 12231546]
[154]
Ramón-López A, Escudero-Ortiz V, Carbonell V, Pérez-Ruixo JJ, Valenzuela B. Population pharmacokinetics applied to optimising cisplatin doses in cancer patients. Farmacia Hospitalaria: Organo Oficial de Expresion Cientifica de la Sociedad Espanola de Farmacia Hospitalaria 2012; 36(5): 392-402.
[PMID: 22402361]
[155]
Karasawa T, Sibrian-Vazquez M, Strongin RM, Steyger PS. Identification of cisplatin-binding proteins using agarose conjugates of platinum compounds. PLoS One 2013; 8(6): e66220.
[http://dx.doi.org/10.1371/journal.pone.0066220] [PMID: 23755301]
[156]
Chang Q, Ornatsky OI, Siddiqui I, Straus R, Baranov VI, Hedley DW. Biodistribution of cisplatin revealed by imaging mass cytometry identifies extensive collagen binding in tumor and normal tissues. Sci Rep 2016; 6(1): 36641.
[http://dx.doi.org/10.1038/srep36641] [PMID: 27812005]
[157]
Sarkar NN. Mifepristone: Bioavailability, pharmacokinetics and use-effectiveness. Eur J Obstet Gynecol Reprod Biol 2002; 101(2): 113-20.
[http://dx.doi.org/10.1016/S0301-2115(01)00522-X] [PMID: 11858883]
[158]
Abdel-Hamid NM, Abass SA, Eldomany RA, Abdel-Kareem MA, Zakaria S. Dual regulating of mitochondrial fusion and Timp-3 by leflunomide and diallyl disulfide combination suppresses diethylnitrosamine-induced hepatocellular tumorigenesis in rats. Life Sci 2022; 294: 120369.
[http://dx.doi.org/10.1016/j.lfs.2022.120369] [PMID: 35120919]
[159]
Abdel-Daim MM, Abdel-Rahman HG, Dessouki AA, et al. Impact of garlic (Allium sativum) oil on cisplatin-induced hepatorenal biochemical and histopathological alterations in rats. Sci Total Environ 2020; 710: 136338.
[http://dx.doi.org/10.1016/j.scitotenv.2019.136338] [PMID: 31923684]
[160]
Harrington KJ, Lewanski CR, Northcote AD, et al. Phase I-II study of pegylated liposomal cisplatin (SPI-077™) in patients with inoperable head and neck cancer. Ann Oncol 2001; 12(4): 493-6.
[http://dx.doi.org/10.1023/A:1011199028318] [PMID: 11398881]
[161]
Jung J, Jeong SY, Park SS, et al. A cisplatin-incorporated liposome that targets the epidermal growth factor receptor enhances radiotherapeutic efficacy without nephrotoxicity. Int J Oncol 2015; 46(3): 1268-74.
[http://dx.doi.org/10.3892/ijo.2014.2806] [PMID: 25544240]
[162]
Ghafoori P, Marks LB, Vujaskovic Z, Kelsey CR. Radiation-induced lung injury. Assessment, management, and prevention. Oncology 2008; 22(1): 37-47.
[PMID: 18251282]
[163]
Graves EE, Maity A, Le Q-T. The tumor microenvironment in non-small-cell lung cancer, Seminars in radiation oncology. Elsevier 2010; pp. 156-63.
[164]
Baas P, Belderbos JSA, van den Heuvel M. Chemoradiation therapy in nonsmall cell lung cancer. Curr Opin Oncol 2011; 23(2): 140-9.
[http://dx.doi.org/10.1097/CCO.0b013e328341eed6] [PMID: 21178617]
[165]
Giaccone G. Twenty-five years of treating advanced NSCLC: What have we achieved? Ann Oncol 2004; 15 (Suppl. 4): iv81-3.
[http://dx.doi.org/10.1093/annonc/mdh908] [PMID: 15477340]
[166]
Song S, Liu D, Peng J, et al. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int J Pharm 2008; 363(1-2): 155-61.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.012] [PMID: 18692120]
[167]
Jeong SY, Park SJ, Yoon SM, et al. Systemic delivery and preclinical evaluation of Au nanoparticle containing β-lapachone for radiosensitization. J Control Release 2009; 139(3): 239-45.
[http://dx.doi.org/10.1016/j.jconrel.2009.07.007] [PMID: 19619590]
[168]
van der Meel R, Oliveira S, Altintas I, et al. Tumor-targeted nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. J Control Release 2012; 159(2): 281-9.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.027] [PMID: 22227023]
[169]
Liang K, Ang KK, Milas L, Hunter N, Fan Z. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys 2003; 57(1): 246-54.
[170]
Baumann M, Krause M, Dikomey E, et al. EGFR-targeted anti-cancer drugs in radiotherapy: Preclinical evaluation of mechanisms. Radiother Oncol 2007; 83(3): 238-48.
[http://dx.doi.org/10.1016/j.radonc.2007.04.006] [PMID: 17502118]
[171]
Ansell SM, Harasym TO, Tardi PG, Buchkowsky SS, Bally MB, Cullis PR. Antibody conjugation methods for active targeting of liposomes. Methods Mol Med 2000; 51-68.
[172]
Kolhatkar R, Lote A, Khambhati H. Active tumor targeting of nanomaterials using folic acid, transferrin and integrin receptors. Curr Drug Discov Technol 2011; 8(3): 197-206.
[http://dx.doi.org/10.2174/157016311796799044] [PMID: 21696360]
[173]
Sharma A, Shambhwani D, Pandey S, et al. Advances in lung cancer treatment using nanomedicines. ACS Omega 2023; 8(1): 10-41.
[http://dx.doi.org/10.1021/acsomega.2c04078] [PMID: 36643475]
[174]
Vhora I, Khatri N, Desai J, Thakkar HP. Caprylate-conjugated Cisplatin for the development of novel liposomal formulation. AAPS PharmSciTech 2014; 15(4): 845-57.
[http://dx.doi.org/10.1208/s12249-014-0106-y] [PMID: 24700295]
[175]
Akimaru K, Auzenne E, Akimaru Y, et al. Formulation and antitumor efficacy of liposomal-caprylated-TNF-SAM2. Cytokines Mol Ther 1995; 1(3): 197-210.
[PMID: 9384676]
[176]
Utsumi T, Hung M-C, Klostergaard J. Preparation and characterization of liposomal-lipophilic tumor necrosis factor. Cancer Res 1991; 51(13): 3362-6.
[PMID: 2054776]
[177]
Cafaggi S, Russo E, Stefani R, et al. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin-alginate complex. J Control Release 2007; 121(1-2): 110-23.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.037] [PMID: 17601625]
[178]
Yan X, Gemeinhart RA. Cisplatin delivery from poly(acrylic acid-co-methyl methacrylate) microparticles. J Control Release 2005; 106(1-2): 198-208.
[http://dx.doi.org/10.1016/j.jconrel.2005.05.005] [PMID: 15979187]
[179]
Shi L, Li Y, Yu T, et al. Predictable resistance and overall survival of gemcitabine/cisplatin by platelet activation index in non-small cell lung cancer. Med Sci Monit 2018; 24: 8655-68.
[http://dx.doi.org/10.12659/MSM.911125] [PMID: 30498189]
[180]
Dubey RD, Saneja A, Gupta PK, Gupta PN. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur J Pharm Sci 2016; 93: 147-62.
[http://dx.doi.org/10.1016/j.ejps.2016.08.021] [PMID: 27531553]
[181]
Poy D, Ebrahimi Shahemabadi H, Akbarzadeh A, Moradi-Sardareh H, Ebrahimifar M. Carboplatin liposomal nanoparticles: Preparation, characterization, and cytotoxicity effects on lung cancer in vitro environment. Int J Polym Mater 2018; 67(6): 367-70.
[http://dx.doi.org/10.1080/00914037.2017.1332624]
[182]
Pramanik S, Mohanto S, Manne R, et al. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol Pharm 2021; 18(10): 3671-718.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00491] [PMID: 34491754]
[183]
Burhan E, Ruesen C, Ruslami R, et al. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother 2013; 57(8): 3614-9.
[http://dx.doi.org/10.1128/AAC.02468-12] [PMID: 23689725]
[184]
Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 381-91.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[185]
Padhi S, Behera A. Cellular Internalization and Toxicity of Polymeric Nanoparticles. In: Padhi S, Behera A, Lichtfouse E, Eds. Polymeric nanoparticles for the treatment of solid tumors Environmental Chemistry for a Sustainable World. Cham: Springer 2022; 71: pp. 473-88.
[186]
Ashique S, Guptha PM, Shilpi S, et al. Nanocarrier-mediated delivery for targeting for prostate cancer, Multifunctional Nanocomposites for Targeted Drug Delivery in Cancer Therapy. Elsevier 2024; pp. 355-92.
[http://dx.doi.org/10.1016/B978-0-323-95303-0.00008-3]
[187]
Alshammari MK, Almomen EY, Alshahrani KF, et al. Nano-enabled strategies for the treatment of lung cancer: Potential bottlenecks and future perspectives. Biomedicines 2023; 11(2): 473.
[http://dx.doi.org/10.3390/biomedicines11020473] [PMID: 36831009]
[188]
Padhi S, Behera A. Advanced drug delivery systems in the treatment of ovarian cancer. In: Advanced Drug Delivery Systems in the Management of Cancer. Elsevier 2021; pp. 127-39.
[http://dx.doi.org/10.1016/B978-0-323-85503-7.00020-1]
[189]
Bazak R, Houri M, Achy SE, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2014; 2(6): 904-8.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[190]
Kundu A, Padhi S, Behera A, Hasnain MS, Nayak AK. Tumor targeting strategies by chitosan-based nanocarriers. In: Chitosan in Biomedical Applications. Elsevier 2022; pp. 163-88.
[191]
Padhi S, Azharuddin M, Behera A, et al. Nanocarriers as delivery tool for COVID-19 drugs. In: Coronavirus Drug Discovery. Elsevier 2022; pp. 293-332.
[http://dx.doi.org/10.1016/B978-0-323-95574-4.00018-4]
[192]
Behera A, Padhi S. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: Concept and recent advances. Nanomedicine 2022; 9(3): 487-99.
[193]
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. In: Nanomaterials and Neoplasms. Jenny Stanford Publishing 2021; pp. 31-142.
[http://dx.doi.org/10.1201/9780429027819-2]
[194]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41(1): 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[195]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2020; 2(12): 751-60.
[196]
Sun S, Wang Y, Gao X, et al. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: Bibliometric analysis and review. Front Bioeng Biotechnol 2023; 11: 1253048.
[http://dx.doi.org/10.3389/fbioe.2023.1253048] [PMID: 37771575]
[197]
Gabizon AA, Shmeeda H, Zalipsky S. Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 2006; 16(3): 175-83.
[http://dx.doi.org/10.1080/08982100600848769] [PMID: 16952872]
[198]
Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999; 51(4): 691-743.
[PMID: 10581328]
[199]
Morse MA, Eklind KI, Hecht SS, et al. Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res 1991; 51(7): 1846-50.
[PMID: 2004368]
[200]
Wang S, Gou J, Wang Y, et al. Synergistic antitumor efficacy mediated by liposomal co-delivery of polymeric micelles of vinorelbine and cisplatin in non-small cell lung cancer. Int J Nanomedicine 2021; 16: 2357-72.
[http://dx.doi.org/10.2147/IJN.S290263] [PMID: 33790554]
[201]
Mukherjee A, Paul M, Mukherjee S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers 2019; 11(5): 597.
[http://dx.doi.org/10.3390/cancers11050597] [PMID: 31035440]
[202]
Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 2011; 63(3): 161-9.
[http://dx.doi.org/10.1016/j.addr.2010.09.003] [PMID: 20869415]
[203]
Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release 2020; 318: 256-63.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.023] [PMID: 31846618]
[204]
Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009; 71(3): 409-19.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[205]
Ahmadian S, Sabzichi M, Rashidi M, et al. Sensitization of A-549 lung cancer cells to Cisplatin by Quinacrine-loaded lipidic nanoparticles via suppressing Nrf2 mediated defense mechanism. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(7): 1521-8.
[http://dx.doi.org/10.1007/s00210-021-02079-1] [PMID: 33735393]
[206]
Klaunig JE. Oxidative stress and cancer. Curr Pharm Des 2019; 24(40): 4771-8.
[http://dx.doi.org/10.2174/1381612825666190215121712] [PMID: 30767733]
[207]
Sabzichi M, Ramezani M, Mohammadian J, et al. The synergistic impact of quinacrine on cell cycle and anti-invasiveness behaviors of doxorubicin in MDA-MB-231 breast cancer cells. Process Biochem 2019; 81: 175-81.
[http://dx.doi.org/10.1016/j.procbio.2019.03.007]
[208]
Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol 2015; 225(3): R83-99.
[http://dx.doi.org/10.1530/JOE-14-0662] [PMID: 25918130]
[209]
Petri S, Körner S, Kiaei M. Nrf2/ARE signaling pathway: Key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/878030] [PMID: 23050144]
[210]
Ikeda H, Serria MS, Kakizaki I, et al. Activation of mouse Pi-class glutathione S-transferase gene by Nrf2(NF-E2-related factor 2) and androgen. Biochem J 2002; 364(2): 563-70.
[http://dx.doi.org/10.1042/bj20011756] [PMID: 12023900]
[211]
Tang X, Wang H, Fan L, et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med 2011; 50(11): 1599-609.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.008] [PMID: 21402146]
[212]
Maroufi NF, Vahedian V, Mazrakhondi SAM, et al. Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(1): 1-11.
[http://dx.doi.org/10.1007/s00210-019-01692-5] [PMID: 31372697]
[213]
Raeisi S, Chavoshi H, Mohammadi M, Ghorbani M, Sabzichi M, Ramezani F. Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process Biochem 2019; 83: 168-75.
[http://dx.doi.org/10.1016/j.procbio.2019.05.013]
[214]
Tajmohammadi I, Mohammadian J, Sabzichi M, et al. Identification of Nrf2/STAT3 axis in induction of apoptosis through sub-G1 cell cycle arrest mechanism in HT‐29 colon cancer cells. J Cell Biochem 2019; 120(8): 14035-43.
[http://dx.doi.org/10.1002/jcb.28678] [PMID: 30993753]
[215]
Garg T, Goyal AK. Liposomes: Targeted and controlled delivery system. Drug Deliv Lett 2014; 4(1): 62-71.
[http://dx.doi.org/10.2174/22103031113036660015]
[216]
Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S, Barghi S, Maroufi NF, Taheri RA. Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif Cell Nanomed Biotechnol 2018; 46(sup1): 283-92.
[217]
Mohammadian J, Mahmoudi S, Pourmohammad P, et al. Formulation of Stattic as STAT3 inhibitor in nanostructured lipid carriers (NLCs) enhances efficacy of doxorubicin in melanoma cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(12): 2315-23.
[http://dx.doi.org/10.1007/s00210-020-01942-x] [PMID: 32653978]
[218]
Wang Z, Qiao R, Tang N, et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials 2017; 127: 25-35.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.037] [PMID: 28279919]
[219]
Padhi S, Behera A. Nanotechnology based targeting strategies for the delivery of Camptothecin, Sustainable Agriculture Reviews 44: Pharmaceutical Technology for Natural Products Delivery. Impact Nanotechnol 2020; 2: 243-72.
[220]
AlSawaftah N, Pitt WG, Husseini GA. Dual-targeting and stimuli-triggered liposomal drug delivery in cancer treatment. ACS Pharmacol Transl Sci 2021; 4(3): 1028-49.
[http://dx.doi.org/10.1021/acsptsci.1c00066] [PMID: 34151199]
[221]
Agiba AM, Arreola-Ramírez JL, Carbajal V, Segura-Medina P. Light-responsive and dual-targeting liposomes: From mechanisms to targeting strategies. Molecules 2024; 29(3): 636.
[http://dx.doi.org/10.3390/molecules29030636] [PMID: 38338380]
[222]
Riaz M, Riaz M, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[223]
Jain A, Jain SK. Advances in tumor targeted liposomes. Curr Mol Med 2018; 18(1): 44-57.
[http://dx.doi.org/10.2174/1566524018666180416101522] [PMID: 29663884]
[224]
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 2016; 116(9): 5338-431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[225]
Narmani A, Yavari K, Mohammadnejad J. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex. Colloids Surf B Biointerfaces 2017; 159: 232-40.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.089] [PMID: 28800462]
[226]
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 2020; 321: 285-311.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.019] [PMID: 32057990]
[227]
Pakdaman Goli P, Bikhof Torbati M, Parivar K, Akbarzadeh Khiavi A, Yousefi M. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2021; 65: 102756.
[http://dx.doi.org/10.1016/j.jddst.2021.102756]
[228]
Narmani A, Rezvani M, Farhood B, et al. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res 2019; 80(4): 404-24.
[http://dx.doi.org/10.1002/ddr.21545] [PMID: 31140629]
[229]
Yang Y, Zhao Z, Xie C, Zhao Y. Dual-targeting liposome modified by glutamic hexapeptide and folic acid for bone metastatic breast cancer. Chem Phys Lipids 2020; 228: 104882.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104882] [PMID: 32017901]
[230]
Valihrach L, Androvic P, Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med 2020; 72: 100825.
[http://dx.doi.org/10.1016/j.mam.2019.10.002] [PMID: 31635843]
[231]
Wang P, Zhu M, Zhang D, et al. The relationship between chronic obstructive pulmonary disease and non‐small cell lung cancer in the elderly. Cancer Med 2019; 8(9): 4124-34.
[http://dx.doi.org/10.1002/cam4.2333] [PMID: 31184445]
[232]
Yu N, Yong S, Kim HK, et al. Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma. Mol Oncol 2019; 13(6): 1356-68.
[http://dx.doi.org/10.1002/1878-0261.12478] [PMID: 30913346]
[233]
Pidíkova P, Reis R, Herichova I. miRNA clusters with down-regulated expression in human colorectal cancer and their regulation. Int J Mol Sci 2020; 21(13): 4633.
[http://dx.doi.org/10.3390/ijms21134633] [PMID: 32610706]
[234]
Ye T, Changyu S, Limeng Z, Yuan P. Clinical significance of miRNA 106a in non-small cell lung cancer patients who received cisplatin combined with gemcitabine chemotherapy. Cancer Biol Med 2018; 15(2): 157-64.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0182] [PMID: 29951339]
[235]
Deng S, Wu D, Li L, et al. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun 2021; 549: 54-60.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.077] [PMID: 33662669]
[236]
Rao C, Miao X, Zhao G, et al. MiR-219a-5p enhances cisplatin sensitivity of human non-small cell lung cancer by targeting FGF9. Biomed Pharmacother 2019; 114: 108662.
[http://dx.doi.org/10.1016/j.biopha.2019.108662] [PMID: 30999114]
[237]
Ma CC, Wang ZL, Xu T, He ZY, Wei YQ. The approved gene therapy drugs worldwide: From 1998 to 2019. Biotechnol Adv 2020; 40: 107502.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107502] [PMID: 31887345]
[238]
Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 2018; 37(1): 107-24.
[http://dx.doi.org/10.1007/s10555-017-9717-6] [PMID: 29243000]
[239]
Chudal L, Pandey NK, Phan J, Johnson O, Li X, Chen W. Investigation of PPIX-Lipo-MnO2 to enhance photodynamic therapy by improving tumor hypoxia. Mater Sci Eng C 2019; 104: 109979.
[http://dx.doi.org/10.1016/j.msec.2019.109979] [PMID: 31500001]
[240]
Lu M, Zhao X, Xing H, et al. Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm 2018; 550(1-2): 100-13.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.040] [PMID: 30138707]
[241]
Tian M, Ticer T, Wang Q, et al. Adipose‐derived biogenic nanoparticles for suppression of inflammation. Small 2020; 16(10): 1904064.
[http://dx.doi.org/10.1002/smll.201904064] [PMID: 32067382]
[242]
Luo C, Miao L, Zhao Y, et al. A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA. Biomaterials 2016; 102: 239-48.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.030] [PMID: 27344367]
[243]
Wimmel A, Schilli M, Kaiser U, et al. Preferential histiotypic expression of CD44-isoforms in human lung cancer. Lung Cancer 1997; 16(2-3): 151-72.
[http://dx.doi.org/10.1016/S0169-5002(96)00625-3] [PMID: 9152947]
[244]
Pirinen R, Hirvikoski P, Böhm J, et al. Reduced expression of CD44v3 variant isoform is associated with unfavorable outcome in non-small cell lung carcinoma. Hum Pathol 2000; 31(9): 1088-95.
[http://dx.doi.org/10.1053/hupa.2000.16277] [PMID: 11014576]
[245]
Miyoshi T, Kondo K, Hino N, Uyama T, Monden Y. The expression of the CD44 variant exon 6 is associated with lymph node metastasis in non-small cell lung cancer. Clin Cancer Res 1997; 3(8): 1289-97.
[PMID: 9815811]
[246]
Jiang Q, Yuan Y, Gong Y, et al. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. J Cancer Res Clin Oncol 2019; 145(12): 2951-67.
[http://dx.doi.org/10.1007/s00432-019-03051-6] [PMID: 31654121]
[247]
Wang L, Niu X, Song Q, et al. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles. J Control Release 2020; 318: 197-209.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.017] [PMID: 31672622]
[248]
Cai L, Qin X, Xu Z, et al. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega 2019; 4(7): 12036-42.
[http://dx.doi.org/10.1021/acsomega.9b01142] [PMID: 31460316]
[249]
Jozefczuk J, Adjaye J. Quantitative real-time PCR-based analysis of gene expression. In: Methods in Enzymology. Elsevier 2011; pp. 99-109.
[250]
Li M, Jiang M, Chen M, et al. Formulated nano-liposomes for reversal of cisplatin resistance in NSCLC with nucleus-targeting peptide. Nano Res 2023; 16(11): 12864-79.
[http://dx.doi.org/10.1007/s12274-023-6273-y]
[251]
Jiang M, Fang X, Ma L, et al. A nucleus-targeting peptide antagonist towards EZH2 displays therapeutic efficacy for lung cancer. Int J Pharm 2022; 622: 121894.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121894] [PMID: 35680109]
[252]
Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med 2016; 22(2): 128-34.
[http://dx.doi.org/10.1038/nm.4036] [PMID: 26845405]
[253]
Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419(6907): 624-9.
[http://dx.doi.org/10.1038/nature01075] [PMID: 12374981]
[254]
Huqun R, Ishikawa R, Zhang J, et al. Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer. Cancer 2012; 118(6): 1599-606.
[http://dx.doi.org/10.1002/cncr.26441] [PMID: 21837672]
[255]
Tu Z, Chen X, Tian T, Chen G, Huang M. Prognostic significance of epigenetic regulatory gene expression in patients with non-small-cell lung cancer. Aging 2021; 13(5): 7397-415.
[http://dx.doi.org/10.18632/aging.202600] [PMID: 33658396]
[256]
Zheng B, Chen X. Dynamics of histone H3 lysine 27 trimethylation in plant development. Curr Opin Plant Biol 2011; 14(2): 123-9.
[http://dx.doi.org/10.1016/j.pbi.2011.01.001] [PMID: 21330185]
[257]
Bogliotti YS, Ross PJ. Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development. Epigenetics 2012; 7(9): 976-81.
[http://dx.doi.org/10.4161/epi.21615] [PMID: 22895114]
[258]
Wang X, Zhao H, Lv L, Bao L, Wang X, Han S. Prognostic significance of EZH2 expression in non-small cell lung cancer: A meta-analysis. Sci Rep 2016; 6(1): 19239.
[http://dx.doi.org/10.1038/srep19239] [PMID: 26754405]
[259]
Zang X, Gu J, Zhang J, et al. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death Dis 2020; 11(4): 215.
[http://dx.doi.org/10.1038/s41419-020-2409-0] [PMID: 32242003]
[260]
Xu C, Hao K, Hu H, et al. Expression of the enhancer of zeste homolog 2 in biopsy specimen predicts chemoresistance and survival in advanced non-small cell lung cancer receiving first-line platinum-based chemotherapy. Lung Cancer 2014; 86(2): 268-73.
[http://dx.doi.org/10.1016/j.lungcan.2014.09.010] [PMID: 25262426]
[261]
Liu X, Lu X, Zhen F, et al. LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC. Mol Ther Nucleic Acids 2019; 16: 155-61.
[http://dx.doi.org/10.1016/j.omtn.2019.02.010] [PMID: 30889481]
[262]
Wu M, Huang T, Wang J, et al. Antilung cancer effect of ergosterol and cisplatin-loaded liposomes modified with cyclic arginine-glycine-aspartic acid and octa-arginine peptides. Medicine 2018; 97(33): e11916.
[http://dx.doi.org/10.1097/MD.0000000000011916] [PMID: 30113492]
[263]
Mikada M, Sukhbaatar A, Miura Y, et al. Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis. Cancer Sci 2017; 108(5): 846-52.
[http://dx.doi.org/10.1111/cas.13206] [PMID: 28211204]
[264]
Saisyo A, Nakamura H, Fang J, et al. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect. Colloids Surf B Biointerfaces 2016; 138: 128-37.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.032] [PMID: 26674841]
[265]
Nichols JW, Bae YH. EPR: Evidence and fallacy. J Control Release 2014; 190: 451-64.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[266]
Zhao T, Huang G, Li Y, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat biomed eng 2016; 1(1): 0006.
[267]
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013; 65(1): 71-9.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[268]
Liu X, Wu X, Ma Y, et al. Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro. Oncol Rep 2017; 37(3): 1793-803.
[http://dx.doi.org/10.3892/or.2017.5366] [PMID: 28098865]
[269]
Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin J Nat Med 2016; 14(8): 615-20.
[http://dx.doi.org/10.1016/S1875-5364(16)30072-3] [PMID: 27608951]
[270]
Zhang J, Lai Z, Huang W, et al. Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells. Anti-Canc Agent Med Chem 2017; 17(10): 1374-82.
[271]
Ravi Subbiah MT, Abplanalp W. Ergosterol (major sterol of baker’s and brewer’s yeast extracts) inhibits the growth of human breast cancer cells in vitro and the potential role of its oxidation products. Int J Vitam Nutr Res 2003; 73(1): 19-23.
[http://dx.doi.org/10.1024/0300-9831.73.1.19] [PMID: 12690907]
[272]
Lin YC, Lee BH, Alagie J, Su CH. Combination treatment of ergosterol followed by amphotericin B induces necrotic cell death in human hepatocellular carcinoma cells. Oncotarget 2017; 8(42): 72727-38.
[http://dx.doi.org/10.18632/oncotarget.20285] [PMID: 29069821]
[273]
Li S-D, Huang L. Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. Elsevier 2010; pp. 178-81.
[274]
Li X, Zhang J, Chen Y, Liang X, Luo X. The influence of different long-circulating materials on the pharmacokinetics of liposomal vincristine sulfate. Int J Nanomedicine 2016; 11: 4187-97.
[http://dx.doi.org/10.2147/IJN.S109547] [PMID: 27616886]
[275]
Wehland JD, Lygina AS, Kumar P, et al. Role of the transmembrane domain in SNARE protein mediated membrane fusion: Peptide nucleic acid/peptide model systems. Mol Biosyst 2016; 12(9): 2770-6.
[http://dx.doi.org/10.1039/C6MB00294C] [PMID: 27345759]
[276]
Zhang L, Wang Y, Gao HL, He Q. The construction of cell-penetrating peptide R8 and pH sensitive cleavable polyethylene glycols co-modified liposomes. Yao Xue Xue Bao 2015; 50(6): 760-6.
[PMID: 26521450]
[277]
Clark E, Nava B, Caputi M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget 2017; 8(16): 27569-81.
[http://dx.doi.org/10.18632/oncotarget.15174] [PMID: 28187438]
[278]
Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352(10): 997-1003.
[http://dx.doi.org/10.1056/NEJMoa043331] [PMID: 15758010]
[279]
Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 2010; 141(2): 183-92.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.020] [PMID: 19799948]
[280]
Charo IF, Nannizzi L, Smith JW, Cheresh DA. The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin. J Cell Biol 1990; 111(6): 2795-800.
[http://dx.doi.org/10.1083/jcb.111.6.2795] [PMID: 1703545]
[281]
Khalil IA, Kogure K, Futaki S, Harashima H. Octaarginine-modified liposomes: Enhanced cellular uptake and controlled intracellular trafficking. Int J Pharm 2008; 354(1-2): 39-48.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.003] [PMID: 18242018]
[282]
Zangabad PS, Mirkiani S, Shahsavari S, et al. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev 2018; 7(1): 95-122.
[http://dx.doi.org/10.1515/ntrev-2017-0154] [PMID: 29404233]
[283]
Deshmukh RR, Gawale SV, Bhagwat MK, Ahire PA, Derle ND. A review on: Liposomes. World J Pharm Pharm Sci 2016; 5(3): 506-17.
[284]
Jone A. Liposomes: A short review. J Pharmac Sci Res 2013; 5(9): 181.
[285]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[286]
Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol 2013; 5(1): 96-107.
[http://dx.doi.org/10.1039/c2ib20135f] [PMID: 22869005]
[287]
Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv Drug Deliv Rev 2012; 64(9): 866-84.
[http://dx.doi.org/10.1016/j.addr.2012.01.020] [PMID: 22349241]
[288]
Lee Y, Thompson DH. Stimuli‐responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(5): e1450.
[http://dx.doi.org/10.1002/wnan.1450] [PMID: 28198148]
[289]
Rahim MA, Jan N, Khan S, et al. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers 2021; 13(4): 670.
[http://dx.doi.org/10.3390/cancers13040670] [PMID: 33562376]
[290]
Shah H, Madni A, Filipczak N, et al. Cisplatin-loaded thermoresponsive liposomes for enhanced anticancer efficacy. J Drug Deliv Sci Technol 2023; 84: 104509.
[http://dx.doi.org/10.1016/j.jddst.2023.104509]
[291]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[292]
Chen J, Cheng D, Li J, et al. Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC. Drug Dev Ind Pharm 2013; 39(2): 197-204.
[http://dx.doi.org/10.3109/03639045.2012.668912] [PMID: 22443684]
[293]
Lindner LH, Hossann M. Factors affecting drug release from liposomes. Curr Opin Drug Discov Devel 2010; 13(1): 111-23.
[PMID: 20047152]
[294]
Hossann M, Syunyaeva Z, Schmidt R, et al. Proteins and cholesterol lipid vesicles are mediators of drug release from thermosensitive liposomes. J Control Release 2012; 162(2): 400-6.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.032] [PMID: 22759980]
[295]
Dou YN, Zheng J, Foltz WD, et al. Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice. J Control Release 2014; 178: 69-78.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.009] [PMID: 24440663]
[296]
Dudar TE, Jain RK. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res 1984; 44(2): 605-12.
[PMID: 6692365]
[297]
Vujaskovic Z, Poulson JM, Gaskin AA, et al. Temperature-dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment. Int J Radiat Oncol Biol Phys 2000; 46(1): 179-85.
[298]
Pang CL. Hyperthermia in oncology. In: Medicine, Dentistry, Nursing & Allied Health. CRC Press 2015; pp. 1-396.
[http://dx.doi.org/10.1201/b18487]
[299]
Shen W-C, Louie SG. Immunology for pharmacy students. In: Bioscience, Medicine, Dentistry, Nursing & Allied Health. Routledge 2019; pp. 1-174.
[http://dx.doi.org/10.4324/9781482298208]
[300]
Carvalho Júnior AD, Vieira FP, De Melo VJ, et al. Preparation and cytotoxicity of cisplatin-containing liposomes. Braz J Med Biol Res 2007; 40(8): 1149-57.
[http://dx.doi.org/10.1590/S0100-879X2006005000125] [PMID: 17665053]
[301]
Collins D. pH-sensitive liposomes as tools for cytoplasmic delivery. In: Liposomes as Tools in Basic Research and Industry. CRC Press 1994; pp. 201-14.
[302]
De Oliveira MC, Boutet V, Fattal E, et al. Improvement of in vivo stability of phosphodiester oligonucleotide using anionic liposomes in mice. Life Sci 2000; 67(13): 1625-37.
[http://dx.doi.org/10.1016/S0024-3205(00)00745-1] [PMID: 10983856]
[303]
Hospers G, Mulder N, De Jong B, Zijlstra J, De Vries E. Comparison between a human small cell lung carcinoma cell line (GLC4) and an Adriamycin (GLC4-ADR) and a CDDP (GLC4-CDDP) resistant subline. A Preliminary Report, Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy: Proceedings of the Fifth International Symposium on Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy Abano. Padua, ITALY-June 29-July 2, 1987, Springer, 1988, pp. 479-483.
[304]
Song J, Ren W, Xu T, et al. Reversal of multidrug resistance in human lung cancer cells by delivery of 3-octadecylcarbamoy-lacrylic acid-cisplatin-based liposomes. Drug Des Devel Ther 2017; 11: 441-9.
[http://dx.doi.org/10.2147/DDDT.S124912] [PMID: 28255230]
[305]
Mamot C, Drummond DC, Hong K, Kirpotin DB, Park JW. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist Updat 2003; 6(5): 271-9.
[http://dx.doi.org/10.1016/S1368-7646(03)00082-7] [PMID: 14643297]
[306]
Zeng F, Ju RJ, Li XT, Lu WL. Advances in investigations on the mechanism of cancer multidrug resistance and the liposomes-based treatment strategy. J Pharm Investig 2014; 44(7): 493-504.
[http://dx.doi.org/10.1007/s40005-014-0154-z]
[307]
Casagrande N, De Paoli M, Celegato M, et al. Preclinical evaluation of a new liposomal formulation of cisplatin, lipoplatin, to treat cisplatin-resistant cervical cancer. Gynecol Oncol 2013; 131(3): 744-52.
[http://dx.doi.org/10.1016/j.ygyno.2013.08.041] [PMID: 24029417]
[308]
Zamboni WC, Gervais AC, Egorin MJ, et al. Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol 2004; 53(4): 329-36.
[http://dx.doi.org/10.1007/s00280-003-0719-4] [PMID: 14673619]
[309]
Kim ES, Lu C, Khuri FR, et al. A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer 2001; 34(3): 427-32.
[http://dx.doi.org/10.1016/S0169-5002(01)00278-1] [PMID: 11714540]
[310]
Kieler-Ferguson HM, Chan D, Sockolosky J, et al. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids. Eur J Pharm Sci 2017; 103: 85-93.
[http://dx.doi.org/10.1016/j.ejps.2017.03.003] [PMID: 28263913]
[311]
Parveen S, Arjmand F, Tabassum S. Clinical developments of antitumor polymer therapeutics. RSC Advances 2019; 9(43): 24699-721.
[http://dx.doi.org/10.1039/C9RA04358F] [PMID: 35528643]
[312]
Hang Z, Cooper MA, Ziora ZM. Platinum-based anticancer drugs encapsulated liposome and polymeric micelle formulation in clinical trials. Biochem Comp 2016; 4(1): 1.
[313]
Stathopoulos G, Boulikas T, Vougiouka M, et al. Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): Phase I study. Oncol Rep 2005; 13(4): 589-95.
[http://dx.doi.org/10.3892/or.13.4.589] [PMID: 15756428]
[314]
Ravaioli A, Papi M, Pasquini E, et al. Lipoplatin monotherapy: A phase II trial of second-line treatment of metastatic non-small-cell lung cancer. J Chemother 2009; 21(1): 86-90.
[http://dx.doi.org/10.1179/joc.2009.21.1.86] [PMID: 19297279]
[315]
Jehn CF, Boulikas T, Kourvetaris A, Possinger K, Lüftner D. Pharmacokinetics of liposomal cisplatin (lipoplatin) in combination with 5-FU in patients with advanced head and neck cancer: First results of a phase III study. Anticancer Res 2007; 27(1A): 471-5.
[PMID: 17352269]
[316]
Mylonakis N, Athanasiou A, Ziras N, et al. Phase II study of liposomal cisplatin (Lipoplatin™) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer. Lung Cancer 2010; 68(2): 240-7.
[http://dx.doi.org/10.1016/j.lungcan.2009.06.017] [PMID: 19628292]
[317]
Farooq MA, Aquib M, Farooq A, et al. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: An overview. Artif Cells Nanomed Biotechnol 2019; 47(1): 1674-92.
[http://dx.doi.org/10.1080/21691401.2019.1604535] [PMID: 31066300]
[318]
Liposomal-Cisplatin Analogue (L-NDDP) in Treating Patients With Malignant Pleural Mesothelioma. Patent NCT00004033, 2011. Available from: https://clinicaltrials.gov/study/NCT00004033
[319]
Dragovich T, Mendelson D, Kurtin S, Richardson K, Von Hoff D, Hoos A. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother Pharmacol 2006; 58(6): 759-64.
[http://dx.doi.org/10.1007/s00280-006-0235-4] [PMID: 16847673]
[320]
de Jonge MJA, Slingerland M, Loos WJ, et al. Early cessation of the clinical development of LiPlaCis, a liposomal cisplatin formulation. Eur J Cancer 2010; 46(16): 3016-21.
[http://dx.doi.org/10.1016/j.ejca.2010.07.015] [PMID: 20801016]
[321]
Boulikas T. Clinical overview on Lipoplatin™: A successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 2009; 18(8): 1197-218.
[http://dx.doi.org/10.1517/13543780903114168] [PMID: 19604121]
[322]
Stathopoulos GP, Boulikas T. Lipoplatin formulation review article. J Drug Deliv 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/581363] [PMID: 21904682]
[323]
Newman MS, Colbern GT, Working PK, Engbers C, Amantea MA. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol 1999; 43(1): 1-7.
[http://dx.doi.org/10.1007/s002800050855] [PMID: 9923534]
[324]
Cho LC, Dowell JE, Garwood D, Spangler A, Choy H. Prophylactic cranial irradiation with combined modality therapy for patients with locally advanced non-small cell lung cancer. In: Seminars in oncology. Elsevier 2005; pp. 293-8.
[325]
Canão F, Ferreira H, Neves NM. Liposomal formulations for lung cancer treatment in the last two decades: A systematic review. J Cancer Res Clin Oncol 2022; 148(9): 2375-86.
[http://dx.doi.org/10.1007/s00432-022-04079-x] [PMID: 35660950]