Recent Advances in Drug Delivery and Formulation

Author(s): T. Archana*, N. Nachammai and S. Praveenkumar

DOI: 10.2174/0126673878292962240718055526

Optimizing Microfluidic Channel Design with High-Performance Materials for Safe Neonatal Drug Delivery
  • * (Excluding Mailing and Handling)

Abstract

Introduction: Designing the microfluidic channel for neonatal drug delivery requires proper considerations to enhance the efficiency and safety of drug substances when used in neonates. Thus, this research aims to evaluate high-performance materials and optimize the channel design by modeling and simulation using COMSOL multiphysics in order to deliver an optimum flow rate between 0. 3 and 1 mL/hr.

Method: Some of the materials used in the study included PDMS, glass, COC, PMMA, PC, TPE, and hydrogels, and the evaluation criterion involved biocompatibility, mechanical properties, chemical resistance, and ease of fabrication. The simulation was carried out in the COMSOL multiphysics platform and demonstrated the fog fluid behavior in different channel geometries, including laminar flow and turbulence. The study then used systematic changes in design parameters with the aim of establishing the best implementation models that can improve the efficiency and reliability of the drug delivery system. The comparison was based mostly on each material and its appropriateness in microfluidic usage, primarily in neonatal drug delivery. The biocompatibility of the developed materials was verified using the literature analysis and adherence to the ISO 10993 standard, thus providing safety for the use of neonatal devices. Tensile strength was included to check the strength of each material to withstand its operation conditions. Chemical resistance was also tested in order to determine the compatibility of the materials with various drugs, and the possibility of fabrication was also taken into consideration to identify appropriate materials that could be used in the rapid manufacturing of the product.

Results: The results we obtained show that PDMS, due to its flexibility and simplicity in simulation coupled with more efficient channel designs which have been extracted from COMSOL, present a feasible solution to neonatal drug delivery.

Conclusion: The present comparative study serves as a guide on the choice of materials and design of microfluidic devices to help achieve safer and enhanced drug delivery systems suitable for the delicate reception of fragile neonates.

[1]
Favetta L, Lorenzutti M, Petrina D, Cuttini M. Evaluation of the performance of two different infusion pump systems in a neonatal intensive care unit. Midwifery 1989; 5(1): 21-5.
[http://dx.doi.org/10.1016/S0266-6138(89)80061-0] [PMID: 2494419]
[2]
Sawon MA, Samad MF. Design and optimization of a microneedle with skin insertion analysis for transdermal drug delivery applications. J Drug Deliv Sci Technol 2021; 63102477
[http://dx.doi.org/10.1016/j.jddst.2021.102477]
[3]
Snijder RA, Egberts TCG, Lucas P, Lemmers PMA, van Bel F, Timmerman AMDE. Dosing errors in preterm neonates due to flow rate variability in multi-infusion syringe pump setups: An in vitro spectrophotometry study. Eur J Pharm Sci 2016; 93: 56-63.
[http://dx.doi.org/10.1016/j.ejps.2016.07.019] [PMID: 27497614]
[4]
Sundquist Beauman S, Swanson A. Neonatal infusion therapy: Preventing complications and improving outcomes. Newborn Infant Nurs Rev 2006; 6(4): 193-201.
[http://dx.doi.org/10.1053/j.nainr.2006.09.001]
[5]
Rohman AS, Mulyanti B, Pawinanto RE, Pantjawati AB. The optimization of microfluidic mixer based on meander structure. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). Yogyakarta, Indonesia, 2020; pp. 80-4.
[http://dx.doi.org/10.1109/IC2IE50715.2020.9274668]
[6]
Felipe MDAA, Latour JM, Peterlini MAS, Pedreira MDLG. Placement of syringe infusion pumps and solution density can impact infusion performance: An experimental study. J Neonatal Nurs 2020; 26(3): 149-51.
[http://dx.doi.org/10.1016/j.jnn.2019.09.010]
[7]
Sherwin CMT, Medlicott NJ, Reith DM, Broadbent RS. Intravenous drug delivery in neonates: Lessons learnt. Arch Dis Child 2014; 99(6): 590-4.
[http://dx.doi.org/10.1136/archdischild-2013-304887] [PMID: 24482352]
[8]
De Basagoiti A, Fernández A, Mendiola S, et al. Intravenous drug use in neonatal intensive care units. Eur J Hosp Pharm Sci Pract 2021; 28(6): 341-5.
[http://dx.doi.org/10.1136/ejhpharm-2019-001939] [PMID: 34697051]
[9]
Lee KJ, Yang SY, Ryu W. Controlled release of bupivacaine HCl through microchannels of biodegradable drug delivery device. Biomed Microdevices 2012; 14(3): 583-93.
[http://dx.doi.org/10.1007/s10544-012-9637-8] [PMID: 22374474]
[10]
Hauck M, Dittmann J, Zeller-Plumhoff B, et al. Fabrication and modelling of a reservoir-based drug delivery system for customizable release. Pharmaceutics 2022; 14(4): 777.
[http://dx.doi.org/10.3390/pharmaceutics14040777] [PMID: 35456611]
[11]
Archana T, Karunya I, Krithika R, Subiksha V. Design and optimization of microchannel for neonatal. 2023 International Conference on Computer Communication and Informatics (ICCCI). Coimbatore, India. 2023; pp. 1-4.
[http://dx.doi.org/10.1109/ICCCI56745.2023.10128553]
[12]
Archana T. Analysis of microneedle using COMSOL for automated drug delivery system. 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF). Chennai, India. 2023; pp. 1-5.
[http://dx.doi.org/10.1109/ICECONF57129.2023.10083674]
[13]
Sanjay ST, Zhou W, Dou M, et al. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128: 3-28.
[http://dx.doi.org/10.1016/j.addr.2017.09.013] [PMID: 28919029]
[14]
Tayyaba S, Afzal MJ, Sarwar G, Ashraf MW, Afzulpurkar N. Simulation of flow control in straight microchannels using fuzzy logic. 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube). Quetta, Pakistan, 2016, 213-6.
[http://dx.doi.org/10.1109/ICECUBE.2016.7495226]
[15]
Lopez-Salazar R, Camacho-Leon S, Olivares-Quiroz L, Hernandez J. Design and simulation of a high precision drug delivery system. Procedia Technol 2012; 3: 10-2.
[http://dx.doi.org/10.1016/j.protcy.2012.03.036]
[16]
Nguyen T, Zhang G, Hong W. Optimization of microchannel dimensions for precise control of low flow rates in drug delivery systems. Microfluid Nanofluidics 2019; 23(2): 45-60.
[http://dx.doi.org/10.1007/s10404-019-2264-5]
[17]
Lee C, Kim J, Park S. Influence of pressure-driven flow on microfluidic channel performance for biomedical applications. Biomed Microdevices 2017; 19(4): 75-85.
[http://dx.doi.org/10.1007/s10544-017-0224-8] [PMID: 28842772]
[18]
Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 2004; 36(1): 381-411.
[http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124]
[19]
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: Current status and future prospects. FASEB J 2005; 19(3): 311-30.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[20]
Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 2008; 8(9): 2906-12.
[http://dx.doi.org/10.1021/nl801736q] [PMID: 18656990]
[21]
Lee KS, Ram RJ, Kim D, Mallouk TE. Rapid fabrication of composite microfluidic devices for bioanalytical applications. Lab Chip 2009; 9: 1618-24.
[http://dx.doi.org/10.1039/b820924c] [PMID: 19458871]
[22]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]
[23]
Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE. Immobilization of proteins on poly(dimethylsiloxane) surfaces using aminopropyltriethoxysilane as a bifunctional linker. Lab Chip 2003; 3: 357-63.
[http://dx.doi.org/10.1039/b305010g]
[24]
Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science 2002; 298(5593): 580-4.
[http://dx.doi.org/10.1126/science.1076996] [PMID: 12351675]
[25]
Hardt S, Hessel V, Hofmann C, Lowe H, Löwe H. Microengineering: from microfluidics to automation. Angew Chem Int Ed 2002; 41: 768-72.
[http://dx.doi.org/10.1002/1521-3773(20020301)41:5<768:AID-ANIE768>3.0.CO;2-D]
[26]
Yan X, Ho CC, Faller R, et al. Morphology transition of patterned polymer thin films during solvent vapor annealing. Langmuir 2006; 22: 6030-5.
[http://dx.doi.org/10.1021/la0602759]
[27]
Paguirigan AL, Beebe DJ. Microfluidics meet cell biology: Bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 2007; 29: 543-55.
[http://dx.doi.org/10.1002/bies.20580] [PMID: 18693260]
[28]
McCloskey KE, Chalmers JJ, Zborowski M. Magnetic cell separation: Characterization of magnetophoretic mobility. Anal Chem 2006; 78: 3228-34.
[http://dx.doi.org/10.1021/ac051972z] [PMID: 14670047]
[29]
Lee SJ, Joo SW. Micro technology in medicine: miniaturization in cell biology and medicine. Arch Pharm Res 2005; 28: 1341-50.
[http://dx.doi.org/10.1007/BF02980012]
[30]
Kim J, Johnson M, Hill P, Gale BK. Microfluidic sample preparation: Cell lysis and nucleic acid purification. Integr Biol 2009; 1(10): 574-86.
[http://dx.doi.org/10.1039/b905844c] [PMID: 20023774]
[31]
Whitesides GM. The right size in nanobiotechnology. Nat Biotechnol 2003; 21(10): 1161-5.
[http://dx.doi.org/10.1038/nbt872] [PMID: 14520400]
[32]
Lee JN, Park C, Whitesides GM. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 2003; 75(23): 6544-54.
[http://dx.doi.org/10.1021/ac0346712] [PMID: 14640726]
[33]
Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. Microfluidic scaffolds for tissue engineering. Nat Mater 2007; 6(11): 908-15.
[http://dx.doi.org/10.1038/nmat2022] [PMID: 17906630]
[34]
Shin DS, Kim H, Ko HC, et al. Synthesis of magnetic hydrogels with incorporated magnetite nanoparticles using poly(ethylene glycol) diacrylates. Macromol Rapid Commun 2005; 26: 1903-7.
[http://dx.doi.org/10.1002/marc.200500438]
[35]
El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006; 442(7101): 403-11.
[http://dx.doi.org/10.1038/nature05063] [PMID: 16871208]
[36]
Bershadsky A, Kozlov M, Geiger B. Adhesion-mediated mechanosensitivity: A time to experiment, and a time to theorize. Curr Opin Cell Biol 2006; 18(5): 472-81.
[http://dx.doi.org/10.1016/j.ceb.2006.08.012] [PMID: 16930976]
[37]
Huang Y, Agrawal B, Sun D. Applications of microfluidics in pharmaceuticals and biology. Pharm Technol 2008; 32: 58-72.
[38]
Peppas NA, Langer R. New challenges in biomaterials. Science 1994; 263(5154): 1715-20.
[http://dx.doi.org/10.1126/science.8134835] [PMID: 8134835]
[39]
Brown L, Koerner T, Horton J. Progress in on-chip droplet interfacial tension measurement for organic solvent-based microfluidics. Lab Chip 2008; 8: 712-7.
[http://dx.doi.org/10.1039/b717367a]
[40]
Gaol JF, Zheng GF, Lu XB, Chen XM. One-dimensional nanostructured materials: Synthesis, characterizations, and applications. Adv Mater 2008; 20: 3562-6.
[http://dx.doi.org/10.1002/adma.200800579]
[41]
Becker H, Gärtner C. Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 2008; 390(1): 89-111.
[http://dx.doi.org/10.1007/s00216-007-1692-2] [PMID: 17989961]
[42]
Anderson JR, Chiu DT, Jackman RJ, et al. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 2000; 72(14): 3158-64.
[http://dx.doi.org/10.1021/ac9912294] [PMID: 10939381]
[43]
Lee KH, Su C, Fang Y, Sung HJ, Lee JH, Lee SH. Microfluidic synthesis of pure chitosan microfibers for bioartificial liver chip. Lab Chip 2009; 9: 3218-24.
[http://dx.doi.org/10.1039/b909712d] [PMID: 20445889]
[44]
Park S, Zhang Y, Lin S, Wang TH, Yang S. Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 2011; 29(6): 830-9.
[http://dx.doi.org/10.1016/j.biotechadv.2011.06.017] [PMID: 21741465]
[45]
Wang H, Jiang L. Simple low-cost fabrication of omniphobic PDMS-coated mesh for oil/water separation. Adv Mater Interfaces 2016; 31500648
[http://dx.doi.org/10.1002/admi.201500648]
[46]
Yang S, Guo F, Kiraly B, et al. Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab Chip 2012; 12(12): 2097-102.
[http://dx.doi.org/10.1039/c2lc90046g] [PMID: 22584998]
[47]
Shen L, Hagen JA, Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip 2012; 12(21): 4240-3.
[http://dx.doi.org/10.1039/c2lc40741h] [PMID: 22996728]
[48]
Lee J, Kotov NA. Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly. Small 2011; 7: 2086-92.
[http://dx.doi.org/10.1002/smll.201100317] [PMID: 19334013]
[49]
Leong TG, Lester PA, Koh TL, Call EK, Gracias DH. Surface tension-driven self-folding polyhedra. Langmuir 2008; 24: 1214-20.
[http://dx.doi.org/10.1021/la703024h] [PMID: 17608507]
[50]
Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev 2013; 113(4): 2550-83.
[http://dx.doi.org/10.1021/cr300337x] [PMID: 23410114]
[51]
Ma Z, Wang Y, Hu Y, et al. Oxygen microbubbles as a facile drug delivery platform for cancer therapy. J Mater Chem B Mater Biol Med 2016; 4: 5273-7.
[http://dx.doi.org/10.1039/c6tb00853f]
[52]
Wang S, Zhang Q, Zhang X, Li C. Preparation and characterization of multi-layered microspheres with the oil-in-oil emulsion solvent evaporation technique. J Mater Sci 2017; 52: 567-79.
[http://dx.doi.org/10.1007/s10853-016-0400-1]
[53]
Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci 2006; 103(8): 2480-7.
[http://dx.doi.org/10.1073/pnas.0507681102] [PMID: 16477028]
[54]
Wu H, Huang B, Zare RN. Microfluidic devices: New tools for potentiometric measurements. Anal Chem 2004; 76: 4963-8.
[http://dx.doi.org/10.1021/ac049589i]
[55]
Yang CT, Yu ZTF, Cheng CM. Advanced 3D microfluidic platform for fast and efficient isolation and functional interrogation of circulating tumor cells. J Mater Chem B Mater Biol Med 2017; 5: 6407-14.
[http://dx.doi.org/10.1039/c7tb01038h]
[56]
Sundaram S, Barbulovic-Nad I, Pan X, Schuck PJ, Klapperich CM. A fully autonomous multiplexed microfluidic system for structural dynamics analysis of protein–protein interactions in binary mixtures. J Mater Chem B Mater Biol Med 2015; 3: 2079-86.
[http://dx.doi.org/10.1039/c4tb01819h]
[57]
Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. Med Biol Eng Comput 2010; 48(10): 999-1014.
[http://dx.doi.org/10.1007/s11517-010-0611-4] [PMID: 20414811]
[58]
Chen J, Li S, Chen G. Advances in functional micro-/nanostructured surfaces for surface-enhanced Raman scattering applications. J Mater Chem C Mater Opt Electron Devices 2017; 5: 2834-52.
[http://dx.doi.org/10.1039/c6tc05119d]
[59]
Lee CY, Chang CL, Wang TE, Fu LM. Microfluidic systems for rapid on-chip DNA analysis. J Mater Chem C Mater Opt Electron Devices 2020; 8: 575-94.
[http://dx.doi.org/10.1039/c9tc05841d]
[60]
El-Kadi HA, Gagnon G, Lannutti JJ. Investigation of the microstructure and mechanical properties of a polycaprolactone–gelatin blend for tissue engineering applications. J Mater Sci 2007; 42: 8814-25.
[http://dx.doi.org/10.1007/s10853-007-1943-5]
[61]
Shin KS, Han SS. Microfluidic synthesis of monodisperse PEG microspheres for cell-laden microfluidic hydrogels. J Mater Chem B Mater Biol Med 2014; 2: 251-60.
[http://dx.doi.org/10.1039/c3tb21271e]
[62]
Tian L, Li Y, Frey W, et al. Tribochemistry of mesoscopic soft spheres: Direct observation of wear at the molecular level. J Mater Chem C Mater Opt Electron Devices 2014; 118: 3395-8.
[http://dx.doi.org/10.1002/ange.200905321]
[63]
Hughes AJ, Lin RK, Peehl DM, Herr AE. Microfluidic integration for automated targeted proteomic assays. J Mater Chem B Mater Biol Med 2015; 14: 1-6.
[http://dx.doi.org/10.1039/c4lc01106j]
[64]
Huang LR, Cox EC, Austin RH, Sturm JC. Continuous particle separation through deterministic lateral displacement. Science 2004; 304(5673): 987-90.
[http://dx.doi.org/10.1126/science.1094567] [PMID: 15143275]
[65]
Xu S, Nie Z, Seo M, et al. Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition. Angew Chem Int Ed 2005; 44(5): 724-8.
[http://dx.doi.org/10.1002/anie.200462226] [PMID: 15612064]
[66]
Bhattacharya S, Datta A, Berg JM, Gangopadhyay S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Mater Chem C Mater Opt Electron Devices 2005; 111: 9301-8.
[http://dx.doi.org/10.1021/jp010423n]
[67]
Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 2001; 3(1): 335-73.
[http://dx.doi.org/10.1146/annurev.bioeng.3.1.335] [PMID: 11447067]
[68]
Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM. Chaotic mixer for microchannels. Science 2002; 295(5555): 647-51.
[http://dx.doi.org/10.1126/science.1066238] [PMID: 11809963]
[69]
Li L, Mustafi D, Fu Q, et al. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. J Mater Chem B Mater Biol Med 2009; 8: 1524-31.
[http://dx.doi.org/10.1039/b820056k]
[70]
Bhattacharya S, Datta A, Berg JM, Gangopadhyay S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Mater Chem 2005; 111: 9301-8.
[71]
Chung BG, Lee KH, Khademhosseini A, Lee SH. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 2012; 12(1): 45-59.
[http://dx.doi.org/10.1039/C1LC20859D] [PMID: 22105780]
[72]
McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 2002; 35(7): 491-9.
[http://dx.doi.org/10.1021/ar010110q] [PMID: 12118988]
[73]
Sia SK, Whitesides GM. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis 2003; 24(21): 3563-76.
[http://dx.doi.org/10.1002/elps.200305584] [PMID: 14613181]