The GA-Hecate Peptide inhibits the ZIKV Replicative Cycle in Different Steps and can Inhibit the Flavivirus NS2B-NS3 Protease after Cell Infection
  • * (Excluding Mailing and Handling)

Abstract

Background: Peptide drugs are advantageous because they are subject to rational design and exhibit highly diverse structures and broad biological activities. The NS2B-NS3 protein is a particularly promising flavivirus therapeutic target, with extensive research on the development of inhibitors as therapeutic candidates, and was used as a model in this work to determine the mechanism by which GA-Hecate inhibits ZIKV replication.

Objective: The present study aimed to evaluate the potential of GA-Hecate, a new antiviral developed by our group, against the Brazilian Zika virus and to evaluate the mechanism of action of this compound on the flavivirus NS2B-NS3 protein.

Methods: Solid-phase peptide Synthesis, High-Performance Liquid Chromatography, and Mass Spectrometry were used to obtain, purify, and characterize the synthesized compound. Real-time and enzymatic assays were used to determine the antiviral potential of GA-Hecate against ZIKV.

Results: The RT-qPCR results showed that GA-Hecate decreased the number of ZIKV RNA copies in the virucidal, pre-treatment, and post-entry assays, with 5- to 6-fold fewer RNA copies at the higher nontoxic concentration in Vero cells (HNTC: 10 μM) than in the control cells. Enzymatic and kinetic assays indicated that GA-Hecate acts as a competitive ZIKV NS2B-NS3 protease inhibitor with an IC50 of 32 nM and has activity against the yellow fever virus protease.

Conclusion: The results highlight the antiviral potential of the GA-Hecate bioconjugate and open the door for the development of new antivirals.

[1]
Meertens, L.; Carnec, X.; Lecoin, M.P.; Guivel-benhassine, F.; Lew, E.; Lemke, G.; Schwartz, O.; Amara, A. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe, 2013, 12(4), 544-557.
[2]
Petersen, E.; Wilson, M.E.; Touch, S.; McCloskey, B.; Mwaba, P.; Bates, M.; Dar, O.; Mattes, F.; Kidd, M.; Ippolito, G.; Azhar, E.I.; Zumla, A. Rapid spread of zika virus in the americas : Implications for public health preparedness for mass gatherings at the 2016 brazil olympic games. Int. J. Infect. Dis., 2016, 44, 11-15.
[http://dx.doi.org/10.1016/j.ijid.2016.02.001] [PMID: 26854199]
[3]
Simonin, Y.; Loustalot, F.; Desmetz, C.; Foulongne, V.; Constant, O.; Fournier-Wirth, C.; Leon, F.; Molès, J.P.; Goubaud, A.; Lemaitre, J.M.; Maquart, M.; Leparc-Goffart, I.; Briant, L.; Nagot, N.; Van de Perre, P.; Salinas, S. Zika virus strains potentially display different infectious profiles in human neural cells. EBioMedicine, 2016, 12, 161-169.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.020] [PMID: 27688094]
[4]
Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology, 2020, 543, 34-42.
[http://dx.doi.org/10.1016/j.virol.2020.01.015] [PMID: 32056845]
[5]
Beaver, J.T.; Lelutiu, N.; Habib, R.; Skountzou, I. Evolution of two major Zika virus lineages: Implications for pathology, immune response, and vaccine development. Front. Immunol., 2018, 9, 1640.
[http://dx.doi.org/10.3389/fimmu.2018.01640] [PMID: 30072993]
[6]
Barrett, A.D.T. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation /692/308/153 /631/326/590/1883 perspective. NPJ Vaccines, 2018, 3, 1-4.
[http://dx.doi.org/10.1038/s41541-018-0061-9] [PMID: 29900012]
[7]
Morrison, C. DNA vaccines against Zika virus speed into clinical trials. Nat. Rev. Drug Discov., 2016, 15(8), 521-522.
[http://dx.doi.org/10.1038/nrd.2016.159] [PMID: 27469223]
[8]
Noorbakhsh, F.; Abdolmohammadi, K.; Fatahi, Y.; Dalili, H.; Rasoolinejad, M.; Rezaei, F.; Salehi-Vaziri, M.; Zahra Shafiei-Jandaghi, N.; Shamsi Gooshki, E.; Zaim, M.; Nicknam, M.H. Zika virus infection, basic and clinical aspects: A review article. Iran. J. Public Health, 2019, 48(1), 20-31.
[http://dx.doi.org/10.18502/ijph.v48i1.779] [PMID: 30847308]
[9]
Pierson, T.C.; Diamond, M.S. The emergence of Zika virus and its new clinical syndromes. Nature, 2018, 560(7720), 573-581.
[http://dx.doi.org/10.1038/s41586-018-0446-y] [PMID: 30158602]
[10]
Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol., 2020, 5(6), 796-812.
[http://dx.doi.org/10.1038/s41564-020-0714-0] [PMID: 32367055]
[11]
Voss, S.; Nitsche, C. Inhibitors of the Zika virus protease NS2B-NS3. Bioorg. Med. Chem. Lett., 2020, 30(5), 126965.
[http://dx.doi.org/10.1016/j.bmcl.2020.126965] [PMID: 31980339]
[12]
Wu, H.; Bock, S.; Snitko, M.; Berger, T.; Weidner, T.; Holloway, S.; Kanitz, M.; Diederich, W.E.; Steuber, H.; Walter, C.; Hofmann, D.; Weißbrich, B.; Spannaus, R.; Acosta, E.G.; Bartenschlager, R.; Engels, B.; Schirmeister, T.; Bodem, J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob. Agents Chemother., 2015, 59(2), 1100-1109.
[http://dx.doi.org/10.1128/AAC.03543-14] [PMID: 25487800]
[13]
Chen, X.; Yang, K.; Wu, C.; Chen, C.; Hu, C.; Buzovetsky, O.; Wang, Z.; Ji, X.; Xiong, Y.; Yang, H. Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease. Cell Res., 2016, 26(11), 1260-1263.
[http://dx.doi.org/10.1038/cr.2016.116] [PMID: 27752039]
[14]
Phoo, W.W.; Li, Y.; Zhang, Z.; Lee, M.Y.; Loh, Y.R.; Tan, Y.B.; Ng, E.Y.; Lescar, J.; Kang, C.; Luo, D. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat. Commun., 2016, 7(1), 13410.
[http://dx.doi.org/10.1038/ncomms13410] [PMID: 27845325]
[15]
Nunes, D.A.F.; Santos, F.R.S.; da Fonseca, S.T.D.; de Lima, W.G.; Nizer, W.S.C.; Ferreira, J.M.S.; de Magalhães, J.C. NS2B-NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: A systematic review. J. Med. Virol., 2022, 94(2), 442-453.
[http://dx.doi.org/10.1002/jmv.27386]
[16]
Shiryaev, S.A.; Farhy, C.; Pinto, A.; Huang, C.T.; Simonetti, N.; Ngono, A.E.; Dewing, A.; Shresta, S.; Pinkerton, A.B.; Cieplak, P.; Strongin, A.Y.; Terskikh, A.V. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res., 2017, 143, 218-229.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.015] [PMID: 28461069]
[17]
Shin, H.J.; Kim, M.H.; Lee, J.Y.; Hwang, I.; Yoon, G.Y.; Kim, H.S.; Kwon, Y.C.; Ahn, D.G.; Kim, K.D.; Kim, B.T.; Kim, S.J.; Kim, C. Structure-based virtual screening: Identification of a novel NS2B-NS3 protease inhibitor with potent antiviral activity against zika and dengue viruses. Microorganisms, 2021, 9(3), 545.
[http://dx.doi.org/10.3390/microorganisms9030545] [PMID: 33800763]
[18]
Wahaab, A.; Mustafa, B.E.; Hameed, M.; Stevenson, N.J.; Anwar, M.N.; Liu, K.; Wei, J.; Qiu, Y.; Ma, Z. Potential role of flavivirus ns2b-ns3 proteases in viral pathogenesis and anti-flavivirus drug discovery employing animal cells and models: A review. Viruses, 2021, 14(1), 44.
[http://dx.doi.org/10.3390/v14010044] [PMID: 35062249]
[19]
Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[20]
Wang, G. Natural antimicrobial peptides as promising anti-HIV candidates. Curr. Top. Pept. Protein Res., 2012, 13, 93-110.
[PMID: 26834391]
[21]
Batista, M.N.; Sanches, P.R.S.; Carneiro, B.M.; Braga, A.C.S.; Campos, G.R.F.; Cilli, E.M.; Rahal, P. GA-Hecate antiviral properties on HCV whole cycle represent a new antiviral class and open the door for the development of broad spectrum antivirals. Sci. Rep., 2018, 8(1), 14329.
[http://dx.doi.org/10.1038/s41598-018-32176-w] [PMID: 30254334]
[22]
Galdiero, S.; Falanga, A.; Tarallo, R.; Russo, L.; Galdiero, E.; Cantisani, M.; Morelli, G.; Galdiero, M. Peptide inhibitors against herpes simplex virus infections. J. Pept. Sci., 2013, 19(3), 148-158.
[http://dx.doi.org/10.1002/psc.2489] [PMID: 23389903]
[23]
Vilas Boas, L.C.P.; Campos, M.L.; Berlanda, R.L.A.; de Carvalho Neves, N.; Franco, O.L. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci., 2019, 76(18), 3525-3542.
[http://dx.doi.org/10.1007/s00018-019-03138-w] [PMID: 31101936]
[24]
Colombo, T.E.; Terzian, A.C.B.; Júnior, J.P.A.; Parreira, R.; Cabrera, E.M.S.; Santos, I.N.P.; Reis, A.F.N.; Costa, F.R.; Cruz, L.E.A.A.; Rombola, P.L.; Nogueira, M.L. Zika detection: comparison of methodologies. Braz. J. Microbiol., 2018, 49(1), 144-147.
[http://dx.doi.org/10.1016/j.bjm.2017.04.011] [PMID: 28927874]
[25]
Noske, G.D.; Gawriljuk, V.O.; Fernandes, R.S.; Furtado, N.D.; Bonaldo, M.C.; Oliva, G.; Godoy, A.S. Structural characterization and polymorphism analysis of the NS2B-NS3 protease from the 2017 Brazilian circulating strain of Yellow Fever virus. Biochim. Biophys. Acta Gen. Subj., 2020, 1864(4), 129521.
[http://dx.doi.org/10.1016/j.bbagen.2020.129521]
[26]
Mottin, M.; Caesar, L.K.; Brodsky, D.; Mesquita, N.C.M.R.; de Oliveira, K.Z.; Noske, G.D.; Sousa, B.K.P.; Ramos, P.R.P.S.; Jarmer, H.; Loh, B.; Zorn, K.M.; Foil, D.H.; Torres, P.M.; Guido, R.V.C.; Oliva, G.; Scholle, F.; Ekins, S.; Cech, N.B.; Andrade, C.H.; Laster, S.M. Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins. Bioorg. Chem., 2022, 120, 105649.
[http://dx.doi.org/10.1016/j.bioorg.2022.105649] [PMID: 35124513]
[27]
Aslanidis, C.; de Jong, P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res., 1990, 18(20), 6069-6074.
[http://dx.doi.org/10.1093/nar/18.20.6069] [PMID: 2235490]
[28]
Li, Y.; Zhang, Z.; Phoo, W.W.; Loh, Y.R.; Li, R.; Yang, H.Y.; Jansson, A.E.; Hill, J.; Keller, T.H.; Nacro, K.; Luo, D.; Kang, C. Structural insights into the inhibition of zika virus NS2B-NS3 protease by a small-molecule inhibitor. Structure, 2018, 26(4), 555-564.e3.
[http://dx.doi.org/10.1016/j.str.2018.02.005] [PMID: 29526431]
[29]
Noble, C.G.; Seh, C.C.; Chao, A.T.; Shi, P.Y. Ligand-bound structures of the dengue virus protease reveal the active conformation. J. Virol., 2012, 86(1), 438-446.
[http://dx.doi.org/10.1128/JVI.06225-11] [PMID: 22031935]
[30]
Xu, S.; Ci, Y.; Wang, L.; Yang, Y.; Zhang, L.; Xu, C.; Qin, C.; Shi, L. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Res., 2019, 47(16), 8693-8707.
[http://dx.doi.org/10.1093/nar/gkz650] [PMID: 31361901]
[31]
Sanches, P.R.S.; Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Lorenzón, E.N.; Rahal, P.; Cilli, E.M. A conjugate of the lytic peptide Hecate and gallic acid: Structure, activity against cervical cancer, and toxicity. Amino Acids, 2015, 47(7), 1433-1443.
[http://dx.doi.org/10.1007/s00726-015-1980-7] [PMID: 25868656]
[32]
Ayusso, G.M.; da Silva Sanches, P.R.; Carvalho, T.; Santos, I.A.; Martins, D.O.S.; Lima, M.L.D.; da Conceição, P.J.P.; Bittar, C.; Merits, A.; Cilli, E.M.; Jardim, A.C.G.; Rahal, P.; Calmon, M.F. The synthetic peptide ga-hecate and its analogs inhibit multiple steps of the chikungunya virus infection cycle in vitro. Pharmaceuticals, 2023, 16(10), 1389.
[http://dx.doi.org/10.3390/ph16101389] [PMID: 37895860]
[33]
Ng, W.C.; Soto-Acosta, R.; Bradrick, S.S.; Garcia-Blanco, M.A.; Ooi, E.E. The 5ʹ and 3ʹ untranslated regions of the flaviviral genome. Viruses, 2017, 9, 1-14.
[http://dx.doi.org/10.3390/v9060137] [PMID: 28587300]
[34]
Domingo, E.; Sheldon, J.; Perales, C. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev., 2012, 76(2), 159-216.
[http://dx.doi.org/10.1128/MMBR.05023-11] [PMID: 22688811]
[35]
Mandary, M.B.; Masomian, M.; Poh, C.L. Impact of RNA virus evolution on quasispecies formation and virulence. Int. J. Mol. Sci., 2019, 20(18), 4657.
[http://dx.doi.org/10.3390/ijms20184657] [PMID: 31546962]
[36]
Agrelli, A.; de Moura, R.R.; Crovella, S.; Brandão, L.A.C. ZIKA virus entry mechanisms in human cells. Infect. Genet. Evol., 2019, 69, 22-29.
[http://dx.doi.org/10.1016/j.meegid.2019.01.018] [PMID: 30658214]
[37]
Hasan, S.S.; Sevvana, M.; Kuhn, R.J.; Rossmann, M.G. Structural biology of Zika virus and other flaviviruses. Nat. Struct. Mol. Biol., 2018, 25(1), 13-20.
[http://dx.doi.org/10.1038/s41594-017-0010-8] [PMID: 29323278]
[38]
Lei, J.; Hansen, G.; Nitsche, C.; Klein, C.D.; Zhang, L.; Hilgenfeld, R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science, 2016, 353(6298), 503-505.
[http://dx.doi.org/10.1126/science.aag2419] [PMID: 27386922]
[39]
Huber, S.; Braun, N.J.; Schmacke, L.C.; Quek, J.P.; Murra, R.; Bender, D.; Hildt, E.; Luo, D.; Heine, A.; Steinmetzer, T. Structure-based optimization and characterization of macrocyclic zika virus NS2B-NS3 protease inhibitors. J. Med. Chem., 2021.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01860] [PMID: 35475620]
[40]
Leung, D.; Schroder, K.; White, H.; Fang, N.X.; Stoermer, M.J.; Abbenante, G.; Martin, J.L.; Young, P.R.; Fairlie, D.P. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J. Biol. Chem., 2001, 276(49), 45762-45771.
[http://dx.doi.org/10.1074/jbc.M107360200] [PMID: 11581268]
[41]
Gruba, N.; Rodriguez Martinez, J.I.; Grzywa, R.; Wysocka, M.; Skoreński, M.; Burmistrz, M.; Łęcka, M.; Lesner, A.; Sieńczyk, M.; Pyrć, K. Substrate profiling of Zika virus NS2B-NS3 protease. FEBS Lett., 2016, 590(20), 3459-3468.
[http://dx.doi.org/10.1002/1873-3468.12443] [PMID: 27714789]
[42]
Khumthong, R.; Angsuthanasombat, C.; Panyim, S.; Katzenmeier, G. In vitro determination of dengue virus type 2 NS2B-NS3 protease activity with fluorescent peptide substrates. J. Biochem. Mol. Biol., 2002, 35(2), 206-212.
[43]
Kondo, M.Y.; Oliveira, L.C.G.; Okamoto, D.N.; de Araujo, M.R.T.; Duarte dos Santos, C.N.; Juliano, M.A.; Juliano, L.; Gouvea, I.E. Yellow fever virus NS2B/NS3 protease: Hydrolytic properties and substrate specificity. Biochem. Biophys. Res. Commun., 2011, 407(4), 640-644.
[http://dx.doi.org/10.1016/j.bbrc.2011.03.054] [PMID: 21419753]
[44]
Luo, D.; Vasudevan, S.G.; Lescar, J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res., 2015, 118, 148-158.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.014]
[45]
Du Pont, K.E.; Geiss, B.J. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. Wiley Interdiscip Rev. RNA, 2022, 13(2), e1688.
[http://dx.doi.org/10.1002/wrna.1688]
[46]
Heaton, N.S.; Perera, R.; Berger, K.L.; Khadka, S.; LaCount, D.J.; Kuhn, R.J.; Randall, G. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc. Natl. Acad. Sci., 2010, 107(40), 17345-17350.
[http://dx.doi.org/10.1073/pnas.1010811107] [PMID: 20855599]