Current Genomics

Author(s): Indu Priya Gudivada and Krishna Chaitanya Amajala*

DOI: 10.2174/0113892029308243240709073945

DownloadDownload PDF Flyer Cite As
Integrative Bioinformatics Analysis for Targeting Hub Genes in Hepatocellular Carcinoma Treatment

Page: [48 - 80] Pages: 33

  • * (Excluding Mailing and Handling)

Abstract

Background: The damage in the liver and hepatocytes is where the primary liver cancer begins, and this is referred to as Hepatocellular Carcinoma (HCC). One of the best methods for detecting changes in gene expression of hepatocellular carcinoma is through bioinformatics approaches.

Objective: This study aimed to identify potential drug target(s) hubs mediating HCC progression using computational approaches through gene expression and protein-protein interaction datasets.

Methodology: Four datasets related to HCC were acquired from the GEO database, and Differentially Expressed Genes (DEGs) were identified. Using Evenn, the common genes were chosen. Using the Fun Rich tool, functional associations among the genes were identified. Further, protein- protein interaction networks were predicted using STRING, and hub genes were identified using Cytoscape. The selected hub genes were subjected to GEPIA and Shiny GO analysis for survival analysis and functional enrichment studies for the identified hub genes. The up-regulating genes were further studied for immunohistopathological studies using HPA to identify gene/protein expression in normal vs HCC conditions. Drug Bank and Drug Gene Interaction Database were employed to find the reported drug status and targets. Finally, STITCH was performed to identify the functional association between the drugs and the identified hub genes.

Results: The GEO2R analysis for the considered datasets identified 735 upregulating and 284 downregulating DEGs. Functional gene associations were identified through the Fun Rich tool. Further, PPIN network analysis was performed using STRING. A comparative study was carried out between the experimental evidence and the other seven data evidence in STRING, revealing that most proteins in the network were involved in protein-protein interactions. Further, through Cytoscape plugins, the ranking of the genes was analyzed, and densely connected regions were identified, resulting in the selection of the top 20 hub genes involved in HCC pathogenesis. The identified hub genes were: KIF2C, CDK1, TPX2, CEP55, MELK, TTK, BUB1, NCAPG, ASPM, KIF11, CCNA2, HMMR, BUB1B, TOP2A, CENPF, KIF20A, NUSAP1, DLGAP5, PBK, and CCNB2. Further, GEPIA and Shiny GO analyses provided insights into survival ratios and functional enrichment studied for the hub genes. The HPA database studies further found that upregulating genes were involved in changes in protein expression in Normal vs HCC tissues. These findings indicated that hub genes were certainly involved in the progression of HCC. STITCH database studies uncovered that existing drug molecules, including sorafenib, regorafenib, cabozantinib, and lenvatinib, could be used as leads to identify novel drugs, and identified hub genes could also be considered as potential and promising drug targets as they are involved in the gene-chemical interaction networks.

Conclusion: The present study involved various integrated bioinformatics approaches, analyzing gene expression and protein-protein interaction datasets, resulting in the identification of 20 topranked hubs involved in the progression of HCC. They are KIF2C, CDK1, TPX2, CEP55, MELK, TTK, BUB1, NCAPG, ASPM, KIF11, CCNA2, HMMR, BUB1B, TOP2A, CENPF, KIF20A, NUSAP1, DLGAP5, PBK, and CCNB2. Gene-chemical interaction network studies uncovered that existing drug molecules, including sorafenib, regorafenib, cabozantinib, and lenvatinib, can be used as leads to identify novel drugs, and the identified hub genes can be promising drug targets. The current study underscores the significance of targeting these hub genes and utilizing existing molecules to generate new molecules to combat liver cancer effectively and can be further explored in terms of drug discovery research to develop treatments for HCC.

Keywords: Liver cancer, gene expression datasets, interaction network, hub genes, drug targets, systems biology, omics studies.

Graphical Abstract

[1]
Gerber, M.A.; Thung, S.N. Histology of the Liver. Am. J. Surg. Pathol., 1987, 11(9), 709-710.
[http://dx.doi.org/10.1097/00000478-198709000-00007] [PMID: 3631384]
[2]
Yin, Z.; Jiang, K.; Li, R.; Dong, C.; Wang, L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol. Cancer, 2018, 17(1), 178.
[http://dx.doi.org/10.1186/s12943-018-0926-6] [PMID: 30593276]
[3]
Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Biol., 2017, 27(21), R1147-R1151.
[http://dx.doi.org/10.1016/j.cub.2017.09.019] [PMID: 29112863]
[4]
Torimura, T.; Iwamoto, H. Treatment and the prognosis of hepatocellular carcinoma in Asia. Liver Int., 2022, 42(9), 2042-2054.
[http://dx.doi.org/10.1111/liv.15130] [PMID: 34894051]
[5]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[6]
Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[7]
Dimitroulis, D.; Damaskos, C.; Valsami, S.; Davakis, S.; Garmpis, N.; Spartalis, E.; Athanasiou, A.; Moris, D.; Sakellariou, S.; Kykalos, S.; Tsourouflis, G.; Garmpi, A.; Delladetsima, I.; Kontzoglou, K.; Kouraklis, G. From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world. World J. Gastroenterol., 2017, 23(29), 5282-5294.
[http://dx.doi.org/10.3748/wjg.v23.i29.5282] [PMID: 28839428]
[8]
Venook, A.P.; Papandreou, C.; Furuse, J.; Ladrón de Guevara, L. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist, 2010, 15(S4)(Suppl. 4), 5-13.
[http://dx.doi.org/10.1634/theoncologist.2010-S4-05] [PMID: 21115576]
[9]
Tejeda-Maldonado, J.; García-Juárez, I.; Aguirre-Valadez, J.; González-Aguirre, A.; Vilatobá-Chapa, M.; Armengol-Alonso, A.; Escobar-Penagos, F.; Torre, A.; Sánchez-Ávila, J.F.; Carrillo-Pérez, D.L. Diagnosis and treatment of hepatocellular carcinoma: An update. World J. Hepatol., 2015, 7(3), 362-376.
[http://dx.doi.org/10.4254/wjh.v7.i3.362] [PMID: 25848464]
[10]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[11]
Tavassoly, I.; Goldfarb, J.; Iyengar, R. Systems biology primer: The basic methods and approaches. Essays Biochem., 2018, 62(4), 487-500.
[http://dx.doi.org/10.1042/EBC20180003] [PMID: 30287586]
[12]
Xu, R.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; Zheng, L.; Zhang, H.; Caughey, B.A.; Zhao, Q.; Hou, J.; Zhang, R.; Xu, Y.; Cai, H.; Li, G.; Hou, R.; Zhong, Z.; Lin, D.; Fu, X.; Zhu, J.; Duan, Y.; Yu, M.; Ying, B.; Zhang, W.; Wang, J.; Zhang, E.; Zhang, C.; Li, O.; Guo, R.; Carter, H.; Zhu, J.; Hao, X.; Zhang, K. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater., 2017, 16(11), 1155-1161.
[http://dx.doi.org/10.1038/nmat4997] [PMID: 29035356]
[13]
Deng, Y.B.; Nagae, G.; Midorikawa, Y.; Yagi, K.; Tsutsumi, S.; Yamamoto, S.; Hasegawa, K.; Kokudo, N.; Aburatani, H.; Kaneda, A. Identification of genes preferentially methylated in hepatitis C virus-related hepatocellular carcinoma. Cancer Sci., 2010, 101(6), 1501-1510.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01549.x] [PMID: 20345479]
[14]
Atyah, M.; Zhou, C.; Zhou, Q.; Chen, W.; Weng, J.; Wang, P.; Shi, Y.; Dong, Q.; Ren, N. The Age-Specific Features and Clinical Significance of NRF2 and MAPK10 Expression in HCC Patients. Int. J. Gen. Med., 2022, 15, 737-748.
[http://dx.doi.org/10.2147/IJGM.S351263] [PMID: 35082522]
[15]
Osna, N.A.; Donohue, T.M., Jr; Kharbanda, K.K. Alcoholic Liver Disease: Pathogenesis and Current Management. Alcohol Res., 2017, 38(2), 147-161.
[PMID: 28988570]
[16]
Kanda, T.; Goto, T.; Hirotsu, Y.; Moriyama, M.; Omata, M. Molecular mechanisms driving progression of liver cirrhosis towards hepatocellular carcinoma in Chronic Hepatitis B and C infections: A review. Int. J. Mol. Sci., 2019, 20(6), 1358.
[http://dx.doi.org/10.3390/ijms20061358] [PMID: 30889843]
[17]
Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 2002, 30(1), 207-210.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[18]
Chen, C.L.; Tsai, Y.S.; Huang, Y.H.; Liang, Y.J.; Sun, Y.Y.; Su, C.W.; Chau, G.Y.; Yeh, Y.C.; Chang, Y.S.; Hu, J.T.; Wu, J.C. Lymphoid enhancer factor 1 contributes to hepatocellular carcinoma progression through transcriptional regulation of epithelial-mesenchymal transition regulators and stemness genes. Hepatol. Commun., 2018, 2(11), 1392-1407.
[http://dx.doi.org/10.1002/hep4.1229] [PMID: 30411085]
[19]
Sung, W.K.; Zheng, H.; Li, S.; Chen, R.; Liu, X.; Li, Y.; Lee, N.P.; Lee, W.H.; Ariyaratne, P.N.; Tennakoon, C.; Mulawadi, F.H.; Wong, K.F.; Liu, A.M.; Poon, R.T.; Fan, S.T.; Chan, K.L.; Gong, Z.; Hu, Y.; Lin, Z.; Wang, G.; Zhang, Q.; Barber, T.D.; Chou, W.C.; Aggarwal, A.; Hao, K.; Zhou, W.; Zhang, C.; Hardwick, J.; Buser, C.; Xu, J.; Kan, Z.; Dai, H.; Mao, M.; Reinhard, C.; Wang, J.; Luk, J.M. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet., 2012, 44(7), 765-769.
[http://dx.doi.org/10.1038/ng.2295] [PMID: 22634754]
[20]
Neumann, O.; Kesselmeier, M.; Geffers, R.; Pellegrino, R.; Radlwimmer, B.; Hoffmann, K.; Ehemann, V.; Schemmer, P.; Schirmacher, P.; Lorenzo Bermejo, J.; Longerich, T. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology, 2012, 56(5), 1817-1827.
[http://dx.doi.org/10.1002/hep.25870] [PMID: 22689435]
[21]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res., 2012, 41(D1), D991-D995.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[22]
Xu, Z.; Zhou, Y.; Cao, Y.; Dinh, T.L.A.; Wan, J.; Zhao, M. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis. Med. Oncol., 2016, 33(11), 130.
[http://dx.doi.org/10.1007/s12032-016-0840-y] [PMID: 27757782]
[23]
Chen, T.; Zhang, H.; Liu, Y.; Liu, Y.X.; Huang, L. EVenn: Easy to create repeatable and editable Venn diagrams and Venn networks online. J. Genet. Genomics, 2021, 48(9), 863-866.
[http://dx.doi.org/10.1016/j.jgg.2021.07.007] [PMID: 34452851]
[24]
Pathan, M.; Keerthikumar, S.; Ang, C.S.; Gangoda, L.; Quek, C.Y.J.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A.; Bacic, A.; Hill, A.F.; Stroud, D.A.; Ryan, M.T.; Agbinya, J.I.; Mariadason, J.M.; Burgess, A.W.; Mathivanan, S. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics, 2015, 15(15), 2597-2601.
[http://dx.doi.org/10.1002/pmic.201400515] [PMID: 25921073]
[25]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[26]
Chen, Y.C.; Chen, Y.H.; Wright, J.D.; Lim, C. PPI-Hotspot DB : Database of Protein–Protein Interaction Hot Spots. J. Chem. Inf. Model., 2022, 62(4), 1052-1060.
[http://dx.doi.org/10.1021/acs.jcim.2c00025] [PMID: 35147037]
[27]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[28]
Chin, C. H.; Chen, S. H.; Wu, H. H.; Ho, C. W.; Ko, M. T.; Lin, C. Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol., 2014, 8(Suppl 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11]
[29]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[30]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[31]
Ludbrook, J.; Royse, A.G. Analysing clinical studies: Principles, practice and pitfalls of Kaplan-Meier plots. ANZ J. Surg., 2008, 78(3), 204-210.
[http://dx.doi.org/10.1111/j.1445-2197.2007.04405.x] [PMID: 18269491]
[32]
Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 2020, 36(8), 2628-2629.
[http://dx.doi.org/10.1093/bioinformatics/btz931] [PMID: 31882993]
[33]
Thul, P.J.; Lindskog, C. The human protein atlas: A spatial map of the human proteome. Protein Sci., 2018, 27(1), 233-244.
[http://dx.doi.org/10.1002/pro.3307] [PMID: 28940711]
[34]
Normann, C.; Buttenschøn, H.N. Gene–environment interactions between HPA-axis genes and childhood maltreatment in depression: A systematic review. Acta Neuropsychiatr., 2020, 32(3), 111-121.
[http://dx.doi.org/10.1017/neu.2020.1] [PMID: 31902387]
[35]
Freshour, S.L.; Kiwala, S.; Cotto, K.C.; Coffman, A.C.; McMichael, J.F.; Song, J.J.; Griffith, M.; Griffith, O.L.; Wagner, A.H. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res., 2021, 49(D1), D1144-D1151.
[http://dx.doi.org/10.1093/nar/gkaa1084] [PMID: 33237278]
[36]
Markham, A. Atezolizumab: First global approval. Drugs, 2016, 76(12), 1227-1232.
[http://dx.doi.org/10.1007/s40265-016-0618-8] [PMID: 27412122]
[37]
Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res., 2007, 36(Database), D684-D688.
[http://dx.doi.org/10.1093/nar/gkm795] [PMID: 18084021]
[38]
Kazazi-Hyseni, F.; Beijnen, J.H.; Schellens, J.H.M. Bevacizumab. Oncologist, 2010, 15(8), 819-825.
[http://dx.doi.org/10.1634/theoncologist.2009-0317] [PMID: 20688807]
[39]
Grüllich, C. Cabozantinib: A MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent Results Cancer Res., 2014, 201, 207-214.
[http://dx.doi.org/10.1007/978-3-642-54490-3_12] [PMID: 24756794]
[40]
Goodkin, R.; Zaias, B.; Michelsen, W.J. Arteriovenous malformation and glioma: Coexistent or sequential? J. Neurosurg., 1990, 72(5), 798-805.
[http://dx.doi.org/10.3171/jns.1990.72.5.0798] [PMID: 2182794]
[41]
Keizer, R.J.; Huitema, A.D.R.; Schellens, J.H.M.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet., 2010, 49(8), 493-507.
[http://dx.doi.org/10.2165/11531280-000000000-00000] [PMID: 20608753]
[42]
Rizzo, A.; Ricci, A.D.; Brandi, G. Futibatinib, an investigational agent for the treatment of intrahepatic cholangiocarcinoma: Evidence to date and future perspectives. Expert Opin. Investig. Drugs, 2021, 30(4), 317-324.
[http://dx.doi.org/10.1080/13543784.2021.1837774] [PMID: 33054456]
[43]
Arru, C.; De Miglio, M.R.; Cossu, A.; Muroni, M.R.; Carru, C.; Zinellu, A.; Paliogiannis, P. Durvalumab plus tremelimumab in solid tumors: A systematic review. Adv. Ther., 2021, 38(7), 3674-3693.
[http://dx.doi.org/10.1007/s12325-021-01796-6] [PMID: 34105088]
[44]
Botrus, G.; Raman, P.; Oliver, T.; Bekaii-Saab, T. Infigratinib (BGJ398): An investigational agent for the treatment of FGFR-altered intrahepatic cholangiocarcinoma. Expert Opin. Investig. Drugs, 2021, 30(4), 309-316.
[http://dx.doi.org/10.1080/13543784.2021.1864320] [PMID: 33307867]
[45]
Trinh, V.A.; Hagen, B. Ipilimumab for advanced melanoma: A pharmacologic perspective. J. Oncol. Pharm. Pract., 2013, 19(3), 195-201.
[http://dx.doi.org/10.1177/1078155212459100] [PMID: 23047236]
[46]
Thumar, J.R.; Kluger, H.M. Ipilimumab: A promising immunotherapy for melanoma. Oncology, 2010, 24(14), 1280-1288.
[PMID: 21294471]
[47]
Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer, 2008, 122(3), 664-671.
[http://dx.doi.org/10.1002/ijc.23131] [PMID: 17943726]
[48]
Abdelgalil, A.A.; Alkahtani, H.M.; Al-Jenoobi, F.I. Sorafenib. Profiles Drug Subst. Excip. Relat. Methodol., 2019, 44, 239-266.
[http://dx.doi.org/10.1016/bs.podrm.2018.11.003] [PMID: 31029219]
[49]
Nakamura, M.; Mashima, E.; Yamaguchi, T.; Sasaki, N.; Hara, Y.; Omoto, D.; Haruyama, S.; Yoshioka, M.; Nishio, D.; Sakuragi, Y.; Ohmori, S.; Inoue, A.; Sawada, Y. Nivolumab in the treatment of malignant melanoma: Review of the literature. OncoTargets Ther., 2015, 8, 2045-2051.
[http://dx.doi.org/10.2147/OTT.S62102] [PMID: 26273207]
[50]
Liu, P.C.C.; Koblish, H.; Wu, L.; Bowman, K.; Diamond, S.; DiMatteo, D.; Zhang, Y.; Hansbury, M.; Rupar, M.; Wen, X.; Collier, P.; Feldman, P.; Klabe, R.; Burke, K.A.; Soloviev, M.; Gardiner, C.; He, X.; Volgina, A.; Covington, M.; Ruggeri, B.; Wynn, R.; Burn, T.C.; Scherle, P.; Yeleswaram, S.; Yao, W.; Huber, R.; Hollis, G. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS One, 2020, 15(4), e0231877.
[http://dx.doi.org/10.1371/journal.pone.0231877] [PMID: 32315352]
[51]
Hotta, K.; Ueyama, J.; Tatsumi, Y.; Tsukiyama, I.; Sugiura, Y.; Saito, H.; Matsuura, K.; Hasegawa, T. Lack of contribution of multidrug resistance-associated protein and organic anion-transporting polypeptide to pharmacokinetics of regorafenib, a novel multi-kinase inhibitor, in rats. Anticancer Res., 2015, 35(9), 4681-4689.
[PMID: 26254357]
[52]
Yin, F.; Shu, L.; Liu, X.; Li, T.; Peng, T.; Nan, Y.; Li, S.; Zeng, X.; Qiu, X. Microarray-based identification of genes associated with cancer progression and prognosis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2016, 35(1), 127.
[http://dx.doi.org/10.1186/s13046-016-0403-2] [PMID: 27567667]
[53]
Nadeau, V.; Hildgen, P. AFM study of a new carrier based on PLA and salen copolymers for gene therapy. Molecules, 2005, 10(1), 105-113.
[http://dx.doi.org/10.3390/10010105] [PMID: 18007280]
[54]
Zou, Y.; van Breukelen, B.; Pronker, M.; Reiding, K.; Heck, A.J.R. Proteogenomic features of the highly polymorphic histidine-rich glycoprotein arose late in evolution. Mol. Cell. Proteomics, 2023, 22(7), 100585.
[http://dx.doi.org/10.1016/j.mcpro.2023.100585] [PMID: 37244517]
[55]
Shunmoogam, N.; Naidoo, P.; Chilton, R. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc. Health Risk Manag., 2018, 14, 137-143.
[http://dx.doi.org/10.2147/VHRM.S165173] [PMID: 29950852]
[56]
Sala, A.; Bettuzzi, S.; Pucci, S.; Chayka, O.; Dews, M.; Thomas-Tikhonenko, A. Regulation of CLU gene expression by oncogenes and epigenetic factors implications for tumorigenesis. Adv. Cancer Res., 2009, 105, 115-132.
[http://dx.doi.org/10.1016/S0065-230X(09)05007-6] [PMID: 19879426]
[57]
Clark, E.; Nava, B.; Caputi, M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget, 2017, 8(16), 27569-27581.
[http://dx.doi.org/10.18632/oncotarget.15174] [PMID: 28187438]
[58]
Hubacek, J.A. Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology. Gene, 2016, 592(1), 193-199.
[http://dx.doi.org/10.1016/j.gene.2016.07.070] [PMID: 27496343]
[59]
Walczak, C.E.; Mitchison, T.J.; Desai, A. XKCM1: A Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell, 1996, 84(1), 37-47.
[http://dx.doi.org/10.1016/S0092-8674(00)80991-5] [PMID: 8548824]
[60]
Wagenbach, M.; Vicente, J.J.; Ovechkina, Y.; Domnitz, S.; Wordeman, L. Functional characterization of MCAK/Kif2C cancer mutations using high-throughput microscopic analysis. Mol. Biol. Cell, 2020, 31(7), 580-588.
[http://dx.doi.org/10.1091/mbc.E19-09-0503] [PMID: 31746663]
[61]
Tanenbaum, M.E.; Medema, R.; Akhmanova, A. Regulation of localization and activity of the microtubule depolymerase MCAK. Bioarchitecture, 2011, 1(2), 80-87.
[http://dx.doi.org/10.4161/bioa.1.2.15807] [PMID: 21866268]
[62]
Zhu, S.; Paydar, M.; Wang, F.; Li, Y.; Wang, L.; Barrette, B.; Bessho, T.; Kwok, B.H.; Peng, A. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair. eLife, 2020, 9, e53402.
[http://dx.doi.org/10.7554/eLife.53402] [PMID: 31951198]
[63]
Wei, S.; Dai, M.; Zhang, C.; Teng, K.; Wang, F.; Li, H.; Sun, W.; Feng, Z.; Kang, T.; Guan, X.; Xu, R.; Cai, M.; Xie, D. KIF2C: A novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma. Protein Cell, 2021, 12(10), 788-809.
[http://dx.doi.org/10.1007/s13238-020-00766-y] [PMID: 32748349]
[64]
Enserink, J.M.; Kolodner, R.D. An overview of Cdk1-controlled targets and processes. Cell Div., 2010, 5(1), 11.
[http://dx.doi.org/10.1186/1747-1028-5-11] [PMID: 20465793]
[65]
Lohka, M.J.; Hayes, M.K.; Maller, J.L. Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA, 1988, 85(9), 3009-3013.
[http://dx.doi.org/10.1073/pnas.85.9.3009] [PMID: 3283736]
[66]
Yin, S.; Yang, S.; Luo, Y.; Lu, J.; Hu, G.; Wang, K.; Shao, Y.; Zhou, S.; Koo, S.; Qiu, Y.; Wang, T.; Yu, H. Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma. Biochem. Pharmacol., 2021, 193, 114806.
[http://dx.doi.org/10.1016/j.bcp.2021.114806] [PMID: 34673013]
[67]
Wieczorek, M.; Bechstedt, S.; Chaaban, S.; Brouhard, G.J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol., 2015, 17(7), 907-916.
[http://dx.doi.org/10.1038/ncb3188] [PMID: 26098575]
[68]
Evans, P.D.; Anderson, J.R.; Vallender, E.J.; Gilbert, S.L.; Malcom, C.M.; Dorus, S.; Lahn, B.T. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum. Mol. Genet., 2004, 13(5), 489-494.
[http://dx.doi.org/10.1093/hmg/ddh055] [PMID: 14722158]
[69]
Gurok, U.; Loebbert, R.W.; Meyer, A.H.; Mueller, R.; Schoemaker, H.; Gross, G.; Behl, B. Laser capture microdissection and microarray analysis of dividing neural progenitor cells from the adult rat hippocampus. Eur. J. Neurosci., 2007, 26(5), 1079-1090.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05734.x] [PMID: 17767487]
[70]
Pai, V.C.; Hsu, C.C.; Chan, T.S.; Liao, W.Y.; Chuu, C.P.; Chen, W.Y.; Li, C.R.; Lin, C.Y.; Huang, S.P.; Chen, L.T.; Tsai, K.K. ASPM promotes prostate cancer stemness and progression by augmenting Wnt−Dvl-3−β-catenin signaling. Oncogene, 2019, 38(8), 1340-1353.
[http://dx.doi.org/10.1038/s41388-018-0497-4] [PMID: 30266990]
[71]
Wordeman, L. How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays. Semin. Cell Dev. Biol., 2010, 21(3), 260-268.
[http://dx.doi.org/10.1016/j.semcdb.2010.01.018] [PMID: 20109570]
[72]
Liu, X.; Gong, H.; Huang, K. Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci., 2013, 104(6), 651-656.
[http://dx.doi.org/10.1111/cas.12138] [PMID: 23438337]
[73]
Daigo, K.; Takano, A.; Manh, T.; Yoshitake, Y.; Shinohara, M.; Tohnai, I.; Murakami, Y.; Maegawa, J.; Daigo, Y. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer. Int. J. Oncol., 2017, 52(1), 155-165.
[http://dx.doi.org/10.3892/ijo.2017.4181] [PMID: 29115586]
[74]
Wu, B.; Hu, C.; Kong, L. ASPM combined with KIF11 promotes the malignant progression of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway. Exp. Ther. Med., 2021, 22(4), 1154.
[http://dx.doi.org/10.3892/etm.2021.10588] [PMID: 34504599]
[75]
Komura, K.; Inamoto, T.; Tsujino, T.; Matsui, Y.; Konuma, T.; Nishimura, K.; Uchimoto, T.; Tsutsumi, T.; Matsunaga, T.; Maenosono, R.; Yoshikawa, Y.; Taniguchi, K.; Tanaka, T.; Uehara, H.; Hirata, K.; Hirano, H.; Nomi, H.; Hirose, Y.; Ono, F.; Azuma, H. Increased BUB1B/BUBR1 expression contributes to aberrant DNA repair activity leading to resistance to DNA-damaging agents. Oncogene, 2021, 40(43), 6210-6222.
[http://dx.doi.org/10.1038/s41388-021-02021-y] [PMID: 34545188]
[76]
Qin, L.T.; Huang, S.W.; Huang, Z.G.; Dang, Y.W.; Fang, Y.Y.; He, J.; Niu, Y.T.; Lin, C.X.; Wu, J.Y.; Wei, Z.X. Clinical value and potential mechanisms of BUB1B up-regulation in nasopharyngeal carcinoma. BMC Med. Genomics, 2022, 15(1), 272.
[http://dx.doi.org/10.1186/s12920-022-01412-8] [PMID: 36577966]
[77]
Geng, A.; Qiu, R.; Murai, K.; Liu, J.; Wu, X.; Zhang, H.; Farhoodi, H.; Duong, N.; Jiang, M.; Yee, J.; Tsark, W.; Lu, Q. KIF20A/MKLP2 regulates the division modes of neural progenitor cells during cortical development. Nat. Commun., 2018, 9(1), 2707.
[http://dx.doi.org/10.1038/s41467-018-05152-1] [PMID: 30006548]
[78]
Nakamura, M.; Takano, A.; Thang, P.; Tsevegjav, B.; Zhu, M.; Yokose, T.; Yamashita, T.; Miyagi, Y.; Daigo, Y. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer. Int. J. Oncol., 2020, 57(1), 277-288.
[http://dx.doi.org/10.3892/ijo.2020.5060] [PMID: 32467984]
[79]
An, X.; Xu, F.; Luo, R.; Zheng, Q.; Lu, J.; Yang, Y.; Qin, T.; Yuan, Z.; Shi, Y.; Jiang, W.; Wang, S. The prognostic significance of topoisomerase II alpha protein in early stage luminal breast cancer. BMC Cancer, 2018, 18(1), 331.
[http://dx.doi.org/10.1186/s12885-018-4170-7] [PMID: 29587760]
[80]
Gan, Y.; Li, Y.; Li, T.; Shu, G.; Yin, G. CCNA2 acts as a novel biomarker in regulating the growth and apoptosis of colorectal cancer. Cancer Manag. Res., 2018, 10, 5113-5124.
[http://dx.doi.org/10.2147/CMAR.S176833] [PMID: 30464611]
[81]
Jiang, A.; Zhou, Y.; Gong, W.; Pan, X.; Gan, X.; Wu, Z.; Liu, B.; Qu, L.; Wang, L. CCNA2 as an Immunological Biomarker Encompassing Tumor Microenvironment and Therapeutic Response in Multiple Cancer Types. Oxid. Med. Cell. Longev., 2022, 2022, 1-35.
[http://dx.doi.org/10.1155/2022/5910575] [PMID: 35401923]
[82]
Shang, J.; Zhang, X.; Hou, G.; Qi, Y. HMMR potential as a diagnostic and prognostic biomarker of cancer—speculation based on a pan-cancer analysis. Front. Surg., 2023, 9, 998598.
[http://dx.doi.org/10.3389/fsurg.2022.998598] [PMID: 36704516]
[83]
Guo, K.; Liu, C.; Shi, J.; Lai, C.; Gao, Z.; Luo, J.; Li, Z.; Tang, Z.; Li, K.; Xu, K. HMMR promotes prostate cancer proliferation and metastasis via AURKA/mTORC2/E2F1 positive feedback loop. Cell Death Discov., 2023, 9(1), 48.
[http://dx.doi.org/10.1038/s41420-023-01341-0] [PMID: 36750558]
[84]
Huang, Y.; Li, D.; Wang, L.; Su, X.; Tang, X. CENPF/CDK1 signaling pathway enhances the progression of adrenocortical carcinoma by regulating the G2/M-phase cell cycle. J. Transl. Med., 2022, 20(1), 78.
[http://dx.doi.org/10.1186/s12967-022-03277-y] [PMID: 35123514]
[85]
Shahid, M.; Lee, M.Y.; Piplani, H.; Andres, A.M.; Zhou, B.; Yeon, A.; Kim, M.; Kim, H.L.; Kim, J. Centromere protein F (CENPF), a microtubule binding protein, modulates cancer metabolism by regulating pyruvate kinase M2 phosphorylation signaling. Cell Cycle, 2018, 17(24), 2802-2818.
[http://dx.doi.org/10.1080/15384101.2018.1557496] [PMID: 30526248]
[86]
Davezac, N.; Baldin, V.; Blot, J.; Ducommun, B.; Tassan, J.P. Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: A potential role for pEg3 in cell cycle regulation. Oncogene, 2002, 21(50), 7630-7641.
[http://dx.doi.org/10.1038/sj.onc.1205870] [PMID: 12400006]
[87]
Liu, Y.; Li, R.; Wang, X.; Xue, Z.; Yang, X.; Tang, B. Comprehensive Analyses of MELK-Associated ceRNA Networks Reveal a Potential Biomarker for Predicting Poor Prognosis and Immunotherapy Efficacy in Hepatocellular Carcinoma. Front. Cell Dev. Biol., 2022, 10, 824938.
[http://dx.doi.org/10.3389/fcell.2022.824938] [PMID: 35693941]
[88]
Huang, H.; Yang, Y.; Zhang, W.; Liu, X.; Yang, G. TTK regulates proliferation and apoptosis of gastric cancer cells through the Akt-mTOR pathway. FEBS Open Bio, 2020, 10(8), 1542-1549.
[http://dx.doi.org/10.1002/2211-5463.12909] [PMID: 32530571]
[89]
Yu, J.; Gao, G.; Wei, X.; Wang, Y. TTK Protein Kinase promotes temozolomide resistance through inducing autophagy in glioblastoma. BMC Cancer, 2022, 22(1), 786.
[http://dx.doi.org/10.1186/s12885-022-09899-1] [PMID: 35850753]
[90]
Wu, S.; Su, R.; Jia, H. Cyclin B2 (CCNB2) stimulates the proliferation of Triple-Negative Breast Cancer (TNBC) cells in vitro and in vivo. Dis. Markers, 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/5511041] [PMID: 34354775]
[91]
Li, M.J.; Yan, S.B.; Chen, G.; Li, G.S.; Yang, Y.; Wei, T.; He, D.S.; Yang, Z.; Cen, G.Y.; Wang, J.; Liu, L.Y.; Liang, Z.J.; Chen, L.; Yin, B.T.; Xu, R.X.; Huang, Z.G. Upregulation of CCNB2 and its perspective mechanisms in cerebral ischemic stroke and all subtypes of lung cancer: A comprehensive study. Front. Integr. Nuerosci., 2022, 16, 854540.
[http://dx.doi.org/10.3389/fnint.2022.854540] [PMID: 35928585]
[92]
Mao, P.; Bao, G.; Wang, Y.C.; Du, C.W.; Yu, X.; Guo, X.Y.; Li, R.C.; Wang, M.D. PDZ-Binding Kinase-Dependent Transcriptional Regulation of CCNB2 Promotes Tumorigenesis and Radio-Resistance in Glioblastoma. Transl. Oncol., 2020, 13(2), 287-294.
[http://dx.doi.org/10.1016/j.tranon.2019.09.011] [PMID: 31874375]
[93]
Bolanos-Garcia, V.M.; Blundell, T.L. BUB1 and BUBR1: Multifaceted kinases of the cell cycle. Trends Biochem. Sci., 2011, 36(3), 141-150.
[http://dx.doi.org/10.1016/j.tibs.2010.08.004] [PMID: 20888775]
[94]
Zhu, L.J.; Pan, Y.; Chen, X.Y.; Hou, P.F. BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation. Oncol. Lett., 2020, 19(5), 3506-3512.
[http://dx.doi.org/10.3892/ol.2020.11445] [PMID: 32269624]
[95]
Li, H.; Zhang, W.; Yan, M.; Qiu, J.; Chen, J.; Sun, X.; Chen, X.; Song, L.; Zhang, Y. Nucleolar and spindle associated protein 1 promotes metastasis of cervical carcinoma cells by activating Wnt/β-catenin signaling. J. Exp. Clin. Cancer Res., 2019, 38(1), 33.
[http://dx.doi.org/10.1186/s13046-019-1037-y] [PMID: 30678687]
[96]
Iyer, J.; Moghe, S.; Furukawa, M.; Tsai, M.Y. What’s Nu(SAP) in mitosis and cancer? Cell. Signal., 2011, 23(6), 991-998.
[http://dx.doi.org/10.1016/j.cellsig.2010.11.006] [PMID: 21111812]
[97]
Ribbeck, K.; Raemaekers, T.; Carmeliet, G.; Mattaj, I.W. A role for NuSAP in linking microtubules to mitotic chromosomes. Curr. Biol., 2007, 17(3), 230-236.
[http://dx.doi.org/10.1016/j.cub.2006.11.050] [PMID: 17276916]
[98]
Simonetti, G.; Padella, A.; do Valle, I.F.; Fontana, M.C.; Fonzi, E.; Bruno, S.; Baldazzi, C.; Guadagnuolo, V.; Manfrini, M.; Ferrari, A.; Paolini, S.; Papayannidis, C.; Marconi, G.; Franchini, E.; Zuffa, E.; Laginestra, M.A.; Zanotti, F.; Astolfi, A.; Iacobucci, I.; Bernardi, S.; Sazzini, M.; Ficarra, E.; Hernandez, J.M.; Vandenberghe, P.; Cools, J.; Bullinger, L.; Ottaviani, E.; Testoni, N.; Cavo, M.; Haferlach, T.; Castellani, G.; Remondini, D.; Martinelli, G. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery. Cancer, 2019, 125(5), 712-725.
[http://dx.doi.org/10.1002/cncr.31837] [PMID: 30480765]
[99]
Wang, Y.; Ju, L.; Xiao, F.; Liu, H.; Luo, X.; Chen, L.; Lu, Z.; Bian, Z. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses liver cancer cell function. Exp. Ther. Med., 2019, 17(4), 2969-2978.
[http://dx.doi.org/10.3892/etm.2017.4905] [PMID: 30936967]
[100]
Bassal, S.; Nomura, N.; Venter, D.; Brand, K.; McKay, M.J.; van der Spek, P.J. Characterization of a novel human cell-cycle-regulated homologue of Drosophila dlg1. Genomics, 2001, 77(1-2), 5-7.
[http://dx.doi.org/10.1006/geno.2001.6570] [PMID: 11543626]
[101]
Tsou, A.P.; Yang, C.W.; Huang, C.Y.F.; Yu, R.C.T.; Lee, Y.C.G.; Chang, C.W.; Chen, B.R.; Chung, Y.F.; Fann, M.J.; Chi, C.W.; Chiu, J.H.; Chou, C.K. Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene, 2003, 22(2), 298-307.
[http://dx.doi.org/10.1038/sj.onc.1206129] [PMID: 12527899]
[102]
Szász, A.M.; Lánczky, A.; Nagy, Á.; Förster, S.; Hark, K.; Green, J.E.; Boussioutas, A.; Busuttil, R.; Szabó, A.; Győrffy, B. Cross- validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget, 2016, 7(31), 49322-49333.
[http://dx.doi.org/10.18632/oncotarget.10337] [PMID: 27384994]
[103]
Jeffery, J.; Sinha, D.; Srihari, S.; Kalimutho, M.; Khanna, K.K. Beyond cytokinesis: The emerging roles of CEP55 in tumorigenesis. Oncogene, 2016, 35(6), 683-690.
[http://dx.doi.org/10.1038/onc.2015.128] [PMID: 25915844]
[104]
Tao, J.; Zhi, X.; Tian, Y.; Li, Z.; Zhu, Y.; Wang, W.; Xie, K.; Tang, J.; Zhang, X.; Wang, L.; Xu, Z. CEP55 contributes to human gastric carcinoma by regulating cell proliferation. Tumour Biol., 2014, 35(5), 4389-4399.
[http://dx.doi.org/10.1007/s13277-013-1578-1] [PMID: 24390615]
[105]
Chen, C-H.; Lu, P-J.; Chen, Y-C.; Fu, S-L.; Wu, K-J.; Tsou, A-P.; Lee, Y-C.G.; Lin, T-C.E.; Hsu, S-L.; Lin, W-J.; Huang, C-Y.F.; Chou, C-K. FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway. Oncogene, 2007, 26(29), 4272-4283.
[http://dx.doi.org/10.1038/sj.onc.1210207] [PMID: 17237822]
[106]
Murphy, L.A.; Sarge, K.D. Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis. Biochem. Biophys. Res. Commun., 2008, 377(3), 1007-1011.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.114] [PMID: 18977199]
[107]
Ryu, B.; Kim, D.S.; DeLuca, A.M.; Alani, R.M. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One, 2007, 2(7), e594.
[http://dx.doi.org/10.1371/journal.pone.0000594] [PMID: 17611626]
[108]
Gong, C.; Ai, J.; Fan, Y.; Gao, J.; Liu, W.; Feng, Q.; Liao, W.; Wu, L. NCAPG Promotes The Proliferation Of Hepatocellular Carcinoma Through PI3K/AKT Signaling. OncoTargets Ther., 2019, 12, 8537-8552.
[http://dx.doi.org/10.2147/OTT.S217916] [PMID: 31802891]
[109]
Luo, X.Y.; Wu, K.M.; He, X.X. Advances in drug development for hepatocellular carcinoma: Clinical trials and potential therapeutic targets. J. Exp. Clin. Cancer Res., 2021, 40(1), 172.
[http://dx.doi.org/10.1186/s13046-021-01968-w] [PMID: 34006331]