Current Protein & Peptide Science

Author(s): Brandt Bertrand, Pablo Luis Hernandez-Adame and Carlos Munoz-Garay*

DOI: 10.2174/0113892037317887240625054710

DownloadDownload PDF Flyer Cite As
How Useful are Antimicrobial Peptide Properties for Predicting Activity, Selectivity, and Potency?

Page: [22 - 40] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Antimicrobial peptides (AMPs) are recognized for their potential application as new generation antibiotics, however, up to date, they have not been widely commercialized as expected. Although current bioinformatics tools can predict antimicrobial activity based on only amino acid sequences with astounding accuracy, peptide selectivity and potency are not foreseeable. This, in turn, creates a bottleneck not only in the discovery and isolation of promising candidates but, most importantly, in the design and development of novel synthetic peptides. In this paper, we discuss the challenges faced when trying to predict peptide selectivity and potency, based on peptide sequence, structure and relevant biophysical properties such as length, net charge and hydrophobicity. Here, pore-forming alpha-helical antimicrobial peptides family isolated from anurans was used as the case study. Our findings revealed no congruent relationship between the predicted peptide properties and reported microbial assay data, such as minimum inhibitory concentrations against microorganisms and hemolysis. In many instances, the peptides with the best physicochemical properties performed poorly against microbial strains. In some cases, the predicted properties were so similar that differences in activity amongst peptides of the same family could not be projected. Our general conclusion is that antimicrobial peptides of interest must be carefully examined since there is no universal strategy for accurately predicting their behavior.

Keywords: Antimicrobial peptide, peptide properties, prediction, potency, selectivity, minimum inhibitory concentrations.

Graphical Abstract

[1]
Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; Falabella, P. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol., 2021, 11, 668632.
[http://dx.doi.org/10.3389/fcimb.2021.668632]
[2]
Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol., 2020, 11, 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779]
[3]
Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 2019, 11, 3919-3931.
[4]
da Costa, J.P.; Cova, M.; Ferreira, R.; Vitorino, R. Antimicrobial peptides: An alternative for innovative medicines? Appl. Microbiol. Biotechnol., 2015, 99(5), 2023-2040.
[http://dx.doi.org/10.1007/s00253-015-6375-x]
[5]
Deng, T.; Ge, H.; He, H.; Liu, Y.; Zhai, C.; Feng, L.; Yi, L. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr. Purif., 2017, 140, 52-59.
[http://dx.doi.org/10.1016/j.pep.2017.08.003]
[6]
Isidro-Llobet, A.; Kenworthy, M.N.; Mukherjee, S.; Kopach, M.E.; Wegner, K.; Gallou, F.; Smith, A.G.; Roschangar, F. Sustainability challenges in peptide synthesis and purification: From R&D to production. J. Org. Chem., 2019, 84(8), 4615-4628.
[http://dx.doi.org/10.1021/acs.joc.8b03001]
[7]
Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial peptides and proteins: From nature’s reservoir to the laboratory and beyond. Front Chem., 2021, 9, 691532.
[http://dx.doi.org/10.3389/fchem.2021.691532]
[8]
Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trends Analyt. Chem., 2018, 105, 7-17.
[http://dx.doi.org/10.1016/j.trac.2018.04.005]
[9]
D’Annessa, I.; Di Leva, F.S.; La Teana, A.; Novellino, E.; Limongelli, V.; Di Marino, D. Bioinformatics and biosimulations as toolbox for peptides and peptidomimetics design: Where are we? Front. Mol. Biosci., 2020, 7, 66.
[http://dx.doi.org/10.3389/fmolb.2020.00066]
[10]
Li, H.; Tamang, T.; Nantasenamat, C. Toward insights on antimicrobial selectivity of host defense peptides via machine learning model interpretation. Genomics, 2021, 113(6), 3851-3863.
[http://dx.doi.org/10.1016/j.ygeno.2021.08.023]
[11]
Raheem, N.; Straus, S.K. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front. Microbiol., 2019, 10, 2866.
[http://dx.doi.org/10.3389/fmicb.2019.02866]
[12]
Mercer, D.K.; Torres, M.D.T.; Duay, S.S.; Lovie, E.; Simpson, L.; von Köckritz-Blickwede, M.; de la Fuente-Nunez, C.; O’Neil, D.A.; Angeles-Boza, A.M. Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. Front. Cell. Infect. Microbiol., 2020, 10, 326.
[http://dx.doi.org/10.3389/fcimb.2020.00326]
[13]
Lei, M.; Jayaraman, A.; Van Deventer, J.A.; Lee, K. Engineering selectively targeting antimicrobial peptides. Annu. Rev. Biomed. Eng., 2021, 23(1), 339-357.
[http://dx.doi.org/10.1146/annurev-bioeng-010220-095711]
[14]
Sinha, R.; Shukla, P. Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives. Protein Pept. Lett., 2019, 26(2), 79-87.
[http://dx.doi.org/10.2174/0929866525666181026160852]
[15]
Aquila, M.; Benedusi, M.; Dell’Orco, D. Biophysical characterization of antimicrobial peptides activity: From in vitro to ex vivo techniques. Curr. Protein Pept. Sci., 2013, 14(7), 607-616.
[http://dx.doi.org/10.2174/13892037113146660088]
[16]
Salehi-Reyhani, A.; Ces, O.; Elani, Y. Artificial cell mimics as simplified models for the study of cell biology. Exp. Biol. Med., 2017, 242(13), 1309-1317.
[http://dx.doi.org/10.1177/1535370217711441]
[17]
Lee, M.T. Biophysical characterization of peptide–membrane interactions. Adv. Phys. X, 2018, 3(1), 1408428.
[http://dx.doi.org/10.1080/23746149.2017.1408428]
[18]
Munusamy, S.; Conde, R.; Bertrand, B.; Munoz-Garay, C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie, 2020, 170, 173-202.
[http://dx.doi.org/10.1016/j.biochi.2020.01.009]
[19]
Schäfer, A.B.; Wenzel, M. A how-to guide for mode of action analysis of antimicrobial peptides. Front. Cell. Infect. Microbiol., 2020, 10, 540898.
[http://dx.doi.org/10.3389/fcimb.2020.540898]
[20]
Palmer, N.; Maasch, J.R.M.A.; Torres, M.D.T.; de la Fuente- Nunez, C. Molecular dynamics for antimicrobial peptide discovery. Infect. Immun., 2021, 89(4), e00703-20.
[http://dx.doi.org/10.1128/IAI.00703-20]
[21]
Bertrand, B.; Garduño-Juárez, R.; Munoz-Garay, C. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review. Biochim. Biophys. Acta Biomembr., 2021, 1863, 183551.
[http://dx.doi.org/10.1016/j.bbamem.2021.183551]
[22]
Poger, D.; Caron, B.; Mark, A.E. Validating lipid force fields against experimental data: Progress, challenges and perspectives. Biochim. Biophys. Acta Biomembr., 2016, 1858(7), 1556-1565.
[http://dx.doi.org/10.1016/j.bbamem.2016.01.029]
[23]
Udenigwe, C.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol., 2014, 36(2), 137-143.
[http://dx.doi.org/10.1016/j.tifs.2014.02.004]
[24]
Osorio, D.; Rondón-Villarreal, P.; Torres, R. Peptides: A package for data mining of antimicrobial peptides. Small, 2015, 12, 44-444.
[25]
Agyei, D.; Tsopmo, A.; Udenigwe, C.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem., 2018, 410(15), 3463-3472.
[http://dx.doi.org/10.1007/s00216-018-0974-1]
[26]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194]
[27]
Dijksteel, G.S.; Ulrich, M.M.W.; Middelkoop, E.; Boekema, B.K.H.L. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front. Microbiol., 2021, 12, 616979.
[http://dx.doi.org/10.3389/fmicb.2021.616979]
[28]
Pane, K.; Durante, L.; Crescenzi, O.; Cafaro, V.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Izzo, V.; Di Donato, A.; Notomista, E. Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of “cryptic” antimicrobial peptides. J. Theor. Biol., 2017, 419, 254-265.
[http://dx.doi.org/10.1016/j.jtbi.2017.02.012]
[29]
Almeida, J.R.; Palacios, A.L.V.; Patiño, R.S.P.; Mendes, B.; Teixeira, C.A.S.; Gomes, P.; da Silva, S.L. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance. Drug Dev. Res., 2019, 80(1), 68-85.
[http://dx.doi.org/10.1002/ddr.21456]
[30]
Bobone, S.; Stella, L. Selectivity of antimicrobial peptides: A complex interplay of multiple equilibria. In: Antimicrobial Peptides: Basics for Clinical Application; Matsuzaki, K., Ed.; Springer Singapore, Singapore, 2019; pp. 175-214.
[http://dx.doi.org/10.1007/978-981-13-3588-4_11]
[31]
Bessalle, R.; Kapitkovsky, A.; Gorea, A.; Shalit, I.; Fridkin, M. All-D-magainin: Chirality, antimicrobial activity and proteolytic resistance. FEBS Lett., 1990, 274(1-2), 151-155.
[http://dx.doi.org/10.1016/0014-5793(90)81351-N]
[32]
Chen, Y.; Vasil, A.I.; Rehaume, L.; Mant, C.T.; Burns, J.L.; Vasil, M.L.; Hancock, R.E.W.; Hodges, R.S. Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides. Chem. Biol. Drug Des., 2006, 67(2), 162-173.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00349.x]
[33]
de la Fuente-Núñez, C.; Reffuveille, F.; Mansour, S.C.; Reckseidler-Zenteno, S.L.; Hernández, D.; Brackman, G.; Coenye, T.; Hancock, R.E.W. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem. Biol., 2015, 22(2), 196-205.
[http://dx.doi.org/10.1016/j.chembiol.2015.01.002]
[34]
Ye, W.; Yeghiasarian, L.; Cutler, C.W.; Bergeron, B.E.; Sidow, S.; Xu, H.H.K.; Niu, L.; Ma, J.; Tay, F.R. Comparison of the use of d-enantiomeric and l-enantiomeric antimicrobial peptides incorporated in a calcium-chelating irrigant against Enterococcus faecalis root canal wall biofilms. J. Dent., 2019, 91, 103231.
[http://dx.doi.org/10.1016/j.jdent.2019.103231]
[35]
Kumar, S.; Saharan, R.; Khokra, S.L.; Singh, S.; Tiwari, A.; Tiwari, V.; Sahoo, B.M.; Kumar, M. A comprehensive review on therapeutic potentials of natural cyclic peptides. Curr. Nutr. Food Sci., 2022, 18(5), 441-449.
[http://dx.doi.org/10.2174/1573401318666220114153509]
[36]
Kumar, S.; Tiwari, A.; Tiwari, V.; Khokra, S.L.; Saharan, R.; Kumar, M.; Sharma, A.; Virmani, T.; Virmani, R.; Kumar, G.; Alhalmi, A. Synthesis, anticancer, and antimicrobial evaluation of integerrimide-A. BioMed. Res. Int., 2023, 2023, 1-11.
[http://dx.doi.org/10.1155/2023/9289141]
[37]
Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res., 2016, 44(W1), W449-W454.
[http://dx.doi.org/10.1093/nar/gkw329]
[38]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2]
[39]
Gabernet, G.; Gautschi, D.; Müller, A.T.; Neuhaus, C.S.; Armbrecht, L.; Dittrich, P.S.; Hiss, J.A.; Schneider, G. In silico design and optimization of selective membranolytic anticancer peptides. Sci. Rep., 2019, 9(1), 11282.
[http://dx.doi.org/10.1038/s41598-019-47568-9]
[40]
Fjell, C.D.; Jenssen, H.; Hilpert, K.; Cheung, W.A.; Panté, N.; Hancock, R.E.W.; Cherkasov, A. Identification of novel antibacterial peptides by chemoinformatics and machine learning. J. Med. Chem., 2009, 52(7), 2006-2015.
[http://dx.doi.org/10.1021/jm8015365]
[41]
Barrientos-Salcedo, C.; Rico-Rosillo, G.; Giménez-Scherer, J.A.; Soriano-Correa, C. Computational study of the electronic structure characterization of a novelanti-inflammatory tripeptide derived from monocyte locomotion inhibitoryfactor (MLIF)-pentapeptide. Eur. J. Med. Chem., 2009, 44(8), 3114-3119.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.003]
[42]
Spänig, S.; Heider, D. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min., 2019, 12(1), 7.
[http://dx.doi.org/10.1186/s13040-019-0196-x]
[43]
Lata, S.; Sharma, B.K.; Raghava, G.P.S. Analysis and prediction of antibacterial peptides. BMC Bioinformatics, 2007, 8(1), 263.
[http://dx.doi.org/10.1186/1471-2105-8-263]
[44]
Lee, T.H.; Hofferek, V.; Separovic, F.; Reid, G.E.; Aguilar, M.I. The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr. Opin. Chem. Biol., 2019, 52, 85-92.
[http://dx.doi.org/10.1016/j.cbpa.2019.05.025]
[45]
Bárcenas, O.; Pintado-Grima, C.; Sidorczuk, K.; Teufel, F.; Nielsen, H.; Ventura, S.; Burdukiewicz, M. The dynamic landscape of peptide activity prediction. Comput. Struct. Biotechnol. J., 2022, 20, 6526-6533.
[http://dx.doi.org/10.1016/j.csbj.2022.11.043]
[46]
Schefter, B.R.; Nourbakhsh, S.; Taheri-Araghi, S.; Ha, B.Y. Modeling cell selectivity of antimicrobial peptides: How is the selectivity influenced by intracellular peptide uptake and cell density. Frontiers in Med. Technol., 2021, 3, 626481.
[http://dx.doi.org/10.3389/fmedt.2021.626481]
[47]
Lee, T-H.; Hall, K.N.; Aguilar, M-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16, 25-39.
[http://dx.doi.org/10.2174/1568026615666150703121700]
[48]
Dathe, M.; Nikolenko, H.; Meyer, J.; Beyermann, M.; Bienert, M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett., 2001, 501(2-3), 146-150.
[http://dx.doi.org/10.1016/S0014-5793(01)02648-5]
[49]
Jiang, Z.; Mant, C.T.; Vasil, M.; Hodges, R.S. Role of positively charged residues on the polar and non-polar faces of amphipathic α-helical antimicrobial peptides on specificity and selectivity for Gram-negative pathogens. Chem. Biol. Drug Des., 2018, 91(1), 75-92.
[http://dx.doi.org/10.1111/cbdd.13058]
[50]
López Cascales, J.J.; Zenak, S.; García de la Torre, J.; Lezama, O.G.; Garro, A.; Enriz, R.D. Small cationic peptides: Influence of charge on their antimicrobial activity. ACS Omega, 2018, 3(5), 5390-5398.
[http://dx.doi.org/10.1021/acsomega.8b00293]
[51]
Talandashti, R.; Mahdiuni, H.; Jafari, M.; Mehrnejad, F. Molecular basis for membrane selectivity of antimicrobial peptide pleurocidin in the presence of different eukaryotic and prokaryotic model membranes. J. Chem. Inf. Model., 2019, 59(7), 3262-3276.
[http://dx.doi.org/10.1021/acs.jcim.9b00245]
[52]
Jiang, Z.; Vasil, A.I.; Hale, J.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Adv. Exp. Med. Biol., 2009, 611, 561-562.
[http://dx.doi.org/10.1007/978-0-387-73657-0_246]
[53]
Glukhov, E.; Stark, M.; Burrows, L.L.; Deber, C.M. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J. Biol. Chem., 2005, 280(40), 33960-33967.
[http://dx.doi.org/10.1074/jbc.M507042200]
[54]
Juretić, D.; Simunić, J. Design of α-helical antimicrobial peptides with a high selectivity index. Expert Opin. Drug Discov., 2019, 14(10), 1053-1063.
[http://dx.doi.org/10.1080/17460441.2019.1642322]
[55]
Son, M.; Lee, Y.; Hwang, H.; Hyun, S.; Yu, J. Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of α-helical amphipathic peptides. ChemMedChem, 2013, 8(10), 1638-1642.
[http://dx.doi.org/10.1002/cmdc.201300264]
[56]
Strandberg, E.; Bentz, D.; Wadhwani, P.; Bürck, J.; Ulrich, A.S. Terminal charges modulate the pore forming activity of cationic amphipathic helices. Biochim. Biophys. Acta Biomembr., 2020, 1862, 183243.
[http://dx.doi.org/10.1016/j.bbamem.2020.183243]
[57]
Reißer, S.; Strandberg, E.; Steinbrecher, T.; Ulrich, A.S. A.S. Ulrich, 3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides. Biophys. J., 2014, 106(11), 2385-2394.
[http://dx.doi.org/10.1016/j.bpj.2014.04.020]
[58]
Cherry, M.A.; Higgins, S.K.; Melroy, H.; Lee, H.S.; Pokorny, A. Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities. J. Phys. Chem. B, 2014, 118(43), 12462-12470.
[http://dx.doi.org/10.1021/jp507289w]
[59]
Dathe, M.; Schümann, M.; Wieprecht, T.; Winkler, A.; Beyermann, M.; Krause, E.; Matsuzaki, K.; Murase, O.; Bienert, M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry, 1996, 35(38), 12612-12622.
[http://dx.doi.org/10.1021/bi960835f]
[60]
Liu, Z.; Brady, A.; Young, A.; Rasimick, B.; Chen, K.; Zhou, C.; Kallenbach, N.R. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob. Agents Chemother., 2007, 51(2), 597-603.
[http://dx.doi.org/10.1128/AAC.00828-06]
[61]
Gagnon, M.C.; Strandberg, E.; Grau-Campistany, A.; Wadhwani, P.; Reichert, J.; Bürck, J.; Rabanal, F.; Auger, M.; Paquin, J.F.; Ulrich, A.S. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochemistry, 2017, 56(11), 1680-1695.
[http://dx.doi.org/10.1021/acs.biochem.6b01071]
[62]
Reinhardt, A.; Neundorf, I. Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 2016, 17(5), 701.
[http://dx.doi.org/10.3390/ijms17050701]
[63]
Liu, J.; Chen, S.; Chai, X.Y.; Gao, F.; Wang, C.; Tang, H.; Li, X.; Liu, Y.; Hu, H.G. Design, synthesis, and biological evaluation of stapled ascaphin-8 peptides. Bioorg. Med. Chem., 2021, 40, 116158.
[http://dx.doi.org/10.1016/j.bmc.2021.116158]
[64]
Epand, R.M. Anionic lipid clustering model. In: Antimicrobial Peptides: Basics for Clinical Application; Matsuzaki, K., Ed.; Springer Singapore, Singapore, 2019; pp. 65-71.
[http://dx.doi.org/10.1007/978-981-13-3588-4_5]
[65]
Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1687-1692.
[http://dx.doi.org/10.1016/j.bbamem.2008.09.013]
[66]
Bertrand, B.; Munusamy, S.; Espinosa-Romero, J.-F.; Corzo, G.; Arenas Sosa, I.; Galván-Hernández, A.; Ortega-Blake, I.; Hernández-Adame, P.L.; Ruiz-García, J.; Velasco-Bolom, J.-L.; Garduño-Juárez, R.; Munoz-Garay, C. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes. Biochim. Biophys. Acta Biomembr., 2020, 1862, 183105.
[http://dx.doi.org/10.1016/j.bbamem.2019.183105]
[67]
Morales-Martínez, A.; Bertrand, B.; Hernández-Meza, J.M.; Garduño-Juárez, R.; Silva-Sanchez, J.; Munoz-Garay, C. Membrane fluidity, composition, and charge affect the activity and selectivity of the AMP ascaphin-8. Biophys. J., 2022, 121(16), 3034-3048.
[http://dx.doi.org/10.1016/j.bpj.2022.07.018]
[68]
Epand, R.M.; Epand, R.F. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim. Biophys. Acta Biomembr., 2009, 1788(1), 289-294.
[http://dx.doi.org/10.1016/j.bbamem.2008.08.023]
[69]
Mura, M.; Wang, J.; Zhou, Y.; Pinna, M.; Zvelindovsky, A.V.; Dennison, S.R.; Phoenix, D.A. The effect of amidation on the behaviour of antimicrobial peptides. Eur. Biophys. J., 2016, 45(3), 195-207.
[http://dx.doi.org/10.1007/s00249-015-1094-x]
[70]
Wadhwani, P.; Epand, R.F.; Heidenreich, N.; Bürck, J.; Ulrich, A.S.; Epand, R.M. Membrane-active peptides and the clustering of anionic lipids. Biophys. J., 2012, 103(2), 265-274.
[http://dx.doi.org/10.1016/j.bpj.2012.06.004]
[71]
Corzo, G.; Escoubas, P.; Villegas, E.; Barnham, K.J.; He, W.; Norton, R.S.; Nakajima, T. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem. J., 2001, 359(1), 35-45.
[http://dx.doi.org/10.1042/bj3590035]
[72]
Lai, R.; Zheng, Y.T.; Shen, J.H.; Liu, G.J.; Liu, H.; Lee, W.H.; Tang, S.Z.; Zhang, Y. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides, 2002, 23(3), 427-435.
[http://dx.doi.org/10.1016/S0196-9781(01)00641-6]
[73]
Kamech, N.; Vukičević, D.; Ladram, A.; Piesse, C.; Vasseur, J.; Bojović, V.; Simunić, J.; Juretić, D. Improving the selectivity of antimicrobial peptides from anuran skin. J. Chem. Inf. Model., 2012, 52(12), 3341-3351.
[http://dx.doi.org/10.1021/ci300328y]
[74]
Chaudhary, K.; Kumar, R.; Singh, S.; Tuknait, A.; Gautam, A.; Mathur, D.; Anand, P.; Varshney, G.C.; Raghava, G.P.S. A web server and mobile app for computing hemolytic potency of peptides. Sci. Rep., 2016, 6(1), 22843.
[http://dx.doi.org/10.1038/srep22843]
[75]
Kim, H.; Yoo, Y.D.; Lee, G.Y. Identification of bacterial membrane selectivity of romo1-derived antimicrobial peptide AMPR-22 via molecular dynamics. Int. J. Mol. Sci., 2022, 23(13), 7404.
[http://dx.doi.org/10.3390/ijms23137404]
[76]
Madanchi, H.; Rahmati, S.; Doaei, Y.; Sardari, S.; Mousavi Maleki, M.S.; Rostamian, M.; Ebrahimi Kiasari, R.; Seyed Mousavi, S.J.; Ghods, E.; Ardekanian, M. Determination of antifungal activity and action mechanism of the modified Aurein 1.2 peptide derivatives. Microb. Pathog., 2022, 173, 105866.
[http://dx.doi.org/10.1016/j.micpath.2022.105866]
[77]
Gawde, U.; Chakraborty, S.; Waghu, F.H.; Barai, R.S.; Khanderkar, A.; Indraguru, R.; Shirsat, T.; Idicula-Thomas, S. CAMPR4: A database of natural and synthetic antimicrobial peptides. Nucleic Acids Res., 2023, 51(D1), D377-D383.
[http://dx.doi.org/10.1093/nar/gkac933]
[78]
Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K. The roles of antimicrobial peptides in innate host defense. Curr. Pharm. Des., 2009, 15(21), 2377-2392.
[http://dx.doi.org/10.2174/138161209788682325]
[79]
Gong, T.; Fu, J.; Shi, L.; Chen, X.; Zong, X. Antimicrobial peptides in gut health: A review. Front. Nutr., 2021, 8, 751010.
[http://dx.doi.org/10.3389/fnut.2021.751010]
[80]
Wang, Z.; Wang, G. APD: The antimicrobial peptide database. Nucleic Acids Res., 2004, 32(90001), 590D-592.
[http://dx.doi.org/10.1093/nar/gkh025]
[81]
Simmaco, M.; Mignogna, G.; Canofeni, S.; Miele, R.; Mangoni, M.L.; Barra, D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J. Biochem., 1996, 242(3), 788-792.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0788r.x]
[82]
Rozek, T.; Wegener, K.L.; Bowie, J.H.; Olver, I.N.; Carver, J.A.; Wallace, J.C.; Tyler, M.J. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. Eur. J. Biochem., 2000, 267(17), 5330-5341.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01536.x]
[83]
Conlon, J.M.; Sonnevend, A.; Davidson, C.; David Smith, D.; Nielsen, P.F. The ascaphins: A family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei. Biochem. Biophys. Res. Commun., 2004, 320(1), 170-175.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.141]
[84]
Apponyi, M.A.; Pukala, T.L.; Brinkworth, C.S.; Maselli, V.M.; Bowie, J.H.; Tyler, M.J.; Booker, G.W.; Wallace, J.C.; Carver, J.A.; Separovic, F.; Doyle, J.; Llewellyn, L.E. Host-defence peptides of Australian anurans: Structure, mechanism of action and evolutionary significance. Peptides, 2004, 25(6), 1035-1054.
[http://dx.doi.org/10.1016/j.peptides.2004.03.006]
[85]
Pukala, T.L.; Bertozzi, T.; Donnellan, S.C.; Bowie, J.H.; Surinya-Johnson, K.H.; Liu, Y.; Jackway, R.J.; Doyle, J.R.; Llewellyn, L.E.; Tyler, M.J. Host-defence peptide profiles of the skin secretions of interspecific hybrid tree frogs and their parents, female Litoria splendida and male Litoria caerulea. FEBS J., 2006, 273(15), 3511-3519.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05358.x]
[86]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from the skins of North American frogs. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1556-1563.
[http://dx.doi.org/10.1016/j.bbamem.2008.09.018]
[87]
Azevedo Calderon, L.; Silva, A.A.E.; Ciancaglini, P.; Stábeli, R.G. Antimicrobial peptides from Phyllomedusa frogs: From biomolecular diversity to potential nanotechnologic medical applications. Amino Acids, 2011, 40(1), 29-49.
[http://dx.doi.org/10.1007/s00726-010-0622-3]
[88]
Conlon, J.M.; Mechkarska, M.; Coquet, L.; Jouenne, T.; Leprince, J.; Vaudry, H.; Kolodziejek, J.; Nowotny, N.; King, J.D. Characterization of antimicrobial peptides in skin secretions from discrete populations of Lithobates chiricahuensis (Ranidae) from central and southern Arizona. Peptides, 2011, 32(4), 664-669.
[http://dx.doi.org/10.1016/j.peptides.2011.01.018]
[89]
Rinaldi, A.C.; Conlon, J.M. Temporins. In: Handbook of Biologically Active Peptides, 2nd ed; Kastin, A.J., Ed.; Academic Press: Boston, 2013; pp. 400-406.
[http://dx.doi.org/10.1016/B978-0-12-385095-9.00056-7]
[90]
Savelyeva, A.; Ghavami, S.; Davoodpour, P.; Asoodeh, A.; Łos, M.J. An overview of Brevinin superfamily: Structure, function and clinical perspectives. Adv. Exp. Med. Biol., 2014, 818, 197-212.
[http://dx.doi.org/10.1007/978-1-4471-6458-6_10]
[91]
Gómez, E.A.; Giraldo, P.; Orduz, S. InverPep: A database of invertebrate antimicrobial peptides. J. Glob. Antimicrob. Resist., 2017, 8, 13-17.
[http://dx.doi.org/10.1016/j.jgar.2016.10.003]
[92]
Belokoneva, O.S.; Villegas, E.; Corzo, G.; Dai, L.; Nakajima, T. The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers. Biochim. Biophys. Acta Biomembr., 2003, 1617(1-2), 22-30.
[http://dx.doi.org/10.1016/j.bbamem.2003.08.010]
[93]
Juba, M.L.; Porter, D.K.; Williams, E.H.; Rodriguez, C.A.; Barksdale, S.M.; Bishop, B.M. Helical cationic antimicrobial peptide length and its impact on membrane disruption. Biochim. Biophys. Acta Biomembr., 2015, 1848(5), 1081-1091.
[http://dx.doi.org/10.1016/j.bbamem.2015.01.007]
[94]
Shahmiri, M.; Enciso, M.; Mechler, A. Controls and constrains of the membrane disrupting action of Aurein 1.2. Sci. Rep., 2015, 5(1), 16378.
[http://dx.doi.org/10.1038/srep16378]
[95]
Zheng, M.; Wang, R.; Chen, S.; Zou, Y.; Yan, L.; Zhao, L.; Li, X. Design, synthesis and antifungal activity of stapled aurein1.2 peptides. Antibiotics, 2021, 10(8), 956.
[http://dx.doi.org/10.3390/antibiotics10080956]
[96]
Zohrab, F.; Askarian, S.; Jalili, A.; Kazemi Oskuee, R. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily. Int. J. Pept. Res. Ther., 2019, 25(1), 39-48.
[http://dx.doi.org/10.1007/s10989-018-9723-8]
[97]
Chen, G.; Miao, Y.; Ma, C.; Zhou, M.; Shi, Z.; Chen, X.; Burrows, J.F.; Xi, X.; Chen, T.; Wang, L. Brevinin-2GHk from and the design of truncated analogs exhibiting the enhancement of antimicrobial activity. Antibiotics, 2020, 9(2), 85.
[http://dx.doi.org/10.3390/antibiotics9020085]
[98]
Sood, R.; Kinnunen, P.K.J. Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37(W27F) and temporin L. Biochim. Biophys. Acta Biomembr., 2008, 1778(6), 1460-1466.
[http://dx.doi.org/10.1016/j.bbamem.2008.02.014]
[99]
Kim, J.B.; Halverson, T.; Basir, Y.J.; Dulka, J.; Knoop, F.C.; Abel, P.W.; Conlon, J.M. Purification and characterization of antimicrobial and vasorelaxant peptides from skin extracts and skin secretions of the North American pig frog Rana grylio. Regul. Pept., 2000, 90(1-3), 53-60.
[http://dx.doi.org/10.1016/S0167-0115(00)00107-5]
[100]
Al-Ghaferi, N.; Kolodziejek, J.; Nowotny, N.; Coquet, L.; Jouenne, T.; Leprince, J.; Vaudry, H.; King, J.D.; Conlon, J.M. Antimicrobial peptides from the skin secretions of the South-East Asian frog Hylarana erythraea (Ranidae). Peptides, 2010, 31(4), 548-554.
[http://dx.doi.org/10.1016/j.peptides.2009.12.013]
[101]
Yang, X.; Lee, W.H.; Zhang, Y. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs. J. Proteome Res., 2012, 11(1), 306-319.
[http://dx.doi.org/10.1021/pr200782u]
[102]
Houri, A.J.; Mechler, A. Mechanism of action of the antimicrobial peptide caerin1.1. ChemistrySelect, 2020, 5(20), 5895-5902.
[http://dx.doi.org/10.1002/slct.202000851]
[103]
Wong, H.; Bowie, J.H.; Carver, J.A. The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida. Eur. J. Biochem., 1997, 247(2), 545-557.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00545.x]
[104]
Steinborner, S.T.; Currie, G.J.; Bowie, J.H.; Wallace, J.C.; Tyler, M.J. New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog Litoria chloris. comparison of the activities of the caerin 1 peptides from the genus Litoria. J. Pept. Res., 1998, 51(2), 121-126.
[http://dx.doi.org/10.1111/j.1399-3011.1998.tb00629.x]
[105]
Stone, D.J.M.; Waugh, R.J.; Bowie, J.H.; Wallace, J.C.; Tyler, M.J. Peptides from Australian frogs. Structures of the caerins and caeridin 1 from Litoria splendida. J. Chem. Soc., Perkin Trans. 1, 1992, 1(23), 3173-3178.
[http://dx.doi.org/10.1039/p19920003173]
[106]
Galanth, C.; Abbassi, F.; Lequin, O.; Ayala-Sanmartin, J.; Ladram, A.; Nicolas, P.; Amiche, M. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Biochemistry, 2009, 48(2), 313-327.
[http://dx.doi.org/10.1021/bi802025a]
[107]
Mor, A.; Hani, K.; Nicolas, P. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem., 1994, 269(50), 31635-31641.
[http://dx.doi.org/10.1016/S0021-9258(18)31742-3]
[108]
Batista, C.V.F.; Rosendo da Silva, L.; Sebben, A.; Scaloni, A.; Ferrara, L.; Paiva, G.R.; Olamendi-Portugal, T.; Possani, L.D.; Bloch, C., Jr Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta1. Peptides, 1999, 20(6), 679-686.
[http://dx.doi.org/10.1016/S0196-9781(99)00050-9]
[109]
Won, H.S.; Kang, S.J.; Lee, B.J. Action mechanism and structural requirements of the antimicrobial peptides, gaegurins. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1620-1629.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.021]
[110]
Zhou, X.; Shi, D.; Zhong, R.; Ye, Z.; Ma, C.; Zhou, M.; Xi, X.; Wang, L.; Chen, T.; Kwok, H.F. Bioevaluation of Ranatuerin-2Pb from the frog skin secretion of rana pipiens and its truncated analogues. Biomolecules, 2019, 9(6), 249.
[http://dx.doi.org/10.3390/biom9060249]
[111]
Goraya, J.; Wang, Y.; Li, Z.; O’Flaherty, M.; Knoop, F.C.; Platz, J.E.; Conlon, J.M. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur. J. Biochem., 2000, 267(3), 894-900.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01074.x]
[112]
Basir, Y.J.; Knoop, F.C.; Dulka, J.; Conlon, J.M. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2000, 1543(1), 95-105.
[http://dx.doi.org/10.1016/S0167-4838(00)00191-6]
[113]
Saviello, M.R.; Malfi, S.; Campiglia, P.; Cavalli, A.; Grieco, P.; Novellino, E.; Carotenuto, A. New insight into the mechanism of action of the temporin antimicrobial peptides. Biochemistry, 2010, 49(7), 1477-1485.
[http://dx.doi.org/10.1021/bi902166d]
[114]
Wimley, W.C.; White, S.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Mol. Biol., 1996, 3(10), 842-848.
[http://dx.doi.org/10.1038/nsb1096-842]
[115]
Menousek, J.; Mishra, B.; Hanke, M.L.; Heim, C.E.; Kielian, T.; Wang, G. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Int. J. Antimicrob. Agents, 2012, 39(5), 402-406.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.02.003]
[116]
Mishra, B.; Wang, X.; Lushnikova, T.; Zhang, Y.; Golla, R.M.; Narayana, J.L.; Wang, C.; McGuire, T.R.; Wang, G. Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins. Peptides, 2018, 106, 9-20.
[http://dx.doi.org/10.1016/j.peptides.2018.05.011]
[117]
Wang, H.; Yan, X.; Yu, H.; Hu, Y.; Yu, Z.; Zheng, H.; Chen, Z.; Zhang, Z.; Liu, J. Isolation, characterization and molecular cloning of new antimicrobial peptides belonging to the brevinin-1 and temporin families from the skin of Hylarana latouchii (Anura: Ranidae). Biochimie, 2009, 91(4), 540-547.
[http://dx.doi.org/10.1016/j.biochi.2009.01.007]
[118]
Abbassi, F.; Lequin, O.; Piesse, C.; Goasdoué, N.; Foulon, T.; Nicolas, P.; Ladram, A. Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J. Biol. Chem., 2010, 285(22), 16880-16892.
[http://dx.doi.org/10.1074/jbc.M109.097204]
[119]
Song, Y.; Ji, S.; Liu, W.; Yu, X.; Meng, Q.; Lai, R. Different expression profiles of bioactive peptides in Pelophylax nigromaculatus from distinct regions. Biosci. Biotechnol. Biochem., 2013, 77(5), 1075-1079.
[http://dx.doi.org/10.1271/bbb.130044]
[120]
Payne, J.W.; Jakes, R.; Hartley, B.S. The primary structure of alamethicin. Biochem. J., 1970, 117(4), 757-766.
[http://dx.doi.org/10.1042/bj1170757]
[121]
He, K.; Ludtke, S.J.; Worcester, D.L.; Huang, H.W. Neutron scattering in the plane of membranes: Structure of alamethicin pores. Biophys. J., 1996, 70(6), 2659-2666.
[http://dx.doi.org/10.1016/S0006-3495(96)79835-1]
[122]
Whiles, J.A.; Brasseur, R.; Glover, K.J.; Melacini, G.; Komives, E.A.; Vold, R.R. Orientation and effects of mastoparan X on phospholipid bicelles. Biophys. J., 2001, 80(1), 280-293.
[http://dx.doi.org/10.1016/S0006-3495(01)76013-4]
[123]
Dürr, U.H.N.; Sudheendra, U.S.; Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta Biomembr., 2006, 1758(9), 1408-1425.
[http://dx.doi.org/10.1016/j.bbamem.2006.03.030]
[124]
Dong, P.; Zhou, Y.; He, W.; Hua, D. A strategy for enhanced antibacterial activity against Staphylococcus aureus by the assembly of alamethicin with a thermo-sensitive polymeric carrier. Chem. Commun., 2016, 52(5), 896-899.
[http://dx.doi.org/10.1039/C5CC07054F]
[125]
Meyer, C.E.; Reusser, F. A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia, 1967, 23(2), 85-86.
[http://dx.doi.org/10.1007/BF02135929]
[126]
Turner, J.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother., 1998, 42(9), 2206-2214.
[http://dx.doi.org/10.1128/AAC.42.9.2206]
[127]
Henriksen, J.R.; Etzerodt, T.; Gjetting, T.; Andresen, T.L. Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One, 2014, 9(3), e91007.
[http://dx.doi.org/10.1371/journal.pone.0091007]
[128]
Söylemez, Ü.G.; Yousef, M.; Kesmen, Z.; Büyükkiraz, M.E.; Bakir-Gungor, B. Prediction of linear cationic antimicrobial peptides active against gram-negative and gram-positive bacteria based on machine learning models. Appl. Sci., 2022, 12(7), 3631.
[http://dx.doi.org/10.3390/app12073631]