Current Pharmaceutical Analysis

Author(s): Akhil Gupta and Shilpi Pathak*

DOI: 10.2174/0115734129302705240703052227

Assessment of Analytical Techniques for Precise Quantification of Four Antiviral Drugs in Pharmaceutical Research and Development: A Comprehensive Review
  • * (Excluding Mailing and Handling)

Abstract

Precise measurement of drug concentration in pharmaceutical research is critical, especially for anti-viral drugs like boceprevir, elvitegravir, indinavir, and saquinavir that combat viral infections. It is well-known that analytical techniques play an imperative role in identifying and characterizing active pharmaceutical ingredients in biological samples and drug formulations. Moreover, precise drug assessment directly influences safety, stability, and efficacy while providing in-depth insight into drug pharmacokinetics. Other than this, analytical techniques also aid in identifying impurities, deteriorated products, and potential pollutants. Thus, reliable analytical methods have become crucial for addressing challenges imposed by complex drug formulations. The most commonly used analytical technique is UV spectrophotometry, which does not have the high sensitivity to detect complex drug formulations. In contrast, Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) merges two analytical techniques, chromatography and mass spectrometry, to accurately quantify biological samples. Furthermore, Ultra-Performance Liquid Chromatography (UPLC) provides enhanced resolution, faster analysis in short duration, and low solvent consumption in contrast to HPLC. This comprehensive review aims to critically assess each analytical approach's accuracy, applicability, selectivity, and limitation to provide valuable insights for researchers and analysts. Understanding the weaknesses and strengths of these analytical techniques will enable the researchers to select the suitable analytical method based on their needs and requirements for quality assessment, precise drug quantification, and optimal therapeutic efficiency. Eventually, this review intends to advance pharmaceutical research and development, specifically for anti-viral drugs, by ensuring the effective and secure administration of therapies.

[1]
Selcuk, O.; Demir, Y.; Erkmen, C.; Yıldırım, S.; Uslu, B. Analytical methods for determination of antiviral drugs in different matrices: Recent advances and trends. Crit. Rev. Anal. Chem., 2022, 52(7), 1662-1693.
[http://dx.doi.org/10.1080/10408347.2021.1908111] [PMID: 33983841]
[2]
Lembo, D.; Donalisio, M.; Civra, A.; Argenziano, M.; Cavalli, R. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections. Expert Opin. Drug Deliv., 2018, 15(1), 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]
[3]
Sonali, M. A brief review on different analytical techniques for impurity profiling in antiviral drugs. IJCRT, 2021, 9, 53-64.
[4]
Chang, K.O.; Kim, Y.; Lovell, S.; Rathnayake, A.; Groutas, W. Antiviral drug discovery: Norovirus proteases and development of inhibitors. Viruses, 2019, 11(2), 197.
[http://dx.doi.org/10.3390/v11020197] [PMID: 30823509]
[5]
Gong, Y.; Haque, S.; Chowdhury, P.; Cory, T.J.; Kodidela, S.; Yallapu, M.M.; Norwood, J.M.; Kumar, S. Pharmacokinetics and pharmacodynamics of cytochrome P450 inhibitors for HIV treatment. Expert Opin. Drug Metab. Toxicol., 2019, 15(5), 417-427.
[http://dx.doi.org/10.1080/17425255.2019.1604685] [PMID: 30951643]
[6]
Hussen, A.A. High-Performance Liquid Chromatography (HPLC): A review. Ann. Adv. Chem., 2022, 6, 010-020.
[7]
Passos, L.C. Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Meas. J. Int. Meas. Confed., 2019, 135, 896-904.
[http://dx.doi.org/10.1016/j.measurement.2018.12.045]
[8]
Seger, C.; Salzmann, L. After another decade: LC–MS/MS became routine in clinical diagnostics. Clin. Biochem., 2020, 82, 2-11.
[http://dx.doi.org/10.1016/j.clinbiochem.2020.03.004] [PMID: 32188572]
[9]
Saxena, S.K.; Mishra, N.; Saxena, R. Our knowledge about viruses has increased tremendously owing to rapid developments in science and technology. Medicine, 2009, 4, 101-107.
[10]
Athar, F.; Beg, M.A. Anti-HIV and Anti-HCV drugs are the putative inhibitors of RNA-dependent-RNA polymerase activity of NSP12 of the SARS CoV-2 (COVID-19). Pharm. Pharmacol. Int. J., 2020, 8(3), 163-172.
[http://dx.doi.org/10.15406/ppij.2020.08.00292]
[11]
Tompa, D.R.; Immanuel, A.; Srikanth, S.; Kadhirvel, S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol., 2021, 172, 524-541.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.076] [PMID: 33454328]
[12]
Wassner, C.; Bradley, N.; Lee, Y. A review and clinical understanding of tenofovir: Tenofovir disoproxil fumarate versus tenofovir alafenamide. J. Int. Assoc. Provid. AIDS Care, 2020, 19
[http://dx.doi.org/10.1177/2325958220919231] [PMID: 32295453]
[13]
Mollarasouli, F.; Dogan-Topal, B.; Caglayan, M.G.; Taskin-Tok, T.; Ozkan, S.A. Electrochemical, spectroscopic, and molecular docking studies of the interaction between the anti-retroviral drug indinavir and dsDNA. J. Pharm. Anal., 2020, 10(5), 473-481.
[http://dx.doi.org/10.1016/j.jpha.2020.08.004] [PMID: 33133731]
[14]
Pereira, M.; Vale, N. Repurposing alone and in combination of the antiviral saquinavir with 5-fluorouracil in prostate and lung cancer cells. Int. J. Mol. Sci., 2022, 23(20), 12240.
[http://dx.doi.org/10.3390/ijms232012240] [PMID: 36293096]
[15]
Gonçalves, A.; Bertrand, J.; Ke, R.; Comets, E.; de Lamballerie, X.; Malvy, D.; Pizzorno, A.; Terrier, O.; Rosa Calatrava, M.; Mentré, F.; Smith, P.; Perelson, A.S.; Guedj, J. Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load. CPT Pharmacometrics Syst. Pharmacol., 2020, 9(9), 509-514.
[http://dx.doi.org/10.1002/psp4.12543] [PMID: 32558354]
[16]
Amara, A.; Penchala, S.D.; Else, L.; Hale, C.; FitzGerald, R.; Walker, L.; Lyons, R.; Fletcher, T.; Khoo, S. The development and validation of a novel LC-MS/MS method for the simultaneous quantification of Molnupiravir and its metabolite ß-d-N4-hydroxycytidine in human plasma and saliva. J. Pharm. Biomed. Anal., 2021, 206, 114356.
[http://dx.doi.org/10.1016/j.jpba.2021.114356] [PMID: 34509661]
[17]
Razonable, R.R. Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin. Proc., 2011, 86(10), 1009-1026.
[http://dx.doi.org/10.4065/mcp.2011.0309] [PMID: 21964179]
[18]
Ramachandra, B. Development of impurity profiling methods using modern analytical techniques. Crit Rev Anal Chem, 2017, 47(1), 24-36.
[19]
Bansal, V.; Malviya, R.; Pal, O.P.; Sharma, P.k. High performance liquid chromatography: A short review. J. Glob. Pharma Technol., 2010, 2, 22-26.
[20]
Sankar, P.R.; Snehalatha, K.S.; Firdose, S.T.; Babu, P.S. Applications of HPLC in pharmaceutical analysis. Int. J. Pharm. Sci. Rev. Res., 2014, 59, 117-124.
[21]
Nikolin, B.; Imamović, B.; Medanhodžić-Vuk, S.; Sober, M. High performance liquid chromatography in pharmaceutical analyses. Bosn. J. Basic Med. Sci., 2004, 4(2), 5-9.
[http://dx.doi.org/10.17305/bjbms.2004.3405] [PMID: 15629016]
[22]
Patel, S.; Raulji, A.; Patel, D.; Panchal, D.; Dalwadi, M.; Upadhyay, U. A review on “Uv visible spectroscopy”. Int. J. Pharm. Res. Appl., 2022, 7, 1151.
[23]
Brown, B.; Ward, A.; Fazili, Z.; Østergaard, J.; Asare-Addo, K. Application of UV dissolution imaging to pharmaceutical systems. Adv. Drug Deliv. Rev., 2021, 177, 113949.
[http://dx.doi.org/10.1016/j.addr.2021.113949] [PMID: 34461199]
[24]
Parmar, A.; Sharma, S. Derivative UV-vis absorption spectra as an invigorated spectrophotometric method for spectral resolution and quantitative analysis: Theoretical aspects and analytical applications: A review. Trends Analyt. Chem., 2016, 77, 44-53.
[http://dx.doi.org/10.1016/j.trac.2015.12.004]
[25]
Parasuraman, S.; Rao, A.; Balamurugan, S.; Muralidharan, S.; Jayaraj Kumar, K.; Vijayan, V. An overview of liquid chromatography-mass spectroscopy instrumentation. Pharm. Methods, 2016, 5, 47-55.
[26]
Wong, A.; Xiang, X.; Ong, P.; Mitchell, E.; Syn, N.; Wee, I.; Kumar, A.; Yong, W.; Sethi, G.; Goh, B.; Ho, P.; Wang, L. A review on liquid chromatography-tandem mass spectrometry methods for rapid quantification of oncology drugs. Pharmaceutics, 2018, 10(4), 221.
[http://dx.doi.org/10.3390/pharmaceutics10040221] [PMID: 30413076]
[27]
Loos, G.; Van Schepdael, A.; Cabooter, D. Quantitative mass spectrometry methods for pharmaceutical analysis. Philos Trans A Math Phys Eng Sci, 2016, 374(2079), 20150366.
[28]
Suryavanshi, R.U.; Rajasekaran, S. HPLC vs UPLC: The extent of the area in analytical chemistry. Int. J. Creat. Res. Thoughts, 2021, 9, b796-b809.
[29]
Pawar, P.V.; Dahale, P.p. Ultra High Performance Liquid Chromatography (UPLC): A new look in analysis-a review. Int. J. Pharm. Res. Appl., 2022, 7, 31-36.
[30]
Taleuzzaman, M.; Ali, S.; Gilani, S.; Iman, S.; Hafeez, A. Ultra Performance Liquid Chromatography (UPLC) - A review. Austin J. Anal. Pharm. Chem., 2015, 2, 1056.
[31]
Khalil, H.A.; Hassanein, N.A.; El-Yazbi, A.F. Recent analytical methodologies for the determination of anti-covid-19 drug therapies in various matrices: A critical review. RSC Adv, 2023, 13(19), 13224-13239.
[http://dx.doi.org/10.1039/D3RA00654A] [PMID: 37124020]
[32]
Ravisankar, P.; Gowthami, S.; Rao, G.D. A review on analytical method development. Indian J. Res. Pharm. Biotechnol., 2014, 2, 1183.
[33]
Dhanshri, F.P. A review on analytical method development. Int. J. Creat. Res. Thoughts, 2022, 10, 840-854.
[34]
Chandramowli, B.; Kumar, B.M.S.; Bhikshapathi, D.V.R.N.; Rajkamal, B.B. A New quantitative analytical method development and validation for the analysis of boceprevir in bulk and marketed formulation. Int. J. Pharm. Sci. Drug Res., 2018, 10(3), 201-205.
[http://dx.doi.org/10.25004/IJPSDR.2018.100314]
[35]
Sunitha, P.; Priyanka, S.; Supriya, T. Method development and validation of indinavir sulphate capsules by RP-HPLC method., 2015, 2, 108-110.
[36]
Hamidi, M. Pharmacokinetic properties of indinavir in rat: Some limitations of noncompartmental analysis. Drug Dev. Ind. Pharm., 2010, 36(3), 355-361.
[http://dx.doi.org/10.3109/03639040903173564] [PMID: 19722914]
[37]
Gonçalves, T.M.; Pires, B.X.F.; Bedor, D.C.G.; Souza, V.C.; Abreu, L.R.P.; Santana, D.P. Determination of indinavir in human plasma and its use in pharmacokinetic study. RBCF Rev. Bras. Cienc. Farm., 2007, 43(4), 639-647.
[http://dx.doi.org/10.1590/S1516-93322007000400018]
[38]
Mudigonda, K.; Jukanti, R.; Apte, S.S.; Ajjala, D.R.; Shrivastava, W.; Kandikere, V.N.; Nirogi, R.V.S. HPLC quantification of the HIV-1 protease inhibitor saquinavir in brain and testis of mice. Biomed. Chromatogr., 2006, 20(10), 1028-1032.
[http://dx.doi.org/10.1002/bmc.631] [PMID: 16506264]
[39]
Ucpinar, S.D.; Stavchansky, S. Quantitative determination of saquinavir from Caco-2 cell monolayers by HPLC-UV. Biomed. Chromatogr., 2003, 17(1), 21-25.
[http://dx.doi.org/10.1002/bmc.205] [PMID: 12583001]
[40]
Baldelli, S.; Marrubini, G.; Cattaneo, D.; Clementi, E.; Cerea, M. Application of quality by design approach to bioanalysis: Development of a method for elvitegravir quantification in human plasma. Therapeut Drug Monitor, 2017, 39(5), 0428.
[41]
Kumar, T.R.; Rajeswari, V.; Reddy, L.S. Analytical method development and validation for the estimation of indinavir by RP-HPLC. J. Chem. Pharm. Res., 2016, 8, 1126-1131.
[42]
Jancic, B.; Medenica, M.; Ivanovic, D.; Malenovic, A. Evaluation of a liquid chromatographic method for analysis of indinavir and degradation products arising from hydrolysis of its amide bond. Chromatographia, 2005, 62(5-6), 233-238.
[http://dx.doi.org/10.1365/s10337-005-0617-5]
[43]
Campanero, M.A.; Escolar, M.; Arangoa, M.A.; Sádaba, B.; Azanza, J.R. Development of a chromatographic method for the determination of saquinavir in plasma samples of HIV patients. Biomed. Chromatogr., 2002, 16(1), 7-12.
[http://dx.doi.org/10.1002/bmc.102] [PMID: 11816005]
[44]
Knebel, N.G.; Sharp, S.R.; Madigan, M.J. Quantification of the anti-HIV drug saquinavir by high-speed on-line high‐performance liquid chromatography/tandem mass spectrometry. J. Mass Spectrom., 1995, 30(8), 1149-1156.
[http://dx.doi.org/10.1002/jms.1190300812]
[45]
Pathak, S.M.; Kumar, A.R.; Subramanian, G.; Udupa, N. Development and validation of a reversed-phase liquid chromatographic method with fluorescence detection for the study of Saquinavir pharmacokinetics in rat plasma. Anal. Chim. Acta, 2007, 594(2), 248-256.
[http://dx.doi.org/10.1016/j.aca.2007.05.028] [PMID: 17586122]
[46]
Ha, H.R.; Follath, F.; Bloemhard, Y.; Krähenbühl, S. Determination of saquinavir in human plasma by high-performance liquid chromatography. J. Chromatogr., Biomed. Appl., 1997, 694(2), 427-433.
[http://dx.doi.org/10.1016/S0378-4347(97)00165-5] [PMID: 9252059]
[47]
Wiltshire, H.R.; Wiltshire, B.G.; Clarke, A.F.; Worth, E.; Prior, K.J.; Tjia, J.F. Chromatographic and immunochemical approaches to the analysis of the HIV protease inhibitor saquinavir in plasma. Anal. Biochem., 2000, 281(1), 105-114.
[http://dx.doi.org/10.1006/abio.2000.4545] [PMID: 10847617]
[48]
Hoetelmans, R.M.W.; van Essenberg, M.; Meenhorst, P.L.; Mulder, J.W.; Beijnen, J.H. Determination of saquinavir in human plasma, saliva, and cerebrospinal fluid by ion-pair high-performance liquid chromatography with ultraviolet detection. J. Chromatogr., Biomed. Appl., 1997, 698(1-2), 235-241.
[http://dx.doi.org/10.1016/S0378-4347(97)00268-5] [PMID: 9367213]
[49]
Ruan, Q.; Peterman, S.; Szewc, M.A.; Ma, L.; Cui, D.; Humphreys, W.G.; Zhu, M. An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: Application to indinavir metabolite detection. J. Mass Spectrom., 2008, 43(2), 251-261.
[http://dx.doi.org/10.1002/jms.1311] [PMID: 17968853]
[50]
Runja, C.; Ravi Kumar, P.; Avanapu, S.R. A validated stability indicating RP-HPLC method for the determination of emtricitabine, tenofovir disoproxil fumarate, elvitegravir and cobicistat in pharmaceutical dosage form. J. Chromatogr. Sci., 2016, 54(5), 759-764.
[http://dx.doi.org/10.1093/chromsci/bmw004] [PMID: 26865655]
[51]
Jampala, R.R.; Kumar, V.K.; Raju Nemala, A. Development and application of liquid chromatographic method for simultaneous determination of elvitegravir, tenofovir disoproxil fumarate, emtricitabine, and cobicistat in fixed dosage form. Pharm. Methods, 2014, 5(1), 7-13.
[http://dx.doi.org/10.5530/phm.2014.1.2]
[52]
Rao, P.P.; Reddy, D.M.; Ramachandran, D. Stability indicating HPLC method for simultaneous estimation of emtricitabine, tenofovir disoproxyl fumarate, cobicistat and elvitegravir in pharmaceutical dosage form. World J. Pharm. Sci., 2014, 2, 1822-1829.
[53]
Zheng, Y.; Aboura, R.; Boujaafar, S.; Lui, G.; Hirt, D. HPLC-MS / MS method for the simultaneous quantification of. J. Pharm. Biomed. Anal., 2020, 182, 113-119.
[54]
Langmann, P.; Klinker, H.; Schirmer, D.; Zilly, M.; Bienert, A.; Richter, E. High-performance liquid chromatographic method for the simultaneous determination of HIV-1 protease inhibitors indinavir, saquinavir and ritonavir in plasma of patients during highly active antiretroviral therapy. J. Chromatogr., Biomed. Appl., 1999, 735(1), 41-50.
[http://dx.doi.org/10.1016/S0378-4347(99)00388-6] [PMID: 10630889]
[55]
Donnerer, J.; Kronawetter, M.; Kapper, A.; Haas, I.; Kessler, H.H. Therapeutic drug monitoring of the HIV/AIDS drugs abacavir, zidovudine, efavirenz, nevirapine, indinavir, lopinavir, and nelfinavir. Pharmacology, 2003, 69(4), 197-204.
[56]
Martin, J.; Deslandes, G.; Dailly, E.; Renaud, C.; Reliquet, V.; Raffi, F.; Jolliet, P. A liquid chromatography – tandem mass spectrometry assay for quantification of efavirenz, tipranavir, darunavir and maraviroc in the plasma of patients infected with HIV. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877, 3072-3082.
[http://dx.doi.org/10.1016/j.jchromb.2009.07.031] [PMID: 19699694]
[57]
Yamada, H.; Kotaki, H.; Nakamura, T.; Iwamoto, A. Simultaneous determination of the HIV protease inhibitors indinavir, amprenavir, saquinavir, ritonavir and nelfinavir in human plasma by high-performance liquid chromatography. J. Chromatogr., Biomed. Appl., 2001, 755(1-2), 85-89.
[http://dx.doi.org/10.1016/S0378-4347(00)00617-4] [PMID: 11393736]
[58]
Proust, V.; Toth, K.; Hulin, A.; Taburet, A.M.; Gimenez, F.; Singlas, E. Simultaneous high-performance liquid chromatographic determination of the antiretroviral agents amprenavir, nelfinavir, ritonavir, saquinavir, delavirdine and efavirenz in human plasma. J. Chromatogr., Biomed. Appl., 2000, 742(2), 453-458.
[http://dx.doi.org/10.1016/S0378-4347(00)00208-5] [PMID: 10901152]
[59]
Panchagnula, R.; Bansal, T.; Varma, M.V.S.; Kaul, C.L. Reversed-phase liquid chromatography with ultraviolet detection for simultaneous quantitation of indinavir and propranolol from ex- vivo rat intestinal permeability studies. J Chromatogr B Analyt Technol Biomed Life Sci., 2004, 806, 277-282.
[60]
Droste, J.A.H.; Wissen, C.P.W.G.M.V.; Burger, D.M. Simultaneous determination of the HIV drugs indinavir , amprenavir , saquinavir , ritonavir , lopinavir , nelfinavir , the nelfinavir hydroxymetabolite m8 , and nevirapine in human plasma by reversed-phase high-performance liquid chromatography. Ther Drug Monit., 2003, 25(3), 393-9.
[61]
Kreuz, D.M.; Howard, A.L.; Ip, D. Determination of indinavir, potassium sorbate, methylparaben, and propylparaben in aqueous pediatric suspensions. J. Pharm. Biomed. Anal., 1999, 19(5), 725-735.
[http://dx.doi.org/10.1016/S0731-7085(98)00297-0] [PMID: 10698536]
[62]
Verbesselt, R.; Van Wijngaerden, E.; de Hoon, J. Simultaneous determination of 8 HIV protease inhibitors in human plasma by isocratic high-performance liquid chromatography with combined use of UV and fluorescence detection: Amprenavir, indinavir, atazanavir, ritonavir, lopinavir, saquinavir, nelfinavir and M8-nelfinavir metabolite. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 845(1), 51-60.
[http://dx.doi.org/10.1016/j.jchromb.2006.07.068] [PMID: 16997640]
[63]
Marzolini, C.; Telenti, A.; Buclin, T.; Biollaz, J.; Decosterd, L.A. Simultaneous determination of the HIV protease inhibitors indinavir, amprenavir, saquinavir, ritonavir, nelfinavir and the non-nucleoside reverse transcriptase inhibitor efavirenz by high-performance liquid chromatography after solid-phase extraction. J. Chromatogr., Biomed. Appl., 2000, 740(1), 43-58.
[http://dx.doi.org/10.1016/S0378-4347(99)00573-3] [PMID: 10798293]
[64]
Justesen, U.S.; Pedersen, C.; Klitgaard, N.A. Simultaneous quantitative determination of the HIV protease nelfinavir and the nelfinavir active metabolite M8 in plasma by liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 783, 491-500.
[http://dx.doi.org/10.1016/S1570-0232(02)00728-6] [PMID: 12482492]
[65]
Remmel, R.P.; Kawle, S.P.; Weller, D.; Fletcher, C.V. Simultaneous HPLC assay for quantification of indinavir, nelfinavir, ritonavir, and saquinavir in human plasma. Clin. Chem., 2000, 46(1), 73-81.
[http://dx.doi.org/10.1093/clinchem/46.1.73] [PMID: 10620574]
[66]
Kuna, M.; Dannana, G.S. Development and validation of stability indicating reverse-phase highperformance liquid chromatography method for the simultaneous quantification of saquinavir, ritonavir, and amprenavir. Asian J. Pharm. Clin. Res., 2018, 11(6), 390-396.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i6.25205]
[67]
Hugen, P.W.H.; Verweij-van Wissen, C.P.W.G.M.; Burger, D.M.; Wuis, E.W.; Koopmans, P.P.; Hekster, Y.A. Simultaneous determination of the HIV-protease inhibitors indinavir, nelfinavir, saquinavir and ritonavir in human plasma by reversed-phase high-performance liquid chromatography. J. Chromatogr., Biomed. Appl., 1999, 727(1-2), 139-149.
[http://dx.doi.org/10.1016/S0378-4347(99)00079-1] [PMID: 10360433]
[68]
Sarasa-Nacenta, M.; López-Púa, Y.; Mallolas, J.; Blanco, J.L.; Gatell, J.M.; Carné, X. Simultaneous determination of the HIV-protease inhibitors indinavir, amprenavir, ritonavir, saquinavir and nelfinavir in human plasma by reversed-phase high-performance liquid chromatography. J. Chromatogr., Biomed. Appl., 2001, 757(2), 325-332.
[http://dx.doi.org/10.1016/S0378-4347(01)00172-4] [PMID: 11417878]
[69]
Albert, V.; Modamio, P.; Lastra, C.F.; Mariño, E.L. Determination of saquinavir and ritonavir in human plasma by reversed-phase high-performance liquid chromatography and the analytical error function. J. Pharm. Biomed. Anal., 2004, 36(4), 835-840.
[http://dx.doi.org/10.1016/j.jpba.2004.08.013] [PMID: 15533677]
[70]
van Heeswijk, R.P.G.; Hoetelmans, R.M.W.; Harms, R.; Meenhorst, P.L.; Mulder, J.W.; Lange, J.M.A.; Beijnen, J.H. Simultaneous quantitative determination of the HIV protease inhibitors amprenavir, indinavir, nelfinavir, ritonavir and saquinavir in human plasma by ion-pair high-performance liquid chromatography with ultraviolet detection. J. Chromatogr., Biomed. Appl., 1998, 719(1-2), 159-168.
[http://dx.doi.org/10.1016/S0378-4347(98)00392-2] [PMID: 9869376]
[71]
Reddy, P.G.; Kumar, V.K.; Raju, V.V.S.S.A.; Ram, J.R.; Rraju, N.A. Novel spectrophotometric method development for the estimation of boceprevir in bulk and in pharmaceutical formulations. Res J Pharm Technol, 2017, 10(12), 4313.
[http://dx.doi.org/10.5958/0974-360X.2017.00789.2]
[72]
Erk, N. Spectrophotometric determination of indinavir in bulk and pharmaceutical formulations using bromocresol purple and bromothymol blue. Pharmazie, 2004, 59, 183-186.
[73]
Rao, K.P.; Srirangam, G.M.; Ramana, G.V.; Rao, M.C. Development and validation of some new UV- visible spectrophotometric methods for the assay of indinavir in pure and dosage forms. Rasayan J. Chem., 2016, 9, 393-400.
[74]
Rathod, B.H.; Rani, S.S.; Kartheek, N.; Kumar, A.A. A rapid and cost effective uv spectrophotometric method development and validation for the quantitative estimation of indinavir sulphate in capsules. Rasayan J. Chem., 2014, 6(7), 1749.
[75]
Midde, N.M.; Rahman, M.A.; Rathi, C.; Li, J.; Meibohm, B.; Li, W.; Kumar, S. Effect of ethanol on the metabolic characteristics of hiv-1 integrase inhibitor elvitegravir and elvitegravir/cobicistat with CYP3A: An analysis using a newly developed LC-MS/MS method. PLoS One, 2016, 11(2), e0149225.
[http://dx.doi.org/10.1371/journal.pone.0149225] [PMID: 26872388]
[76]
Yu, X.; Cui, D.; Davis, M.R. Identification of in vitro metabolites of indinavir by “intelligent automated LC-MS/MS” (INTAMS) utilizing triple quadrupole tandem mass spectrometry. J. Am. Soc. Mass Spectrom., 1999, 10(2), 175-183.
[http://dx.doi.org/10.1016/S1044-0305(98)00132-9] [PMID: 9926409]
[77]
Pereira, M.; Oliveira, D.; Venisse, N.; Couet, W.; Olivier, J. LC-MS/MS determination of the HIV-1 protease inhibitor indinavir in brain and testis of mice. J Pharm Biomed Anal, 2006, 40(2), 353-9.
[78]
Anari, M.R.; Sanchez, R.I.; Bakhtiar, R.; Franklin, R.B.; Baillie, T.A. Integration of knowledge-based metabolic predictions with liquid chromatography data-dependent tandem mass spectrometry for drug metabolism studies: Application to studies on the biotransformation of indinavir. Anal. Chem., 2004, 76(3), 823-832.
[http://dx.doi.org/10.1021/ac034980s] [PMID: 14750881]
[79]
Burhenne, J.; Riedel, K.D.; Martin-Facklam, M.; Mikus, G.; Haefeli, W.E. Highly sensitive determination of saquinavir in biological samples using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 784(2), 233-242.
[http://dx.doi.org/10.1016/S1570-0232(02)00803-6] [PMID: 12505771]
[80]
Aouri, M.; Calmy, A.; Hirschel, B.; Telenti, A.; Buclin, T.; Cavassini, M.; Rauch, A.; Decosterd, L.A. A validated assay by liquid chromatography–tandem mass spectrometry for the simultaneous quantification of elvitegravir and rilpivirine in HIV positive patients. J. Mass Spectrom., 2013, 48(5), 616-625.
[http://dx.doi.org/10.1002/jms.3200] [PMID: 23674286]
[81]
Tsuchiya, K.; Ohuchi, M.; Yamane, N.; Aikawa, H.; Gatanaga, H.; Oka, S.; Hamada, A. High-performance liquid chromatography–tandem mass spectrometry for simultaneous determination of raltegravir, dolutegravir and elvitegravir concentrations in human plasma and cerebrospinal fluid samples. Biomed. Chromatogr., 2018, 32(2), e4058.
[http://dx.doi.org/10.1002/bmc.4058] [PMID: 28762239]
[82]
Prathipati, P.K.; Mandal, S.; Destache, C.J. Simultaneous quantification of tenofovir, emtricitabine, rilpivirine, elvitegravir and dolutegravir in mouse biological matrices by LC–MS/MS and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2016, 129, 473-481.
[http://dx.doi.org/10.1016/j.jpba.2016.07.040] [PMID: 27497648]
[83]
Rao, R.N.; Prasad, K.G.; Kumar, K.V.S.; Ramesh, B. Diatomaceous earth supported liquid extraction and LC-MS/MS determination of elvitegravir and ritonavir in rat plasma: Application to a pharmacokinetic study. Anal. Methods, 2013, 5(23), 6693-6699.
[http://dx.doi.org/10.1039/c3ay41346b]
[84]
Penchala, S.D.; Fawcett, S.; Else, L.; Egan, D.; Amara, A.; Elliot, E.; Challenger, E.; Back, D.; Boffito, M.; Khoo, S. The development and application of a novel LC–MS/MS method for the measurement of Dolutegravir, Elvitegravir and Cobicistat in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1027, 174-180.
[http://dx.doi.org/10.1016/j.jchromb.2016.05.040] [PMID: 27290668]
[85]
Colombo, S.; Beguin, A.; Telenti, A.; Biollaz, J.; Buclin, T.; Rochat, B.; Decosterd, L.A. Intracellular measurements of anti-HIV drugs indinavir, amprenavir, saquinavir, ritonavir, nelfinavir, lopinavir, atazanavir, efavirenz and nevirapine in peripheral blood mononuclear cells by liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 819(2), 259-276.
[http://dx.doi.org/10.1016/j.jchromb.2005.02.010] [PMID: 15833290]
[86]
Chi, J.; Jayewardene, A.L.; Stone, J.A.; Motoya, T.; Aweeka, F.T. Simultaneous determination of five HIV protease inhibitors nelfinavir, indinavir, ritonavir, saquinavir and amprenavir in human plasma by LC/MS/MS. J. Pharm. Biomed. Anal., 2002, 30(3), 675-684.
[http://dx.doi.org/10.1016/S0731-7085(02)00357-6] [PMID: 12367693]
[87]
Djerada, Z.; Feliu, C.; Tournois, C.; Vautier, D.; Binet, L.; Robinet, A.; Marty, H.; Gozalo, C.; Lamiable, D.; Millart, H. Validation of a fast method for quantitative analysis of elvitegravir, raltegravir, maraviroc, etravirine, tenofovir, boceprevir and 10 other antiretroviral agents in human plasma samples with a new UPLC-MS/MS technology. J. Pharm. Biomed. Anal., 2013, 86, 100-111.
[http://dx.doi.org/10.1016/j.jpba.2013.08.002] [PMID: 23995753]
[88]
Bollen, P.D.J.; de Graaff-Teulen, M.J.A.; Schalkwijk, S.; van Erp, N.P.; Burger, D.M. Development and validation of an UPLC-MS/MS bioanalytical method for simultaneous quantification of the antiretroviral drugs dolutegravir, elvitegravir, raltegravir, nevirapine and etravirine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1105, 76-84.
[http://dx.doi.org/10.1016/j.jchromb.2018.12.008] [PMID: 30572204]
[89]
Mishra, T.D.; Kurani, H.; Singhal, P.; Shrivastav, P.S. Simultaneous quantitation of HIV-protease inhibitors ritonavir, lopinavir and indinavir in human plasma by UPLC-ESI-MS-MS. J. Chromatogr. Sci., 2012, 50(7), 625-635.
[http://dx.doi.org/10.1093/chromsci/bms048] [PMID: 22562821]
[90]
Kanu, A.B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J. Chromatogr. A, 2021, 1654, 462444.
[http://dx.doi.org/10.1016/j.chroma.2021.462444] [PMID: 34380070]
[91]
McDowall, R.D.; Doyle, E.; Murkitt, G.S.; Picot, V.S. Sample preparation for the HPLC analysis of drugs in biological fluids. J. Pharm. Biomed. Anal., 1989, 7(9), 1087-1096.
[http://dx.doi.org/10.1016/0731-7085(89)80047-0] [PMID: 2490115]