Key Challenges, Influencing Factors, and Future Perspectives of Nanosuspensions in Enhancing Brain Drug Delivery
  • * (Excluding Mailing and Handling)

Abstract

Many brain diseases pose serious challenges to human life. Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common neurodegenerative diseases that seriously threaten human health. Glioma is a common malignant tumor. However, drugs cannot cross physiological and pathological barriers and most therapeutic drugs cannot enter the brain because of the presence of the Blood-brain Barrier (BBB) and Blood- -brain Tumor Barrier (BBTB). How to enable drugs to penetrate the BBB to enter the brain, reduce systemic toxicity, and penetrate BBTB to exert therapeutic effects has become a challenge. Nanosuspension can successfully formulate drugs that are difficult to dissolve in water and oil by using surfactants as stabilizers, which is suitable for the brain target delivery of class II and IV drugs in the Biopharmaceutical Classification System (BCS). In nanosuspension drug delivery systems, the physical properties of nanostructures have a great impact on the accumulation of drugs at the target site, such as the brain. Optimizing the physical parameters of the nanosuspension can improve the efficiency of brain drug delivery and disease treatment. Therefore, the key challenges, influencing factors, and future perspectives of nanosuspension in enhancing brain drug delivery are summarized and reviewed here. This article aims to provide a better understanding of nanosuspension formulation technology used for brain delivery and strategies used to overcome various physiological barriers.

[1]
Liu J, Qu S, Wang T, et al. Nanosuspensions as an approach for improved solubility and anti-Ichthyophthirius multifiliis activity of magnolol. Aquaculture 2024; 579: 740133.
[http://dx.doi.org/10.1016/j.aquaculture.2023.740133]
[2]
Ma L, Gao H, Cheng C, Cao M, Zou L, Liu W. Fabrication of emulsions using high loaded curcumin nanosuspension stabilizers: Enhancement of antioxidant activity and concentration of curcumin in micelles. J Funct Foods 2023; 110: 105858.
[http://dx.doi.org/10.1016/j.jff.2023.105858]
[3]
Patel D, Zode SS, Bansal AK. Formulation aspects of intravenous nanosuspensions. Int J Pharm 2020; 586: 119555.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119555] [PMID: 32562654]
[4]
Xie L, Cai C, Cao Y, Li X. Tea saponins as novel stabilizers for the development of diosmin nanosuspensions: Optimization and in vitro evaluation. J Drug Deliv Sci Technol 2023; 90: 105118.
[http://dx.doi.org/10.1016/j.jddst.2023.105118]
[5]
Boscolo O, Flor S, Salvo L, et al. Formulation and characterization of ursodeoxycholic acid nanosuspension based on bottom-up technology and box–behnken design optimization. Pharmaceutics 2023; 15(8): 2037.
[http://dx.doi.org/10.3390/pharmaceutics15082037] [PMID: 37631251]
[6]
Karakucuk A, Teksin ZS, Eroglu H, Celebi N. Evaluation of improved oral bioavailability of ritonavir nanosuspension. Eur J Pharm Sci 2019; 131: 153-8.
[http://dx.doi.org/10.1016/j.ejps.2019.02.028] [PMID: 30790704]
[7]
Wang N, Qi F, He X, et al. Preparation and pharmacokinetic characterization of an anti-virulence compound nanosuspensions. Pharmaceutics 2021; 13(10): 1586.
[http://dx.doi.org/10.3390/pharmaceutics13101586] [PMID: 34683879]
[8]
Banarase NB, Kaur CD. Whole whey stabilized oleanolic acid nanosuspension: Formulation and evaluation study. J Drug Deliv Sci Technol 2022; 67: 103001.
[http://dx.doi.org/10.1016/j.jddst.2021.103001]
[9]
Kumar R, Thakur AK, Chaudhari P, et al. Nanoparticle preparation of pharmaceutical compounds via wet milling: Current status and future prospects. Powder Technol 2024; 435: 119430.
[http://dx.doi.org/10.1016/j.powtec.2024.119430]
[10]
Lv Y, Li W, Liao W, et al. Nano-drug delivery systems based on natural products. Int J Nanomed 2024; 19: 541-69.
[http://dx.doi.org/10.2147/IJN.S443692] [PMID: 38260243]
[11]
Singhal M, Baumgartner A, Turunen E, van Veen B, Hirvonen J, Peltonen L. Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration. Int J Pharm 2020; 587: 119636.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119636] [PMID: 32659405]
[12]
Elbaz NM, Tatham LM, Owen A, Rannard S, McDonald TO. Layer by layer self-assembly for coating a nanosuspension to modify drug release and stability for oral delivery. Food Hydrocoll 2023; 144: 108908.
[http://dx.doi.org/10.1016/j.foodhyd.2023.108908]
[13]
Aguilar-Hernández G, López-Romero BA, Nicolás-García M, Nolasco-González Y, García-Galindo HS, Montalvo-González E. Nanosuspensions as carriers of active ingredients: Chemical composition, development methods, and their biological activities. Food Res Int 2023; 174(Pt 1): 113583.
[http://dx.doi.org/10.1016/j.foodres.2023.113583] [PMID: 37986449]
[14]
Fathi-Karkan S, Heidarzadeh M, Narmi MT, et al. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol 2023; 243: 125232.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125232] [PMID: 37302628]
[15]
Abdelhameed AH, Abdelhafez WA, Saleh I, Hamad AA, Mohamed MS. Formulation and optimization of oral fast dissolving films loaded with nanosuspension to enhance the oral bioavailability of Fexofenadine HCL. J Drug Deliv Sci Technol 2023; 85: 104578.
[http://dx.doi.org/10.1016/j.jddst.2023.104578]
[16]
Bhairam M, Pandey RK, Shukla SS, Gidwani B. Preparation, optimization, and evaluation of dolutegravir nanosuspension: In vitro and in vivo characterization. J Pharm Innov 2023; 18(4): 1798-811.
[http://dx.doi.org/10.1007/s12247-023-09756-z]
[17]
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, et al. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658: 124226.
[http://dx.doi.org/10.1016/j.ijpharm.2024.124226] [PMID: 38744414]
[18]
Fang LR, Wang YH, Xiong ZZ, Wang YM. Research progress of nanomaterials in tumor-targeted drug delivery and imaging therapy. OpenNano 2023; 14: 100184.
[http://dx.doi.org/10.1016/j.onano.2023.100184]
[19]
Gautam S, Lakhanpal I, Sonowal L, Goyal N. Recent advances in targeted drug delivery using metal-organic frameworks: Toxicity and release kinetics. Next Nanotechnol 2023; 3-4: 100027.
[http://dx.doi.org/10.1016/j.nxnano.2023.100027]
[20]
Mustafa G, Hassan D, Zeeshan M, et al. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease. J Drug Deliv Sci Technol 2023; 87: 104774.
[http://dx.doi.org/10.1016/j.jddst.2023.104774]
[21]
Wu DD, Salah YA, Ngowi EE, et al. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience 2023; 26(8): 107321.
[http://dx.doi.org/10.1016/j.isci.2023.107321] [PMID: 37554468]
[22]
Fan Y, Cui Y, Hao W, et al. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma. Bioact Mater 2021; 6(12): 4402-14.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.027] [PMID: 33997516]
[23]
Huang L, Huang XH, Yang X, et al. Novel nano-drug delivery system for natural products and their application. Pharmacol Res 2024; 201: 107100.
[http://dx.doi.org/10.1016/j.phrs.2024.107100] [PMID: 38341055]
[24]
Nižić Nodilo L, Perkušić M, Ugrina I, et al. In situ gelling nanosuspension as an advanced platform for fluticasone propionate nasal delivery. Eur J Pharm Biopharm 2022; 175: 27-42.
[http://dx.doi.org/10.1016/j.ejpb.2022.04.009] [PMID: 35489667]
[25]
Leal FC, Ueda KM, Tucunduva Arantes MS, et al. Impact of defibrillation technique on the rheological, thermo-mechanical, and nutritional properties of nanosuspensions produced from multiple fractions of pinhão seed (Araucaria angustifolia (Bertol.) Kuntze). Food Chem 2024; 440: 138195.
[http://dx.doi.org/10.1016/j.foodchem.2023.138195] [PMID: 38103506]
[26]
Pourmadadi M, Gerami SE, Ajalli N, et al. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells. Hybrid Advances 2024; 6: 100210.
[http://dx.doi.org/10.1016/j.hybadv.2024.100210]
[27]
Huang H, Lang Y, Wang S, Zhou M. Microalgae-based drug delivery systems in biomedical applications. Eng Regener 2024.
[http://dx.doi.org/10.1016/j.engreg.2024.01.002]
[28]
Srivastav AK, Karpathak S, Rai MK, Kumar D, Misra DP, Agarwal V. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application. J Drug Deliv Sci Technol 2023; 85: 104526.
[http://dx.doi.org/10.1016/j.jddst.2023.104526]
[29]
Pourmadadi M, Ostovar S, Ruiz-Pulido G, et al. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorg Chem Commun 2023; 155: 110999.
[http://dx.doi.org/10.1016/j.inoche.2023.110999]
[30]
Aghrbi I, Fülöp V, Jakab G, Kállai-Szabó N, Balogh E, Antal I. Nanosuspension with improved saturated solubility and dissolution rate of cilostazol and effect of solidification on stability. J Drug Deliv Sci Technol 2021; 61: 102165.
[http://dx.doi.org/10.1016/j.jddst.2020.102165]
[31]
Mishra A, Kumar R, Mishra J, et al. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system. J Drug Deliv Sci Technol 2023; 86: 104694.
[http://dx.doi.org/10.1016/j.jddst.2023.104694]
[32]
Han L, Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11(8): 2306-25.
[http://dx.doi.org/10.1016/j.apsb.2020.11.023] [PMID: 34522589]
[33]
Li Q, Tang Z, Zhang Y, et al. Application of low-intensity ultrasound by opening blood–brain barrier for enhanced brain-targeted drug delivery. Int J Pharm 2023; 642: 123191.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123191] [PMID: 37391108]
[34]
Liu P, Jiang C. Brain-targeting drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022; 14(5): e1818.
[http://dx.doi.org/10.1002/wnan.1818] [PMID: 35596258]
[35]
Sethi B, Kumar V, Mahato K, Coulter DW, Mahato RI. Recent advances in drug delivery and targeting to the brain. J Control Release 2022; 350: 668-87.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.051] [PMID: 36057395]
[36]
Satapathy BS, Kumar LA, Pattnaik G, Swapna S, Mohanty D. Targeting to brain tumor: Nanocarrier-based drug delivery platforms, opportunities, and challenges. J Pharm Bioallied Sci 2021; 13(2): 172-7.
[http://dx.doi.org/10.4103/jpbs.JPBS_239_20] [PMID: 34349476]
[37]
Lan G, Song Q, Luan Y, Cheng Y. Targeted strategies to deliver boron agents across the blood–brain barrier for neutron capture therapy of brain tumors. Int J Pharm 2024; 650: 123747.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123747] [PMID: 38151104]
[38]
Wang P, Wang Y, Li P, et al. Oral delivery of polyester nanoparticles for brain-targeting: Challenges and opportunities. Chin Chem Lett 2023; 34(4): 107691.
[http://dx.doi.org/10.1016/j.cclet.2022.07.034]
[39]
Elbaz NM, Tatham LM, Owen A, Rannard S, McDonald TO. Redispersible nanosuspensions as a plausible oral delivery system for curcumin. Food Hydrocoll 2021; 121: 107005.
[http://dx.doi.org/10.1016/j.foodhyd.2021.107005]
[40]
Pirincci Tok Y, Mesut B, Güngör S, et al. Systematic screening study for the selection of proper stabilizers to produce physically stable canagliflozin nanosuspension by wet milling method. Bioengineering 2023; 10(8): 927.
[http://dx.doi.org/10.3390/bioengineering10080927] [PMID: 37627812]
[41]
Ma Y, Wang Y, Wang X, Guo J, Yan B, Guan W. Development and solidification of   multifunction   stabilizers   formulated selfassembled core-shell Deacetyl mycoepoxydience nanosuspensions. J Mol Liq 2020; 312: 113480.
[http://dx.doi.org/10.1016/j.molliq.2020.113480]
[42]
Santos AM, Meneguin AB, Fonseca-Santos B, et al. The role of stabilizers and mechanical processes on physico-chemical and anti-inflammatory properties of methotrexate nanosuspensions. J Drug Deliv Sci Technol 2020; 57: 101638.
[http://dx.doi.org/10.1016/j.jddst.2020.101638]
[43]
Guan W, Ma Y, Ding S, et al. The technology for improving stability of nanosuspensions in drug delivery. J Nanopart Res 2022; 24(1): 14.
[http://dx.doi.org/10.1007/s11051-022-05403-9]
[44]
Vardaka E, Ouranidis A, Nikolakakis I, Kachrimanis K. Development of agomelatine nanocomposite formulations by wet media milling. Eur J Pharm Sci 2021; 166: 105979.
[http://dx.doi.org/10.1016/j.ejps.2021.105979] [PMID: 34425232]
[45]
Ouranidis A, Gkampelis N, Vardaka E, et al. Overcoming the solubility barrier of ibuprofen by the rational process design of a nanocrystal formulation. Pharmaceutics 2020; 12(10): 969.
[http://dx.doi.org/10.3390/pharmaceutics12100969] [PMID: 33066680]
[46]
Porwal O. Box-Behnken design-based formulation optimization and characterization of spray dried rutin loaded nanosuspension: State of the art. S Afr J Bot 2022; 149: 807-15.
[http://dx.doi.org/10.1016/j.sajb.2022.04.028]
[47]
Li Q, Chen F, Liu Y, et al. A novel albumin wrapped nanosuspension of meloxicam to improve inflammation-targeting effects. Int J Nanomed 2018; 13: 4711-25.
[http://dx.doi.org/10.2147/IJN.S160714] [PMID: 30154656]
[48]
Taheri M, Maaref S, Kantzas A, Bryant S, Trudel S. Improving the colloidal stability of PEGylated BaTiO3 nanoparticles with surfactants. Chem Phys 2023; 564: 111701.
[http://dx.doi.org/10.1016/j.chemphys.2022.111701]
[49]
Elmowafy M, Shalaby K, Al-Sanea MM, et al. Influence of stabilizer on the development of luteolin nanosuspension for cutaneous delivery: An in vitro and in vivo evaluation. Pharmaceutics 2021; 13(11): 1812.
[http://dx.doi.org/10.3390/pharmaceutics13111812] [PMID: 34834227]
[50]
Cesur S. Combination techniques towards novel drug delivery systems manufacturing: 3D PCL scaffolds enriched with tetracycline-loaded PVP nanoparticles. Eur J Pharm Biopharm 2024; 194: 36-48.
[http://dx.doi.org/10.1016/j.ejpb.2023.11.022] [PMID: 38036066]
[51]
Ao H, Li Y, Li H, et al. Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer. Drug Deliv 2020; 27(1): 816-24.
[http://dx.doi.org/10.1080/10717544.2020.1770372] [PMID: 32489130]
[52]
Park JS, Choi JH, Joung MY, et al. Design of high-payload ascorbyl palmitate nanosuspensions for enhanced skin delivery. Pharmaceutics 2024; 16(2): 171.
[http://dx.doi.org/10.3390/pharmaceutics16020171] [PMID: 38399233]
[53]
Shahidulla SM, Miskan R, Sultana S. Nanosuspensions in pharmaceutical sciences: A comprehensive review. Int J Health Sci Res 2023; 13(7): 332-42.
[http://dx.doi.org/10.52403/ijhsr.20230745]
[54]
Aye KC, Rojanarata T, Ngawhirunpat T, Opanasopit P, Pornpitchanarong C, Patrojanasophon P. Development and optimization of curcumin-nanosuspensions with improved wound healing effect. J Drug Deliv Sci Technol 2023; 89: 104997.
[http://dx.doi.org/10.1016/j.jddst.2023.104997]
[55]
Suo Z, Sun Q, Peng X, et al. Lentinan as a natural stabilizer with bioactivities for preparation of drug: Drug nanosuspensions. Int J Biol Macromol 2021; 184: 101-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.056] [PMID: 34119545]
[56]
Chen H, Deng M, Xie L, Liu K, Zhang X, Li X. Preparation and characterization of quercetin nanosuspensions using gypenosides as novel stabilizers. J Drug Deliv Sci Technol 2022; 67: 102962.
[http://dx.doi.org/10.1016/j.jddst.2021.102962]
[57]
Soroushnia A, Ganji F, Vasheghani-Farahani E, Mobedi H. Effect of combined stabilizers on midazolam nanosuspension properties. Iran Polym J 2022; 31(2): 215-22.
[http://dx.doi.org/10.1007/s13726-021-00981-2]
[58]
Singh MK, Pooja D, Ravuri HG, Gunukula A, Kulhari H, Sistla R. Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability. Phytomedicine 2018; 40: 48-54.
[http://dx.doi.org/10.1016/j.phymed.2017.12.021] [PMID: 29496174]
[59]
Shariare MH, Sharmin S, Jahan I, Reza HM, Mohsin K. The impact of process parameters on carrier free paracetamol nanosuspension prepared using different stabilizers by antisolvent precipitation method. J Drug Deliv Sci Technol 2018; 43: 122-8.
[http://dx.doi.org/10.1016/j.jddst.2017.10.001]
[60]
Al Ashmawy AZG, Eissa NG, El Nahas HM, Balata GF. Fast disintegrating tablet of doxazosin mesylate nanosuspension: Preparation and characterization. J Drug Deliv Sci Technol 2021; 61: 102210.
[http://dx.doi.org/10.1016/j.jddst.2020.102210]
[61]
Bujňáková Z, Kello M, Kováč J, et al. Preparation of As4S4/Fe3O4 nanosuspensions and in-vitro verification of their anticancer activity. Mater Sci Eng C 2020; 110: 110683.
[http://dx.doi.org/10.1016/j.msec.2020.110683] [PMID: 32204110]
[62]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[63]
Wang P, Cao X, Chu Y, Wang P. Ginkgolides-loaded soybean phospholipid-stabilized nanosuspension with improved storage stability and in vivo bioavailability. Colloids Surf B Biointerfaces 2019; 181: 910-7.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.050] [PMID: 31382340]
[64]
Carrigy NB, Ordoubadi M, Liu Y, et al. Amorphous pullulan trehalose microparticle platform for respiratory delivery. Int J Pharm 2019; 563: 156-68.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.004] [PMID: 30951858]
[65]
Jain D, Thakur PS, Thakore SD, Samal SK, Bansal AK. Impact of differential particle size of fenofibrate nanosuspensions on biopharmaceutical performance using physiologically based absorption modeling in rats. J Drug Deliv Sci Technol 2020; 60: 102040.
[http://dx.doi.org/10.1016/j.jddst.2020.102040]
[66]
Wang R, Wang X, Jia X, Wang H, Li W, Li J. Impacts of particle size on the cytotoxicity, cellular internalization, pharmacokinetics and biodistribution of betulinic acid nanosuspensions in combined chemotherapy. Int J Pharm 2020; 588: 119799.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119799] [PMID: 32828973]
[67]
Guo C, Chen Y, Zhu J, et al. Preparation, optimization of intravenous ZL-004 nanosuspensions by the precipitation method, effect of particle size on in vivo pharmacokinetics and tissue distribution. J Drug Deliv Sci Technol 2019; 50: 313-20.
[http://dx.doi.org/10.1016/j.jddst.2019.01.034]
[68]
Suriyaamporn P, Pornpitchanarong C, Pamornpathomkul B, et al. Ganciclovir nanosuspension-loaded detachable microneedles patch for enhanced drug delivery to posterior eye segment. J Drug Deliv Sci Technol 2023; 88: 104975.
[http://dx.doi.org/10.1016/j.jddst.2023.104975]
[69]
Pezik E, Gulsun T, Gündüz MG, Sahin S, Öztürk N, Vural İ. Preparation of nanosuspensions of a 1,4-dihydropyridine-based mixed L-/T-type calcium channel blocker by combined precipitation and ultrasonication methods. J Drug Deliv Sci Technol 2023; 87: 104772.
[http://dx.doi.org/10.1016/j.jddst.2023.104772]
[70]
Kolipaka T, Sen S, Mane SS, Bajad GD, Dengale SJ, Ranjan OP. Development of posaconazole nanosuspension for bioavailability enhancement: Formulation optimization, in vitro characterization, and pharmacokinetic study. J Drug Deliv Sci Technol 2023; 83: 104434.
[http://dx.doi.org/10.1016/j.jddst.2023.104434]
[71]
Qin M, Ye G, Xin J, et al. Comparison of in vivo behaviors of intramuscularly long-acting celecoxib nanosuspensions with different particle sizes for the postoperative pain treatment. Int J Pharm 2023; 636: 122793.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122793] [PMID: 36870401]
[72]
Wang Y, Song J, Chow SF, Chow AHL, Zheng Y. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation. Int J Pharm 2015; 494(1): 479-89.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.052] [PMID: 26302857]
[73]
Yao S, Chen N, Sun X, Wang Q, Li M, Chen Y. Size-dependence of the skin penetration of andrographolide nanosuspensions: In vitro release ex vivo permeation correlation and visualization of the delivery pathway. Int J Pharm 2023; 641: 123065.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123065] [PMID: 37225025]
[74]
Jung SY, Kim S, Kang Z, et al. Efficiency of a dexamethasone nanosuspension as an intratympanic injection for acute hearing loss. Drug Deliv 2022; 29(1): 149-60.
[http://dx.doi.org/10.1080/10717544.2021.2021320] [PMID: 34967280]
[75]
Shaikh MS, Kale MA. Formulation and molecular docking simulation study of luliconazole nanosuspension–based nanogel for transdermal drug delivery using modified polymer. Mater Today Chem 2020; 18: 100364.
[http://dx.doi.org/10.1016/j.mtchem.2020.100364]
[76]
Liu Y, Ma Y, Xue L, Guan W, Wang Y. Pulmonary multidrug codelivery of curcumin nanosuspensions and ciprofloxacin with N-acetylcysteine for lung infection therapy. J Drug Deliv Sci Technol 2023; 84: 104474.
[http://dx.doi.org/10.1016/j.jddst.2023.104474]
[77]
Yan R, Xu L, Wang Q, et al. Cyclosporine a nanosuspensions for ophthalmic delivery: A comparative study between cationic nanoparticles and drug-core mucus penetrating nanoparticles. Mol Pharm 2021; 18(12): 4290-8.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00370] [PMID: 34731571]
[78]
Park JS, Kim MS, Joung MY, et al. Design of montelukast nanocrystalline suspension for parenteral prolonged delivery. Int J Nanomed 2022; 17: 3673-90.
[http://dx.doi.org/10.2147/IJN.S375888] [PMID: 36046838]
[79]
Sinha B, Staufenbiel S, Müller RH, Möschwitzer JP. Sub-50 nm ultra-small organic drug nanosuspension prepared by cavi-precipitation and its brain targeting potential. Int J Pharm 2021; 607: 120983.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120983] [PMID: 34371150]
[80]
Faujan NH, Abedi Karjiban R, Kashaban I, Basri M, Basri H. Computational simulation of palm kernel oil-based esters nano-emulsions aggregation as a potential parenteral drug delivery system. Arab J Chem 2019; 12(8): 2372-83.
[http://dx.doi.org/10.1016/j.arabjc.2015.03.003]
[81]
Jiang K, Yu Y, Qiu W, et al. Protein corona on brain targeted nanocarriers: Challenges and prospects. Adv Drug Deliv Rev 2023; 202: 115114.
[http://dx.doi.org/10.1016/j.addr.2023.115114] [PMID: 37827336]
[82]
Chen Y, Zhang C, Huang Y, et al. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway. Adv Drug Deliv Rev 2024; 207: 115196.
[http://dx.doi.org/10.1016/j.addr.2024.115196] [PMID: 38336090]
[83]
Raghav M, Gupta V, Awasthi R, Singh A, Kulkarni GT. Noseto-brain drug delivery: Challenges and progress towards brain targeting in the treatment of neurological disorders. J Drug Deliv Sci Technol 2023; 86: 104756.
[http://dx.doi.org/10.1016/j.jddst.2023.104756]
[84]
Dogra A, Narang RS, Kaur T, Narang JK. Mefenamic acid loaded and TPGS stabilized mucoadhesive nanoemulsion for the treatment of Alzheimer’s disease: Development, optimization, and brain-targeted delivery via olfactory pathway. AAPS PharmSciTech 2024; 25(1): 16.
[http://dx.doi.org/10.1208/s12249-023-02727-0] [PMID: 38200387]
[85]
Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol 2021; 64: 102642.
[http://dx.doi.org/10.1016/j.jddst.2021.102642]
[86]
Huang Q, Chen Y, Zhang W, et al. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J Control Release 2024; 366: 519-34.
[http://dx.doi.org/10.1016/j.jconrel.2023.12.054] [PMID: 38182059]
[87]
McGuckin MB, Wang J, Ghanma R, et al. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release 2022; 345: 334-53.
[http://dx.doi.org/10.1016/j.jconrel.2022.03.012] [PMID: 35283257]
[88]
Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J Control Release 2020; 327: 235-65.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.044] [PMID: 32739524]
[89]
Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J Control Release 2018; 270: 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.047] [PMID: 29199063]
[90]
Wen MM, El-Salamouni NS, El-Refaie WM, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J Control Release 2017; 245: 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[91]
Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B 2021; 11(4): 925-40.
[http://dx.doi.org/10.1016/j.apsb.2021.02.012] [PMID: 33996407]
[92]
Long Y, Yang Q, Xiang Y, et al. Nose to brain drug delivery: A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res 2020; 159: 104795.
[http://dx.doi.org/10.1016/j.phrs.2020.104795] [PMID: 32278035]
[93]
Antimisiaris SG, Marazioti A, Kannavou M, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021; 174: 53-86.
[http://dx.doi.org/10.1016/j.addr.2021.01.019] [PMID: 33539852]
[94]
Patel HP, Gandhi PA, Chaudhari PS, et al. Clozapine loaded nanostructured lipid carriers engineered for brain targeting via nose-to-brain delivery: Optimization and in vivo pharmacokinetic studies. J Drug Deliv Sci Technol 2021; 64: 102533.
[http://dx.doi.org/10.1016/j.jddst.2021.102533]
[95]
Huang G, Xie J, Shuai S, et al. Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum based in situ nanogel. Int J Pharm 2021; 594: 120182.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120182] [PMID: 33346126]
[96]
Hang L, Shen C, Shen B, Yuan H. Insight into the in vivo fate of intravenous herpetrione amorphous nanosuspensions by aggregation-caused quenching probes. Chin Chem Lett 2022; 33(11): 4948-51.
[http://dx.doi.org/10.1016/j.cclet.2022.03.108]
[97]
Pınar SG, Canpınar H, Tan Ç, Çelebi N. A new nanosuspension prepared with wet milling method for oral delivery of highly variable drug Cyclosporine A: Development, optimization and in vivo evaluation. Eur J Pharm Sci 2022; 171: 106123.
[http://dx.doi.org/10.1016/j.ejps.2022.106123] [PMID: 35017012]
[98]
Luo M, Sun H, Jiang Q, et al. Novel nanocrystal injection of insoluble drug anlotinib and its antitumor effects on hepatocellular carcinoma. Front Oncol 2021; 11: 777356.
[http://dx.doi.org/10.3389/fonc.2021.777356] [PMID: 34926286]
[99]
Chavda VP, Dawre S, Pandya A, et al. Lyotropic liquid crystals for parenteral drug delivery. J Control Release 2022; 349: 533-49.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.062] [PMID: 35792188]
[100]
Kumar V, Gupta U. Tailor-made nanocargoes as promising tool for brain targeting: Modulated approaches with better therapeutic outcomes. J Drug Deliv Sci Technol 2023; 84: 104466.
[http://dx.doi.org/10.1016/j.jddst.2023.104466]
[101]
Shah S, Patel AA, Pandya V, et al. Breaking barriers: Intranasal delivery of brexpiprazole-nanostructured lipid carriers targets the brain for effective schizophrenia treatment. J Drug Deliv Sci Technol 2023; 90: 105160.
[http://dx.doi.org/10.1016/j.jddst.2023.105160]
[102]
Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics 2023; 15(5): 1520.
[http://dx.doi.org/10.3390/pharmaceutics15051520] [PMID: 37242763]
[103]
Aldeeb M, Wilar G, Suhandi C, Elamin K, Wathoni N. Nanosuspension-based drug delivery systems for topical applications. Int J Nanomed 2024; 19: 825-44.
[http://dx.doi.org/10.2147/IJN.S447429] [PMID: 38293608]