Resveratrol Inhibits Nasopharyngeal Carcinoma (NPC) by Targeting the MAPK Signaling Pathway

Page: [1207 - 1219] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: With conventional cancer treatments facing limitations, interest in plant-derived natural products as potential alternatives is increasing. Although resveratrol has demonstrated antitumor effects in various cancers, its impact and mechanism on nasopharyngeal carcinoma remain unclear.

Objective: This study aimed to systematically investigate the anti-cancer effects of resveratrol on nasopharyngeal carcinoma using a combination of experimental pharmacology, network pharmacology, and molecular docking approaches.

Methods: CCK-8, scratch wound, and transwell assays were employed to confirm the inhibitory effect of resveratrol on the proliferation, migration, and invasion of nasopharyngeal carcinoma cells. H&E and TUNEL stainings were used to observe the morphological changes and apoptosis status of resveratrol-treated cells. The underlying mechanisms were elucidated using a network pharmacology approach. Immunohistochemistry and Western blotting were utilized to validate key signaling pathways.

Results: Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc

Conclusion: Resveratrol has shown promising potential in inhibiting human nasopharyngeal carcinoma cells by primarily targeting the MAPK pathway. These findings position resveratrol as a potential therapeutic agent for nasopharyngeal carcinoma.

[1]
Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet, 2016, 387(10022), 1012-1024.
[http://dx.doi.org/10.1016/S0140-6736(15)00055-0] [PMID: 26321262]
[2]
Wong, K.C.W.; Hui, E.P.; Lo, K.W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.F.; King, A.D.; Ma, B.B.Y.; Chan, A.T.C. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol., 2021, 18(11), 679-695.
[http://dx.doi.org/10.1038/s41571-021-00524-x] [PMID: 34194007]
[3]
Bossi, P.; Chan, A.T.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.P.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; Smeele, L.; van Herpen, C.; Castro, A.; Machiels, J.P. Nasopharyngeal carcinoma: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up†. Ann. Oncol., 2021, 32(4), 452-465.
[http://dx.doi.org/10.1016/j.annonc.2020.12.007] [PMID: 33358989]
[4]
Tang, L.L.; Chen, Y.P.; Chen, C.B.; Chen, M.Y.; Chen, N.Y.; Chen, X.Z.; Du, X.J.; Fang, W.F.; Feng, M.; Gao, J.; Han, F.; He, X.; Hu, C.S.; Hu, D.; Hu, G.Y.; Jiang, H.; Jiang, W.; Jin, F.; Lang, J.Y.; Li, J.G.; Lin, S.J.; Liu, X.; Liu, Q.F.; Ma, L.; Mai, H.Q.; Qin, J.Y.; Shen, L.F.; Sun, Y.; Wang, P.G.; Wang, R.S.; Wang, R.Z.; Wang, X.S.; Wang, Y.; Wu, H.; Xia, Y.F.; Xiao, S.W.; Yang, K.Y.; Yi, J.L.; Zhu, X.D.; Ma, J. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Commun. (Lond.), 2021, 41(11), 1195-1227.
[http://dx.doi.org/10.1002/cac2.12218] [PMID: 34699681]
[5]
Huang, T.; Ploner, A.; Chang, E.T.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.; Xie, S.; Cao, S.; Jia, W.; Zheng, Y.; Liao, J.; Chen, Y.; Lin, L.; Ernberg, I.; Huang, G.; Zeng, Y.; Zeng, Y.; Adami, H.O.; Ye, W. Dietary patterns and risk of nasopharyngeal carcinoma: A population-based case-control study in southern China. Am. J. Clin. Nutr., 2021, 114(2), 462-471.
[http://dx.doi.org/10.1093/ajcn/nqab114] [PMID: 33963745]
[6]
Chen, Y.; Chang, E.T.; Liu, Z.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.H.; Xie, S.H.; Cao, S.M.; Jia, W.H.; Zheng, Y.; Li, Y.; Lin, L.; Ernberg, I.; Zhao, H.; Feng, R.; Huang, G.; Zeng, Y.; Zeng, Y.X.; Adami, H.O.; Ye, W. Residence characteristics and risk of nasopharyngeal carcinoma in southern China: A population-based case-control study. Environ. Int., 2021, 151, 106455.
[http://dx.doi.org/10.1016/j.envint.2021.106455] [PMID: 33652252]
[7]
Chen, Y.; Chang, E.T.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Huang, Q.H.; Xie, S.H.; Cao, S.M.; Jia, W.H.; Zheng, Y.; Li, Y.; Lin, L.; Ernberg, I.; Wang, D.; Chen, W.; Feng, R.; Huang, G.; Zeng, Y.X.; Adami, H.O.; Ye, W. Occupational exposures and risk of nasopharyngeal carcinoma in a high-risk area: A population-based case-control study. Cancer, 2021, 127(15), 2724-2735.
[http://dx.doi.org/10.1002/cncr.33536] [PMID: 33823062]
[8]
Argirion, I.; Zarins, K.R.; Ruterbusch, J.J.; Vatanasapt, P.; Sriplung, H.; Seymour, E.K.; Rozek, L.S. Increasing incidence of epstein-barr virus–related nasopharyngeal carcinoma in the united states. Cancer, 2020, 126(1), 121-130.
[http://dx.doi.org/10.1002/cncr.32517] [PMID: 31524955]
[9]
Su, Z.Y.; Siak, P.Y.; Leong, C.O.; Cheah, S.C. The role of Epstein–Barr virus in nasopharyngeal carcinoma. Front. Microbiol., 2023, 14, 1116143.
[http://dx.doi.org/10.3389/fmicb.2023.1116143] [PMID: 36846758]
[10]
Zhang, Y.; Rumgay, H.; Li, M.; Cao, S.; Chen, W. Nasopharyngeal cancer incidence and mortality in 185 countries in 2020 and the projected burden in 2040: Population-based global epidemiological profiling. JMIR Public Health Surveill., 2023, 9, e49968.
[http://dx.doi.org/10.2196/49968] [PMID: 37728964]
[11]
Su, Z.Y.; Siak, P.Y.; Leong, C.O.; Cheah, S.C. Nasopharyngeal carcinoma and its microenvironment: Past, current, and future perspectives. Front. Oncol., 2022, 12, 840467.
[http://dx.doi.org/10.3389/fonc.2022.840467] [PMID: 35311066]
[12]
Toumi, N.; Ennouri, S.; Charfeddine, I.; Daoud, J.; Khanfir, A. Prognostic factors in metastatic nasopharyngeal carcinoma. Rev. Bras. Otorrinolaringol., 2022, 88(2), 212-219.
[http://dx.doi.org/10.1016/j.bjorl.2020.05.022] [PMID: 32690385]
[13]
Guan, S.; Wei, J.; Huang, L.; Wu, L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur. J. Med. Chem., 2020, 207, 112758.
[http://dx.doi.org/10.1016/j.ejmech.2020.112758] [PMID: 32858472]
[14]
Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054.
[http://dx.doi.org/10.1016/j.biopha.2022.113054] [PMID: 35658225]
[15]
Ren, X.; Xie, X.; Chen, B.; Liu, L.; Jiang, C.; Qian, Q. Marine natural products: A potential source of anti-hepatocellular carcinoma drugs. J. Med. Chem., 2021, 64(12), 7879-7899.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02026] [PMID: 34128674]
[16]
Ma, L.; Zhang, M.; Zhao, R.; Wang, D.; Ma, Y.; Ai, L. Plant natural products: Promising resources for cancer chemoprevention. Molecules, 2021, 26(4), 933.
[http://dx.doi.org/10.3390/molecules26040933] [PMID: 33578780]
[17]
Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A compressive review about taxol®: History and future challenges. Molecules, 2020, 25(24), 5986.
[http://dx.doi.org/10.3390/molecules25245986] [PMID: 33348838]
[18]
Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; Živković, J.; Cruz-Martins, N.; Klimek-Szczykutowicz, M.; Ekiert, H.; Choudhary, M.I.; Ayatollahi, S.A.; Tynybekov, B.; Kobarfard, F.; Muntean, A.C.; Grozea, I.; Daştan, S.D.; Butnariu, M.; Szopa, A.; Calina, D. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev., 2021, 2021, 1-24.
[http://dx.doi.org/10.1155/2021/3687700] [PMID: 34707776]
[19]
Yu, D.L.; Lou, Z.P.; Ma, F.Y.; Najafi, M. The interactions of paclitaxel with tumour microenvironment. Int. Immunopharmacol., 2022, 105, 108555.
[http://dx.doi.org/10.1016/j.intimp.2022.108555] [PMID: 35121223]
[20]
Kumar, S.; Chang, Y-C.; Lai, K-H.; Hwang, T-L. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: Natural product to chemical synthesis. Curr. Med. Chem., 2021, 28(19), 3773-3786.
[http://dx.doi.org/10.2174/1875533XMTEwrMDQh5] [PMID: 32957870]
[21]
Yang, J.; Wang, Y.; Cai, X.; Qu, B.; Zhang, Y.; Sun, Z.; Yan, J. Comparative pharmacokinetics and tissue distribution of polydatin, resveratrol, and emodin after oral administration of Huzhang and Huzhang-Guizhi herb-pair extracts to rats. J. Ethnopharmacol., 2024, 318(Pt B), 117010.
[http://dx.doi.org/10.1016/j.jep.2023.117010] [PMID: 37557937]
[22]
Bang, T.H.; Park, B.S.; Kang, H.M.; Kim, J.H.; Kim, I.R. Polydatin, a glycoside of resveratrol, induces apoptosis and inhibits metastasis oral squamous cell carcinoma cells in vitro. Pharmaceuticals (Basel), 2021, 14(9), 902.
[http://dx.doi.org/10.3390/ph14090902] [PMID: 34577602]
[23]
Hu, H.C.; Lei, Y.H.; Zhang, W.H.; Luo, X.Q. antioxidant and anti-inflammatory properties of resveratrol in diabetic nephropathy: A systematic review and meta-analysis of animal studies. Front. Pharmacol., 2022, 13, 841818.
[http://dx.doi.org/10.3389/fphar.2022.841818] [PMID: 35355720]
[24]
Wang, Q.; Yu, Q.; Wu, M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front. Pharmacol., 2022, 13, 948889.
[http://dx.doi.org/10.3389/fphar.2022.948889] [PMID: 36133823]
[25]
Bartra, C.; Yuan, Y.; Vuraić, K.; Valdés-Quiroz, H.; Garcia-Baucells, P.; Slevin, M.; Pastorello, Y.; Suñol, C.; Sanfeliu, C. Resveratrol activates antioxidant protective mechanisms in cellular models of alzheimer’s disease inflammation. Antioxidants, 2024, 13(2), 177.
[http://dx.doi.org/10.3390/antiox13020177] [PMID: 38397775]
[26]
Zhang, B.; Zhang, Y.; Liu, X.; Zhao, C.; Yin, J.; Li, X.; Zhang, X.; Wang, J.; Wang, S. Distinctive anti-inflammatory effects of resveratrol, dihydroresveratrol, and 3-(4-hydroxyphenyl)-propionic acid on DSS-induced colitis in pseudo-germ-free mice. Food Chem., 2023, 400, 133904.
[http://dx.doi.org/10.1016/j.foodchem.2022.133904] [PMID: 36055136]
[27]
Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19.
[http://dx.doi.org/10.1155/2021/2951697] [PMID: 34471463]
[28]
Chen, L.; Musa, A.E. Boosting immune system against cancer by resveratrol. Phytother. Res., 2021, 35(10), 5514-5526.
[http://dx.doi.org/10.1002/ptr.7189] [PMID: 34101276]
[29]
Zucchi, A.; Claps, F.; Pastore, A.L.; Perotti, A.; Biagini, A.; Sallicandro, L.; Gentile, R.; Caglioti, C.; Palazzetti, F.; Fioretti, B. Focus on the use of resveratrol in bladder cancer. Int. J. Mol. Sci., 2023, 24(5), 4562.
[http://dx.doi.org/10.3390/ijms24054562] [PMID: 36901993]
[30]
Nadile, M.; Retsidou, M.I.; Gioti, K.; Beloukas, A.; Tsiani, E. Resveratrol against cervical cancer: Evidence from in vitro and in vivo studies. Nutrients, 2022, 14(24), 5273.
[http://dx.doi.org/10.3390/nu14245273] [PMID: 36558430]
[31]
Fukuda, M.; Ogasawara, Y.; Hayashi, H.; Inoue, K.; Sakashita, H. Resveratrol inhibits proliferation and induces autophagy by blocking SREBP1 expression in oral cancer cells. Molecules, 2022, 27(23), 8250.
[http://dx.doi.org/10.3390/molecules27238250] [PMID: 36500345]
[32]
Huang, T.T.; Lin, H.C.; Chen, C.C.; Lu, C.C.; Wei, C.F.; Wu, T.S.; Liu, F.G.; Lai, H.C. Resveratrol induces apoptosis of human nasopharyngeal carcinoma cells via activation of multiple apoptotic pathways. J. Cell. Physiol., 2011, 226(3), 720-728.
[http://dx.doi.org/10.1002/jcp.22391] [PMID: 20717957]
[33]
Yang, H.Y.; Liu, M.L.; Luo, P.; Yao, X.S.; Zhou, H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine, 2022, 104, 154268.
[http://dx.doi.org/10.1016/j.phymed.2022.154268] [PMID: 35777118]
[34]
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150.
[http://dx.doi.org/10.1016/j.tips.2021.11.004] [PMID: 34895945]
[35]
Zhang, P.; Zhang, D.; Zhou, W.; Wang, L.; Wang, B.; Zhang, T.; Li, S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform., 2023, 25(1), bbad518.
[http://dx.doi.org/10.1093/bib/bbad518]
[36]
Gao, F.; Niu, Y.; Sun, L.; Li, W.; Xia, H.; Zhang, Y.; Geng, S.; Guo, Z.; Lin, H.; Du, G. Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer. J. Ethnopharmacol., 2022, 298, 115573.
[http://dx.doi.org/10.1016/j.jep.2022.115573] [PMID: 35917893]
[37]
Zheng, Y.; Zhong, Z.; Guo, X. Network pharmacology-based and molecular docking analysis of resveratrol’s pharmacological effects on type I endometrial cancer. Anticancer. Agents Med. Chem., 2022, 22(10), 1933-1944.
[http://dx.doi.org/10.2174/1871520621666211015140455] [PMID: 34773964]
[38]
Lin, F.; Zhang, G.; Yang, X.; Wang, M.; Wang, R.; Wan, M.; Wang, J.; Wu, B.; Yan, T.; Jia, Y. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. J. Ethnopharmacol., 2023, 303, 115933.
[http://dx.doi.org/10.1016/j.jep.2022.115933] [PMID: 36403742]
[39]
Wang, Z.; Xie, J.; Yan, M.; Wang, J.; Wang, X.; Zhang, J.; Zhang, Y.; Li, P.; Lei, X.; Huang, Q.; Lin, S.; Guo, X.; Liu, Q. Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma. Oncotarget, 2016, 7(18), 26765-26779.
[http://dx.doi.org/10.18632/oncotarget.8503] [PMID: 27049918]
[40]
Guan, Z.; Zhang, J.; Wang, J.; Wang, H.; Zheng, F.; Peng, J.; Xu, Y.; Yan, M.; Liu, B.; Cui, B.; Huang, Y.; Liu, Q. SOX1 down-regulates β-catenin and reverses malignant phenotype in nasopharyngeal carcinoma. Mol. Cancer, 2014, 13(1), 257.
[http://dx.doi.org/10.1186/1476-4598-13-257] [PMID: 25427424]
[41]
Yan, M.; Zhang, Y.; He, B.; Xiang, J.; Wang, Z.; Zheng, F.; Xu, J.; Chen, M.; Zhu, Y.; Wen, H.; Wan, X.; Yue, C.; Yang, N.; Zhang, W.; Zhang, J.; Wang, J.; Wang, Y.; Li, L.; Zeng, Y.; Lam, E.W.F.; Hung, M.C.; Liu, Q. IKKα restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat. Commun., 2014, 5(1), 3661.
[http://dx.doi.org/10.1038/ncomms4661] [PMID: 24739462]
[42]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[43]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[44]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[45]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[46]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[47]
McGarvey, P.B.; Nightingale, A.; Luo, J.; Huang, H.; Martin, M.J.; Wu, C.; Consortium, U.P. UniProt genomic mapping for deciphering functional effects of missense variants. Hum. Mutat., 2019, 40(6), 694-705.
[http://dx.doi.org/10.1002/humu.23738] [PMID: 30840782]
[48]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2019, 48(D1), gkz1021.
[http://dx.doi.org/10.1093/nar/gkz1021] [PMID: 31680165]
[49]
Fishilevich, S.; Zimmerman, S.; Kohn, A.; Iny Stein, T.; Olender, T.; Kolker, E.; Safran, M.; Lancet, D. Genic insights from integrated human proteomics in GeneCards. Database (Oxford), 2016, 2016, baw030.
[http://dx.doi.org/10.1093/database/baw030] [PMID: 27048349]
[50]
Zhou, Y.; Zhang, Y.; Zhao, D.; Yu, X.; Shen, X.; Zhou, Y.; Wang, S.; Qiu, Y.; Chen, Y.; Zhu, F. TTD: Therapeutic target database describing target druggability information. Nucleic Acids Res., 2024, 52(D1), D1465-D1477.
[http://dx.doi.org/10.1093/nar/gkad751] [PMID: 37713619]
[51]
Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[52]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res., 2021, 49(D1), D1138-D1143.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[53]
Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res., 2023, 51(D1), D638-D646.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[54]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[55]
Sk, B. Impact of Structural Biologists and theProtein Data Bank, 2021.
[56]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[57]
Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891.
[http://dx.doi.org/10.1002/med.21565] [PMID: 30741437]
[58]
Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; Goh, B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett., 2021, 515, 63-72.
[http://dx.doi.org/10.1016/j.canlet.2021.05.001] [PMID: 34052324]
[59]
Tinworth, C.P.; Young, R.J. Facts, patterns, and principles in drug discovery: Appraising the rule of 5 with measured physicochemical data. J. Med. Chem., 2020, 63(18), 10091-10108.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01596] [PMID: 32324397]
[60]
Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci., 2019, 20(6), 1381.
[http://dx.doi.org/10.3390/ijms20061381] [PMID: 30893846]
[61]
Li, Y.; Zhang, R.; Zhang, Q.; Luo, M.; Lu, F.; He, Z.; Jiang, Q.; Zhang, T. Dual strategy for improving the oral bioavailability of resveratrol: Enhancing water solubility and inhibiting glucuronidation. J. Agric. Food Chem., 2021, 69(32), 9249-9258.
[http://dx.doi.org/10.1021/acs.jafc.1c02602] [PMID: 34357767]
[62]
Pannu, N.; Bhatnagar, A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother., 2019, 109, 2237-2251.
[http://dx.doi.org/10.1016/j.biopha.2018.11.075] [PMID: 30551481]
[63]
Katila, N.; Duwa, R.; Bhurtel, S.; Khanal, S.; Maharjan, S.; Jeong, J.H.; Lee, S.; Choi, D.Y.; Yook, S. Enhancement of blood–brain barrier penetration and the neuroprotective effect of resveratrol. J. Control. Release, 2022, 346, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2022.04.003] [PMID: 35398173]
[64]
Velásquez-Jiménez, D.; Corella-Salazar, D.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Montiel-Herrera, M.; Salazar-López, N.J.; Rodrigo-Garcia, J.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Phenolic compounds that cross the blood–brain barrier exert positive health effects as central nervous system antioxidants. Food Funct., 2021, 12(21), 10356-10369.
[http://dx.doi.org/10.1039/D1FO02017J] [PMID: 34608925]
[65]
Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The plant-derived compound resveratrol in brain cancer: A review. Biomolecules, 2020, 10(1), 161.
[http://dx.doi.org/10.3390/biom10010161] [PMID: 31963897]
[66]
Angellotti, G.; Di Prima, G.; Belfiore, E.; Campisi, G.; De Caro, V. Chemopreventive and anticancer role of resveratrol against oral squamous cell carcinoma. Pharmaceutics, 2023, 15(1), 275.
[http://dx.doi.org/10.3390/pharmaceutics15010275] [PMID: 36678905]
[67]
Mikami, S.; Ota, I.; Masui, T.; Uchiyama, T.; Okamoto, H.; Kimura, T.; Takasawa, S.; Kitahara, T. Resveratrol induced REG III expression enhances chemo and radiosensitivity in head and neck cancer in xenograft mice. Oncol. Rep., 2019, 42(1), 436-442.
[http://dx.doi.org/10.3892/or.2019.7137] [PMID: 31059079]
[68]
Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346.
[http://dx.doi.org/10.3390/ijms21072346] [PMID: 32231094]
[69]
Ronkina, N.; Gaestel, M. MAPK-Activated Protein Kinases: Servant or Partner? Annu. Rev. Biochem., 2022, 91(1), 505-540.
[http://dx.doi.org/10.1146/annurev-biochem-081720-114505] [PMID: 35303787]
[70]
Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J. Hematol. Oncol., 2020, 13(1), 113.
[http://dx.doi.org/10.1186/s13045-020-00949-4] [PMID: 32807225]
[71]
Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci., 2020, 21(3), 1102.
[http://dx.doi.org/10.3390/ijms21031102] [PMID: 32046099]
[72]
Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; Yousefi, B. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol., 2019, 234(9), 14951-14965.
[http://dx.doi.org/10.1002/jcp.28334] [PMID: 30811039]
[73]
Tan, G.X.; Wang, X.N.; Tang, Y.Y.; Cen, W.J.; Li, Z.H.; Wang, G.C.; Jiang, J.W.; Wang, X.C. PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma cell line CNE-2 by inducing endoplasmic reticulum stress, downregulating STAT3 signaling, and modulating the MAPK pathway. J. Cell. Physiol., 2019, 234(3), 2618-2630.
[http://dx.doi.org/10.1002/jcp.27076] [PMID: 30191969]
[74]
Pua, L.J.W.; Mai, C.W.; Chung, F.F.L.; Khoo, A.S.B.; Leong, C.O.; Lim, W.M.; Hii, L.W. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma. Int. J. Mol. Sci., 2022, 23(3), 1108.
[http://dx.doi.org/10.3390/ijms23031108] [PMID: 35163030]
[75]
Jiang, X.; Yang, X.; Shi, Y.; Long, Y.; Su, W.; He, W.; Wei, K.; Miao, J. Maackiain inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells by inhibiting the MAPK/Ras signaling pathway. Chin. J. Nat. Med., 2023, 21(3), 185-196.
[http://dx.doi.org/10.1016/S1875-5364(23)60420-0] [PMID: 37003641]
[76]
Hankittichai, P.; Thaklaewphan, P.; Wikan, N.; Ruttanapattanakul, J.; Potikanond, S.; Smith, D.R.; Nimlamool, W. Resveratrol enhances cytotoxic effects of cisplatin by inducing cell cycle arrest and apoptosis in ovarian adenocarcinoma SKOV-3 cells through activating the p38 MAPK and suppressing AKT. Pharmaceuticals (Basel), 2023, 16(5), 755.
[http://dx.doi.org/10.3390/ph16050755] [PMID: 37242538]
[77]
Yang, M.D.; Sun, Y.; Zhou, W.J.; Xie, X.Z.; Zhou, Q.M.; Lu, Y.Y.; Su, S.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer mda-mb-231 cell models in vivo and in vitro. Molecules, 2021, 26(8), 2204.
[http://dx.doi.org/10.3390/molecules26082204] [PMID: 33921192]
[78]
Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress mediated apoptosis and G2/M phase arrest. Oncol. Rep., 2020, 44(4), 1605-1615.
[http://dx.doi.org/10.3892/or.2020.7708] [PMID: 32945472]
[79]
Xiong, H.; Cheng, J.; Jiang, S.; Wen, J.; Jian, Y.; Wei, L.; Zhe, Z.; Fu-Qiang, J.; Peng, X. The antitumor effect of resveratrol on nasopharyngeal carcinoma cells. Front. Biosci., 2019, 24(5), 961-970.
[http://dx.doi.org/10.2741/4761] [PMID: 30844723]
[80]
Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Pourbagher-Shahri, A.M.; Samarghandian, S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int., 2021, 21(1), 468.
[http://dx.doi.org/10.1186/s12935-021-02179-1] [PMID: 34488773]
[81]
Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis, 2021, 26(11-12), 561-573.
[http://dx.doi.org/10.1007/s10495-021-01689-7] [PMID: 34561763]
[82]
Khan, H.; Reale, M.; Ullah, H.; Sureda, A.; Tejada, S.; Wang, Y.; Zhang, Z.J.; Xiao, J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions. Biotechnol. Adv., 2020, 38, 107385.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.007] [PMID: 31004736]
[83]
Almatroodi, S.A.; A. Alsahli, M.; S.M. Aljohani, A.; Alhumaydhi, F.A.; Babiker, A.Y.; Khan, A.A.; Rahmani, A.H. Potential therapeutic targets of resveratrol, a plant polyphenol, and its role in the therapy of various types of cancer. Molecules, 2022, 27(9), 2665.
[http://dx.doi.org/10.3390/molecules27092665] [PMID: 35566016]
[84]
Shen, Y.A.; Lin, C.H.; Chi, W.H.; Wang, C.Y.; Hsieh, Y.T.; Wei, Y.H.; Chen, Y.J. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/590393] [PMID: 23737838]
[85]
Zhang, M.; Zhou, X.; Zhou, K. Resveratrol inhibits human nasopharyngeal carcinoma cell growth via blocking pAkt/p70S6K signaling pathways. Int. J. Mol. Med., 2013, 31(3), 621-627.
[http://dx.doi.org/10.3892/ijmm.2013.1237] [PMID: 23314035]