Recent Advances in Drug Delivery and Formulation

Author(s): Amol A. Dixit, Deepa S. Mandlik and Satish K. Mandlik*

DOI: 10.2174/0126673878301004240703073107

Functionalised Ligand-Based Nanomaterial Drug Targeting Approaches for Colorectal Cancer Therapy

Page: [170 - 187] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Cancer refers to a condition in which abnormal cells uncontrollably divide, resulting in the destruction of tissues. In colorectal cancer, uncontrolled cell proliferation takes place in the rectum or colon. Most colorectal tumors start as adenomas, a form of polyp that can develop into cancer within the rectum or colon. Symptoms of colorectal cancer include chronic diarrhea or constipation, bleeding from the rectum, bloody stools, change in appetite, weight loss, etc. Risk factors associated with colorectal cancer are smoking, obesity, and low physical activity. Colorectal cancer can be treated depending on size, location, and the spread of the cancer. Treatment includes surgery where the lymph node is dissected and a colectomy is performed. Chemotherapy and radiation therapies are other treatment options, but the main disadvantage is that these treatments have nonspecific avenues. Apart from killing cancerous cells, they damage healthy cells, too. Therefore, with the help of nanotechnology, drug-containing nanoparticles can be created with the aid of nanocarriers, which are stronger, more durable, and site-specific. The cancerous cells can be actively targeted by formulating nanoparticles loaded with anticancer drugs and functionalising the surface by either attaching ligands (peptides, antibodies, and small molecules) or targeting molecules towards receptors that are present on the exterior surface of the cancerous cells. These surfaces functionalised nanoparticles, loaded with anticancer drugs, are significantly upregulated in cancerous cells in contrast to healthy surrounding cells and tissues. This review article is focused on ligand-based drugs targeting colorectal tumours.

[1]
Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers 2021; 13(9): 2025.
[http://dx.doi.org/10.3390/cancers13092025] [PMID: 33922197]
[2]
Murphy N, Moreno V, Hughes DJ, et al. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med 2019; 69: 2-9.
[http://dx.doi.org/10.1016/j.mam.2019.06.005] [PMID: 31233770]
[3]
Silva A, Faria G, Araújo A, Monteiro MP. Impact of adiposity on staging and prognosis of colorectal cancer. Crit Rev Oncol Hematol 2020; 145: 102857.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102857]
[4]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5(1): 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[6]
Van der Stok EP, Spaander MCW, Grünhagen DJ, Verhoef C, Kuipers EJ. Surveillance after curative treatment for colorectal cancer. Nat Rev Clin Oncol 2017; 14(5): 297-315.
[http://dx.doi.org/10.1038/nrclinonc.2016.199] [PMID: 27995949]
[7]
Wolf AMD, Fontham ETH, Church TR, et al. Colorectal cancer screening for average‐risk adults: 2018 guideline update from the american cancer society. CA Cancer J Clin 2018; 68(4): 250-81.
[http://dx.doi.org/10.3322/caac.21457] [PMID: 29846947]
[8]
Sánchez-Gundín J, Fernández-Carballido AM, Martínez-Valdivieso L, Barreda-Hernández D, Torres-Suárez AI. New trends in the therapeutic approach to metastatic colorectal cancer. Int J Med Sci 2018; 15(7): 659-65.
[http://dx.doi.org/10.7150/ijms.24453] [PMID: 29910669]
[9]
Keum N, Giovannucci E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 2019; 16(12): 713-32.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[10]
Khan MK, Nasti TH, Buchwald ZS, Weichselbaum RR, Kron SJ. Repurposing drugs for cancer radiotherapy. Cancer J 2019; 25(2): 106-15.
[http://dx.doi.org/10.1097/PPO.0000000000000369] [PMID: 30896532]
[11]
Mohan G, T P AH, A J J, K M SD, Narayanasamy A, Vellingiri B. Recent advances in radiotherapy and its associated side effects in cancer—A review. J Basic Appl Zool 2019; 80(1): 14.
[http://dx.doi.org/10.1186/s41936-019-0083-5]
[12]
Shapiro GI, Harper JW. Anticancer drug targets: Cell cycle and checkpoint control. J Clin Invest 1999; 104(12): 1645-53.
[13]
Cameron MG, Kersten C, Vistad I, Fosså S, Guren MG. Palliative pelvic radiotherapy of symptomatic incurable rectal cancer – A systematic review. Acta Oncol 2014; 53(2): 164-73.
[http://dx.doi.org/10.3109/0284186X.2013.837582] [PMID: 24195692]
[14]
Krasteva N, Georgieva M. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics 2022; 14(6): 1213.
[http://dx.doi.org/10.3390/pharmaceutics14061213] [PMID: 35745786]
[15]
Belete TM. The current status of gene therapy for the treatment of cancer. Biologics 2021; 15: 67-77.
[http://dx.doi.org/10.2147/BTT.S302095] [PMID: 33776419]
[16]
Chung-Faye GA, Kerr DJ, Young LS, Searle PF. Gene therapy strategies for colon cancer. Mol Med Today 2000; 6(2): 82-7.
[http://dx.doi.org/10.1016/S1357-4310(99)01598-1] [PMID: 10652481]
[17]
Ziqiang Yuan, Jessica Pastoriza, Thomas Quinn, Steven K. Libutt. Targeting tumor vasculature using adeno-associated virus phage vectors coding tumor necrosis factor-α. Gene Ther Can 2014; 19-33.
[http://dx.doi.org/10.1016/B978-0-12-394295-1.00002-0]
[18]
Hamzehzadeh L, Imanparast A, Tajbakhsh A, Rezaee M, Pasdar A. New approaches to use nanoparticles for treatment of colorectal cancer; A brief review. Nanomedicine Res J 2016; 1(2): 59-68.
[http://dx.doi.org/10.7508/NMRJ.2016.02.001]
[19]
Subudhi M, Jain A, Jain A, et al. Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-fluorouracil. Materials 2015; 8(3): 832-49.
[http://dx.doi.org/10.3390/ma8030832] [PMID: 28787974]
[20]
Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60(15): 1615-26.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[21]
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int J Nanomedicine 2018; 13: 3921-35.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[22]
Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 2019; 11(5): 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[23]
Liu Y, Hui Y, Ran R, et al. Synergetic combinations of dual-targeting ligands for enhanced in vitro and in vivo tumor targeting. Adv Healthc Mater 2018; 7(15): 1800106.
[http://dx.doi.org/10.1002/adhm.201800106] [PMID: 29797508]
[24]
Ran R, Wang H, Liu Y, et al. Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting. Eur J Pharm Biopharm 2018; 130: 1-10.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.017] [PMID: 29908938]
[25]
U. S. national institutes of health, national cancer institute. 2021. Available from: https://www.cancer.gov/about-cancer/diagnosisstaging/diagnosis/tumor-markers[Accessed May 15, 2023]
[26]
De Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: A review. Am J Cancer Res 2022; 12(2): 661-80.
[PMID: 35261794]
[27]
Tiernan JP, Perry SL, Verghese ET, et al. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br J Cancer 2013; 108(3): 662-7.
[http://dx.doi.org/10.1038/bjc.2012.605] [PMID: 23322207]
[28]
Jelski W, Mroczko B. Biochemical markers of colorectal cancer – Present and future. Cancer Manag Res 2020; 12: 4789-97.
[http://dx.doi.org/10.2147/CMAR.S253369] [PMID: 32606968]
[29]
Guadagni F, Roselli M, Cosimelli M, et al. TAG-72 (CA 72-4 assay) as a complementary serum tumor antigen to carcinoembryonic antigen in monitoring patients with colorectal cancer. Cancer 1993; 72(7): 2098-106.
[http://dx.doi.org/10.1002/1097-0142(19931001)72:7<2098::AID-CNCR2820720707>3.0.CO;2-G] [PMID: 8374868]
[30]
Manzi J, Hoff CO, Ferreira R, et al. Targeted therapies in colorectal cancer: Recent advances in biomarkers, landmark trials, and future perspectives. Cancers 2023; 15(11): 3023.
[http://dx.doi.org/10.3390/cancers15113023] [PMID: 37296986]
[31]
Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE 2004; 2004(250): RE13.
[http://dx.doi.org/10.1126/stke.2502004re13] [PMID: 15367757]
[32]
Tougeron D, Laurent-Puig P, Zaanan A. Comment on ‘KRASmutated plasma DNA as predictor of outcome from irinotecan monotherapy in metastatic colorectal cancer’. Br J Cancer 2014; 111(12): 2379-80.
[http://dx.doi.org/10.1038/bjc.2014.114] [PMID: 24619075]
[33]
Suzuki S, Yonesaka K, Teramura T, et al. KRAS inhibitor-resistance in MET-amplified KRASG12C non-small cell lung cancer induced by RAS- And non-RAS-mediated cell signaling mechanisms. Clin Cancer Res 2021; 27(20): 5697-707.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0856] [PMID: 34365406]
[34]
Bradley CA, Dunne PD, Bingham V, et al. Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer. Oncotarget 2016; 7(48): 78932-45.
[http://dx.doi.org/10.18632/oncotarget.12933] [PMID: 27793046]
[35]
Schmid D, Fay F, Small DM, et al. Efficient drug delivery and induction of apoptosis in colorectal tumors using a death receptor 5-targeted nanomedicine. Mol Ther 2014; 22(12): 2083-92.
[http://dx.doi.org/10.1038/mt.2014.137] [PMID: 25200008]
[36]
Hasan MR, Ho SHY, Owen DA, Tai IT. Inhibition of VEGF induces cellular senescence in colorectal cancer cells. Int J Cancer 2011; 129(9): 2115-23.
[http://dx.doi.org/10.1002/ijc.26179] [PMID: 21618508]
[37]
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 2019; 71(8): 1185-98.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[38]
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater 2021; 6(4): 351-70.
[http://dx.doi.org/10.1038/s41578-020-00269-6] [PMID: 34950512]
[39]
Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130: 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[40]
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via epr effect for cancer treatment. J Pers Med 2021; 11(6): 571.
[http://dx.doi.org/10.3390/jpm11060571] [PMID: 34207137]
[41]
Lee SY, Yang CY, Peng CL, et al. A theranostic micelleplex codelivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials 2016; 86: 92-105.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.068] [PMID: 26896610]
[42]
Morales-Cruz M, Delgado Y, Castillo B, et al. Smart targeting to improve cancer therapeutics. Drug Des Devel Ther 2019; 13: 3753-72.
[http://dx.doi.org/10.2147/DDDT.S219489] [PMID: 31802849]
[43]
Riaz M, Riaz M, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[44]
Zhao Y, Xu J, Le VM, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with mir-139-5p for targeted therapy in colorectal cancer. Mol Pharm 2019; 16(11): 4696-710.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00867] [PMID: 31589818]
[45]
Xiao B, Han MK, Viennois E, et al. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 2015; 7(42): 17745-55.
[http://dx.doi.org/10.1039/C5NR04831A] [PMID: 26455329]
[46]
Ning ST, Lee SY, Wei MF, et al. Targeting colorectal cancer stem-like cells with anti-cd133 antibody-conjugated sn-38 nanoparticles. ACS Appl Mater Interfaces 2016; 8(28): 17793-804.
[http://dx.doi.org/10.1021/acsami.6b04403]
[47]
Mojarad-Jabali S, Farshbaf M, Walker PR, et al. An update on actively targeted liposomes in advanced drug delivery to glioma. Int J Pharm 2021; 602: 120645.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120645] [PMID: 33915182]
[48]
Lima PHC, Butera AP, Cabeça LF, Ribeiro-Viana RM. Liposome surface modification by phospholipid chemical reactions. Chem Phys Lipids 2021; 237: 105084.
[http://dx.doi.org/10.1016/j.chemphyslip.2021.105084] [PMID: 33891960]
[49]
Moghimipour E, Rezaei M, Ramezani Z, et al. Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur J Pharm Sci 2018; 114: 166-74.
[http://dx.doi.org/10.1016/j.ejps.2017.12.011] [PMID: 29247686]
[50]
Khayrani AC, Mahmud H, Oo AKK, et al. Targeting ovarian cancer cells overexpressing CD44 with immunoliposomes encap-sulating glycosylated paclitaxel. Int J Mol Sci 2019; 20(5): 1042.
[http://dx.doi.org/10.3390/ijms20051042] [PMID: 30818864]
[51]
Shim G, Kim D, Lee S, Chang RS, Byun J, Oh YK. Staphylococcus aureus-mimetic control of antibody orientation on nanoparticles. Nanomedicine 2019; 16: 267-77.
[http://dx.doi.org/10.1016/j.nano.2018.09.007] [PMID: 30368001]
[52]
Zhang Y, He J, Shen L, et al. Brain-targeted delivery of obidoxime, using aptamer-modified liposomes, for detoxification of organophosphorus compounds. J Control Release 2021; 329: 1117-28.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.039] [PMID: 33096123]
[53]
Li T, Yu P, Chen Y, et al. N-acetylgalactosamine-decorated nanoliposomes for targeted delivery of paclitaxel to hepatocellular carcinoma. Eur J Med Chem 2021; 222: 113605.
[http://dx.doi.org/10.1016/j.ejmech.2021.113605] [PMID: 34126457]
[54]
Wöll S, Dickgiesser S, Rasche N, Schiller S, Scherließ R. Sortagged anti-EGFR immunoliposomes exhibit increased cytotoxicity on target cells. Eur J Pharm Biopharm 2019; 136: 203-12.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.020] [PMID: 30677497]
[55]
Khaleseh F, Hemmati Azandaryani A, Fathian Kolahkaj F, Khazaei M, Derakhshandeh K. Enhancement of in vitro anti-tumour activity of epirubicin in HER2+ breast cancer cells using immunoliposome formulation. IET Nanobiotechnol 2021; 15(3): 257-65.
[http://dx.doi.org/10.1049/nbt2.12012] [PMID: 34694666]
[56]
Yue G, Wang C, Liu B, et al. Liposomes co-delivery system of doxorubicin and astragaloside IV co-modified by folate ligand and octa-arginine polypeptide for anti-breast cancer. RSC Advances 2020; 10(20): 11573-81.
[http://dx.doi.org/10.1039/C9RA09040A] [PMID: 35496626]
[57]
Ding J, Sui D, Liu M, et al. Sialic acid conjugate-modified liposomes enable tumor homing of epirubicin via neutrophil/monocyte infiltration for tumor therapy. 2021; 134: 702-15.
[http://dx.doi.org/10.1016/j.actbio.2021.07.063]
[58]
Allen TM, Sapra P, Moase E. Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett 2002; 7(3): 889-94.
[PMID: 12378272]
[59]
Shahraki N, Mehrabian A, Amiri-Darban S, Moosavian SA, Jaafari MR. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids Surf B Biointerfaces 2021; 200: 111589.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111589] [PMID: 33545570]
[60]
Burgus R, Ling N, Butcher M, Guillemin R. Primary structure of somatostatin, a hypothalamic peptide that inhibits the secretion of pituitary growth hormone. Proc Natl Acad Sci USA 1973; 70(3): 684-8.
[http://dx.doi.org/10.1073/pnas.70.3.684] [PMID: 4514982]
[61]
Pless J, Bauer W, Briner U, et al. Chemistry and pharmacology of SMS 201-995, a long-acting octapeptide analogue of somatostatin. Scand J Gastroenterol Suppl 1986; 119: 54-64.
[http://dx.doi.org/10.3109/00365528609087432]
[62]
Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci 2019; 7(2): 461-71.
[http://dx.doi.org/10.1039/C8BM01340C] [PMID: 30656305]
[63]
Ayiomamitis GD, Notas G, Zaravinos A, et al. Effects of octreotide and insulin on colon cancer cellular proliferation and correlation with hTERT activity. Oncoscience 2014; 1(6): 457-67.
[http://dx.doi.org/10.18632/oncoscience.58] [PMID: 25594044]
[64]
Fogal V, Zhang L, Krajewski S, Ruoslahti E. Mitochondrial/cellsurface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res 2008; 68(17): 7210-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6752] [PMID: 18757437]
[65]
Marasini R, Nguyen TDT, Rayamajhi S, Aryal S. Synthesis and characterization of a tumor-seeking LyP-1 peptide integrated lipid–polymer composite nanoparticle. Ma Adv 2020; 1(3): 469-80.
[http://dx.doi.org/10.1039/D0MA00203H]
[66]
Song N, Zhao L, Zhu M, Zhao J. Recent progress in LyP-1-based strategies for targeted imaging and therapy. Drug Deliv 2019; 26(1): 363-75.
[http://dx.doi.org/10.1080/10717544.2019.1587047] [PMID: 30905205]
[67]
Biscaglia F, Ripani G, Rajendran S, et al. Gold nanoparticle aggregates functionalized with cyclic rgd peptides for targeting and imaging of colorectal cancer cells. ACS Appl Nano Mater 2019; 2(10): 6436-44.
[http://dx.doi.org/10.1021/acsanm.9b01392]
[68]
Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 2012; 9(11): 2961-73.
[http://dx.doi.org/10.1021/mp3002733] [PMID: 22967287]
[69]
Yao P, Wang X, Wang Q, et al. Cyclic rgd-functionalized ph/ros dual-responsive nanoparticle for targeted breast cancer therapy. Pharmaceutics 2023; 15(7): 1827.
[http://dx.doi.org/10.3390/pharmaceutics15071827] [PMID: 37514014]
[70]
Prutki M, Poljak-Blazi M, Jakopovic M, Tomas D, Stipancic I, Zarkovic N. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett 2006; 238(2): 188-96.
[http://dx.doi.org/10.1016/j.canlet.2005.07.001] [PMID: 16111806]
[71]
Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: A new sight for cancer therapy. Am J Cancer Res 2018; 8(6): 916-31.
[PMID: 30034931]
[72]
Mendelsohn J, Prewett M, Rockwell P, Goldstein NI. CCR 20th anniversary commentary: A chimeric antibody, C225, inhibits EGFR activation and tumor growth. Clin Cancer Res 2015; 21(2): 227-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2491] [PMID: 25593342]
[73]
Morgillo F, Cantile F, Fasano M, Troiani T, Martinelli E, Ciardiello F. Resistance mechanisms of tumour cells to EGFR inhibitors. Clin Transl Oncol 2009; 11(5): 270-5.
[http://dx.doi.org/10.1007/s12094-009-0354-6] [PMID: 19451059]
[74]
Sakthianandeswaren A, Sabljak P, Elliott MJ, Palmieri MM, Sieber O. Predictive biomarkers for monoclonal antibody therapies targeting EGFR (Cetuximab, Panitumumab) in the treatment of metastatic colorectal cancer. In: Advances in the molecular understanding of colorectal cancer. IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.80690]
[75]
Misra S, Hascall VC, de Giovanni C, Markwald RR, Ghatak S. Delivery of CD44 shRNA/nanoparticles within cancer cells: Perturbation of hyaluronan/CD44v6 interactions and reduction in adenoma growth in Apc Min/+ MICE. J Biol Chem 2009; 284(18): 12432-46.
[http://dx.doi.org/10.1074/jbc.M806772200] [PMID: 19246453]
[76]
Makkar S, Riehl TE, Chen B, et al. Hyaluronic acid binding to TLR4 promotes proliferation and blocks apoptosis in colon cancer. Mol Cancer Ther 2019; 18(12): 2446-56.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1225] [PMID: 31484704]
[77]
Fitzgerald KA, Malhotra M, Gooding M, et al. A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. Int J Pharm 2016; 499(1-2): 131-45.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.055] [PMID: 26721726]
[78]
Dasargyri A, Kümin CD, Leroux JC. Targeting nanocarriers with anisamide: Fact or artifact? Adv Mater 2017; 29(7): 1603451.
[http://dx.doi.org/10.1002/adma.201603451] [PMID: 27885719]
[79]
van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. In: Elsevier B.V. 2015; 1848.
[http://dx.doi.org/10.1016/j.bbamem.2014.08.022]
[80]
Gothwal A, Malik S, Gupta U, Jain NK. Toxicity and biocompatibility aspects of dendrimers. In: Elsevier Inc. 2019.
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00011-1]
[81]
van Dam GM, Themelis G, Crane LMA, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat Med 2011; 17(10): 1315-9.
[http://dx.doi.org/10.1038/nm.2472] [PMID: 21926976]
[82]
Hu Y, Duan J, Zhan Q, Wang F, Lu X, Yang XD. Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS One 2012; 7(2): e31970.
[http://dx.doi.org/10.1371/journal.pone.0031970] [PMID: 22384115]
[83]
Ghasemi Z, Dinarvand R, Mottaghitalab F, Esfandyari-Manesh M, Sayari E, Atyabi F. Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohydr Polym 2015; 121: 190-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.025] [PMID: 25659689]
[84]
Chen K, Conti PS. Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Deliv Rev 2010; 62(11): 1005-22.
[http://dx.doi.org/10.1016/j.addr.2010.09.004] [PMID: 20851156]
[85]
Ayo A, Laakkonen P. Peptide-based strategies for targeted tumor treatment and imaging. Pharmaceutics 2021; 13(4): 481.
[http://dx.doi.org/10.3390/pharmaceutics13040481] [PMID: 33918106]
[86]
Itatani Y, Kawada K, Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci 2019; 20(23): 5822.
[http://dx.doi.org/10.3390/ijms20235822] [PMID: 31756952]
[87]
Worm DJ, Els-Heindl S, Beck-Sickinger AG. Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Pept Sci (Hoboken) 2020; 112(3): e24171.
[http://dx.doi.org/10.1002/pep2.24171]
[88]
Kratz F. Drug conjugates with albumin and transferrin. Expert Opin Ther Pat 2002; 12(3): 433-9.
[http://dx.doi.org/10.1517/13543776.12.3.433]
[89]
Accardo, A., Tesauro, D. & Morelli, G. Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polym J 2013; 45: 481-93.
[http://dx.doi.org/10.1038/pj.2012.215]
[90]
Terashima M, Uchida M, Kosuge H, et al. Protein cage nanoparticles bearing the lyp-1 peptide for enhanced imaging of macrophagerich vascular lesions masaki. ACS Nano 2012; 32(5): 1430-7.
[http://dx.doi.org/10.1038/nm720]
[91]
D’Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): A cell adhesion motif. Trends Biochem Sci 1991; 16(7): 246-50.
[http://dx.doi.org/10.1016/0968-0004(91)90096-E] [PMID: 1926332]
[92]
Bao H, Zheng N, Li Z, Zhi Y. Synergistic effect of tangeretin and atorvastatin for colon cancer combination therapy: Targeted delivery of these dual drugs using RGD peptide decorated nanocarriers. Drug Des Devel Ther 2020; 14: 3057-68.
[http://dx.doi.org/10.2147/DDDT.S256636] [PMID: 32801644]
[93]
Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta, Gen Subj 2012; 1820(3): 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[94]
Wei Y, Gu X, Sun Y, Meng F, Storm G, Zhong Z. Transferrinbinding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J Control Release 2020; 319(319): 407-15.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.012] [PMID: 31923538]
[95]
Ishida O, Maruyama K, Tanahashi H, et al. Transferrin with intracellular tumors in vivo. In: In Vivo. Brooklyn 2001; 18: pp. (7)1042-8.
[96]
Salahpour Anarjan F. Active targeting drug delivery nanocarriers: Ligands. Nano-Structures & Nano-Objects 2019; 19: 100370.
[http://dx.doi.org/10.1016/j.nanoso.2019.100370]
[97]
Sultana S, Khan MR, Kumar M, Kumar S, Ali M. Nanoparticlesmediated drug delivery approaches for cancer targeting: A review. J Drug Target 2013; 21(2): 107-25.
[http://dx.doi.org/10.3109/1061186X.2012.712130] [PMID: 22873288]
[98]
Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, et al. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release 2017; 268: 323-34.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.036] [PMID: 29107128]
[99]
Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction. Chem Sci 2017; 8(1): 63-77.
[http://dx.doi.org/10.1039/C6SC02403C] [PMID: 28451149]
[100]
Tian Y, Hu D, Li Y, Yang L. Development of therapeutic vaccines for the treatment of diseases. Molecular Biomedicine 2022; 3(1): 40.
[http://dx.doi.org/10.1186/s43556-022-00098-9] [PMID: 36477638]
[101]
Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy: Present and promise. Crit Rev Oncol Hematol 2005; 54(1): 11-29.
[http://dx.doi.org/10.1016/j.critrevonc.2004.10.011] [PMID: 15780905]
[102]
Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517): 495-7.
[http://dx.doi.org/10.1038/256495a0] [PMID: 1172191]
[103]
Veronese ML, O’Dwyer PJ. Monoclonal antibodies in the treatment of colorectal cancer. Eur J Cancer 2004; 40(9): 1292-301.
[http://dx.doi.org/10.1016/j.ejca.2004.02.014] [PMID: 15177487]
[104]
Brüggemann M, Winter G, Waldmann H, Neuberger MS. The immunogenicity of chimeric antibodies. J Exp Med 1989; 170(6): 2153-7.
[http://dx.doi.org/10.1084/jem.170.6.2153] [PMID: 2584938]
[105]
Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351(4): 337-45.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[106]
Hudson PJ, Souriau C. Engineered antibodies. Nat Med 2003; 9(1): 129-34.
[http://dx.doi.org/10.1038/nm0103-129] [PMID: 12514726]
[107]
Keating GM. Panitumumab. Drugs 2010; 70(8): 1059-78.
[http://dx.doi.org/10.2165/11205090-000000000-00000] [PMID: 20481659]
[108]
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int J Nanomedicine 2018; 13: 3921-35.
[http://dx.doi.org/10.2147/IJN.S165210]
[109]
Ramzy L, Metwally AA, Nasr M, Awad GAS. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci Rep 2020; 10(1): 10987.
[http://dx.doi.org/10.1038/s41598-020-67748-2] [PMID: 32620860]
[110]
Sirisha VL, D’Souza JS. Polysaccharide-based nanoparticles as drug delivery systems. Marine OMICS 2016; pp. 663-702.
[111]
Garcia-Valdez O, Champagne P, Cunningham MF. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog Polym Sci 2018; 76: 151-73.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.08.001]
[112]
Madni A, Tahir N, Rehman M, et al. Hybrid nano-carriers for potential drug delivery. Advanced technology for delivering therapeutics 2017; 11: 54-87.
[http://dx.doi.org/10.5772/66466]
[113]
Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61(7): 1303-13.
[http://dx.doi.org/10.1016/0092-8674(90)90694-A] [PMID: 1694723]
[114]
Sherman L, Sleeman J, Herrlich P, Ponta H. Hyaluronate receptors: Key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 1994; 6(5): 726-33.
[http://dx.doi.org/10.1016/0955-0674(94)90100-7] [PMID: 7530464]
[115]
Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by toll-like receptors and hyaluronan. Nat Med 2005; 11(11): 1173-9.
[http://dx.doi.org/10.1038/nm1315] [PMID: 16244651]
[116]
Fan X, Wang T, Han M, et al. Dual CEA/CD44 targeting to colorectal cancer cells using nanobody-conjugated hyaluronic acidmodified mesoporous silica nanoparticles with pH-and redox-sensitivity. Materials Advances 2022; 3(11): 4707-17.
[http://dx.doi.org/10.1039/D2MA00082B]
[117]
Wang Z, Zang A, Wei Y, et al. Hyaluronic acid capped, irinotecan and gene co-loaded lipid-polymer hybrid nanocarrier-based combination therapy platform for colorectal cancer. Drug Des Devel Ther 2020; 14: 1095-105.
[http://dx.doi.org/10.2147/DDDT.S230306] [PMID: 32210538]
[118]
Pan DC, Krishnan V, Salinas AK, et al. Hyaluronic a cid– doxorubicin nanoparticles for targeted treatment of colorectal cancer. Bioeng Transl Med 2021; 6(1): e10166.
[http://dx.doi.org/10.1002/btm2.10166] [PMID: 33532580]
[119]
Liu K, Wang ZQ, Wang SJ, et al. Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: Therapeutic efficacy evaluation. Int J Nanomed 2015; 10: 6445-54.
[http://dx.doi.org/10.2147/IJN.S89476]
[120]
Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine 2016; 12(4): 1113-26.
[http://dx.doi.org/10.1016/j.nano.2015.12.365] [PMID: 26733257]
[121]
Song Y, Shi W, Chen W, Li X, Ma H. Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptorpositive cancer cells from normal cells. J Mater Chem 2012; 22(25): 12568-73.
[http://dx.doi.org/10.1039/c2jm31582c]
[122]
Wang S, Low PS. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 1998; 53(1-3): 39-48.
[http://dx.doi.org/10.1016/S0168-3659(97)00236-8] [PMID: 9741912]
[123]
El-Hammadi MM, Delgado ÁV, Melguizo C, Prados JC, Arias JL. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm 2017; 516(1-2): 61-70.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.012] [PMID: 27825867]
[124]
Zou Y, Xiao F, Song L, et al. A folate-targeted PEGylated cyclodextrin-based nanoformulation achieves co-delivery of docetaxel and siRNA for colorectal cancer. Int J Pharm 2021; 606: 120888.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120888] [PMID: 34271152]
[125]
Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S. Folic acidconjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells. Cancer Nanotechnol 2022; 13(1): 12.
[http://dx.doi.org/10.1186/s12645-022-00120-3]
[126]
Duo Y, Yang M, Du Z, et al. CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy. Acta Biomater 2018; 79: 317-30.
[http://dx.doi.org/10.1016/j.actbio.2018.08.035] [PMID: 30172068]
[127]
Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron 2005; 20(12): 2424-34.
[http://dx.doi.org/10.1016/j.bios.2004.11.006] [PMID: 15854817]
[128]
Iliuk AB, Hu L, Tao WA. Aptamer in bioanalytical applications. Anal Chem 2011; 83(12): 4440-52.
[http://dx.doi.org/10.1021/ac201057w] [PMID: 21524128]
[129]
Chen T, Shukoor MI, Chen Y, et al. Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale 2011; 3(2): 546-56.
[http://dx.doi.org/10.1039/C0NR00646G] [PMID: 21109879]
[130]
Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev 2013; 113(4): 2842-62.
[http://dx.doi.org/10.1021/cr300468w] [PMID: 23509854]
[131]
Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2007; 2(9): 1268-71.
[http://dx.doi.org/10.1002/cmdc.200700121] [PMID: 17600796]
[132]
Tong GJ, Hsiao SC, Carrico ZM, Francis MB. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 2009; 131(31): 11174-8.
[http://dx.doi.org/10.1021/ja903857f] [PMID: 19603808]
[133]
Yang L, Zhang X, Ye M, et al. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 2011; 63(14-15): 1361-70.
[http://dx.doi.org/10.1016/j.addr.2011.10.002] [PMID: 22016112]
[134]
Xiao Z, Farokhzad OC. Aptamer-functionalized nanoparticles for medical applications: Challenges and opportunities. ACS Nano 2012; 6(5): 3670-6.
[http://dx.doi.org/10.1021/nn301869z] [PMID: 22574989]
[135]
Xing H, Tang L, Yang X, et al. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J Mater Chem B Mater Biol Med 2013; 1(39): 5288-97.
[http://dx.doi.org/10.1039/c3tb20412j] [PMID: 24159374]
[136]
Hu Y, Duan J, Zhan Q, Wang F, Lu X, Yang X Da. Novel muc1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS One 2012; 7(2): e31970.
[http://dx.doi.org/10.1371/journal.pone.0031970]
[137]
Wöll S, Dickgiesser S, Rasche N, Schiller S, Scherließ R. Sortagged anti-EGFR immunoliposomes exhibit increased cytotoxicity on target cells. Eur J Pharm Biopharm 2019; 136: 203-12.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.020.]
[138]
Dubrovskaya V, Tran K, Ozorowski G, et al. Vaccination with glycan-modified hiv nfl envelope trimer-liposomes elicits broadly neutralizing antibodies to multiple sites of vulnerability. Immunity 2019; 51(5): 915-929.e7.
[http://dx.doi.org/10.1016/j.immuni.2019.10.008] [PMID: 31732167]
[139]
Takayama Y, Kusamori K, Tsukimori C, et al. Anticancer drugloaded mesenchymal stem cells for targeted cancer therapy. J Control Release 2021; 329: 1090-101.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.037] [PMID: 33098911]
[140]
Hirata Y, Tashima R, Mitsuhashi N, et al. A simple, fast, and orientation-controllable technology for preparing antibody-modified liposomes. Int J Pharm 2021; 607: 120966.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120966] [PMID: 34352337]
[141]
Dos Santos Rodrigues B, Banerjee A, Kanekiyo T, Singh J. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int J Pharm 2019; 566: 717-30.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.026] [PMID: 31202901]
[142]
Kang S, Duan W, Zhang S, Chen D, Feng J, Qi N. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics 2020; 10(10): 4308-22.
[http://dx.doi.org/10.7150/thno.41322] [PMID: 32292496]
[143]
Narayanaswamy R, Torchilin VP. Targeted delivery of combination therapeutics using monoclonal antibody 2c5-modified immunoliposomes for cancer therapy. Pharm Res 2021; 38(3): 429-50.
[http://dx.doi.org/10.1007/s11095-021-02986-1] [PMID: 33655395]
[144]
Lee J, Byun J, Shim G, Oh YK. Fibroblast activation protein activated antifibrotic peptide delivery attenuates fibrosis in mouse models of liver fibrosis. Nat Commun 2022; 13(1): 1516.
[http://dx.doi.org/10.1038/s41467-022-29186-8] [PMID: 35314685]
[145]
Lee SH, Sato Y, Hyodo M, Harashima H. Size-dependency of the surface ligand density of liposomes prepared by post-insertion. Biol Pharm Bull 2017; 40(7): 1002-9.
[http://dx.doi.org/10.1248/bpb.b16-00990] [PMID: 28674243]
[146]
Chen C, Zhou Y, Chen C, Zhu S, Yan X. Quantification of available ligand density on the surface of targeted liposomal nanomedicines at the single-particle level. ACS Nano 2022; 16(4): 6886-97.
[http://dx.doi.org/10.1021/acsnano.2c02084] [PMID: 35394292]
[147]
Shim G, Kim D, Lee S, Chang RS, Byun J, Oh YK. Staphylococcus aureus-mimetic control of antibody orientation on nanoparticles. Nanomed Nanotechnol Biol Med 2019; 16: 267-77.
[http://dx.doi.org/10.1016/j.nano.2018.09.007]
[148]
Modery-Pawlowski CL, Sen Gupta A. Heteromultivalent liganddecoration for actively targeted nanomedicine. Biomaterials 2014; 35(9): 2568-79.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.047] [PMID: 24411677]
[149]
Di Iorio D, Huskens J. Surface modification with control over ligand density for the study of multivalent biological systems. ChemistryOpen 2020; 9(1): 53-66.
[http://dx.doi.org/10.1002/open.201900290] [PMID: 31921546]
[150]
Xu L, Josan JS, Vagner J, et al. Heterobivalent ligands target cellsurface receptor combinations in vivo. Proc Natl Acad Sci USA 2012; 109(52): 21295-300.
[http://dx.doi.org/10.1073/pnas.1211762109] [PMID: 23236171]
[151]
Bannigan P, Aldeghi M, Bao Z, Häse F, Aspuru-Guzik A, Allen C. Machine learning directed drug formulation development. Adv Drug Deliv Rev 2021; 175: 113806.
[http://dx.doi.org/10.1016/j.addr.2021.05.016] [PMID: 34019959]
[152]
Macarron R, Banks MN, Bojanic D, et al. Impact of highthroughput screening in biomedical research. Nat Rev Drug Discov 2011; 10(3): 188-95.
[http://dx.doi.org/10.1038/nrd3368] [PMID: 21358738]
[153]
Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM. Efficient polymer-mediated delivery of gene-editing ribonucleoprotein payloads through combinatorial design, parallelized experimentation, and machine learning. ACS Nano 2020; 14(12): 17626-39.
[http://dx.doi.org/10.1021/acsnano.0c08549] [PMID: 33225680]
[154]
Rinkenauer AC, Vollrath A, Schallon A, et al. Parallel highthroughput screening of polymer vectors for nonviral gene delivery: Evaluation of structure-property relationships of transfection. ACS Comb Sci 2013; 15(9): 475-82.
[http://dx.doi.org/10.1021/co400025u] [PMID: 23886244]
[155]
Stavnsbjerg C. Accelerated blood clearance and hypersensitivity by PEGylated liposomes containing TLR agonists. J Contr Release 2022; 342(2022): 337-44.
[156]
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021; 6(12): 1078-94.
[http://dx.doi.org/10.1038/s41578-021-00358-0] [PMID: 34394960]
[157]
Ball RL. Achieving long-term stability of lipid nanoparticles: Examining the effect of pH, temperature, and lyophilization. Int J Nanomed 2017; 12: 305-15.
[158]
Jain A, Jain R, Jain S, Khatik R, Veer Kohli D. Minicapsules encapsulating nanoparticles for targeting, apoptosis induction and treatment of colon cancer. Artif Cells Nanomed Biotechnol 2019; 47(1): 1085-93.
[http://dx.doi.org/10.1080/21691401.2019.1593848] [PMID: 30942626]
[159]
Sesarman A, Tefas L, Sylvester B, et al. Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment. Drug Deliv Transl Res 2019; 9(1): 260-72.
[http://dx.doi.org/10.1007/s13346-018-00598-8] [PMID: 30421392]
[160]
Shi H, Liang GF, Li Y, et al. Preparation and evaluation of upconversion nanoparticles based miRNA delivery carrier in colon cancer mice model. J Biomed Nanotechnol 2019; 15(11): 2240-50.
[http://dx.doi.org/10.1166/jbn.2019.2840] [PMID: 31847938]
[161]
Zhong Y, Su T, Shi Q, et al. Co-Administration of irgd enhances tumor-targeted delivery and anti-tumor effects of paclitaxel-loaded plga nanoparticles for colorectal cancer treatment. Int J Nanomedicine 2019; 14: 8543-60.
[http://dx.doi.org/10.2147/IJN.S219820] [PMID: 31802868]
[162]
Zhang X, Zhao M, Cao N, et al. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater Sci 2020; 8(7): 1885-96.
[http://dx.doi.org/10.1039/C9BM01927H] [PMID: 32022813]
[163]
Wei Y, Gu X, Sun Y, Meng F, Storm G, Zhong Z. Transferrinbinding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J Control Release 2020; 319: 407-15.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.012]
[164]
Chibaudel B, Maindrault-Goebel F, Bachet JB, et al. PEPCOL: A GERCOR randomized phase II study of nanoliposomal irinotecan PEP 02 (MM ‐398) or irinotecan with leucovorin/5‐fluorouracil as second‐line therapy in metastatic colorectal cancer. Cancer Med 2016; 5(4): 676-83.
[http://dx.doi.org/10.1002/cam4.635] [PMID: 26806397]
[165]
Tian X, Nguyen M, Foote HP, et al. CRLX101, a nanoparticle– drug conjugate containing camptothecin, improves rectal cancer chemoradiotherapy by inhibiting DNA repair and hif1α. Cancer Res 2017; 77(1): 112-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2951] [PMID: 27784746]
[166]
Alabi C, Vegas A, Anderson D. Attacking the genome: Emerging siRNA nanocarriers from concept to clinic. Curr Opin Pharmacol 2012; 12(4): 427-33.
[http://dx.doi.org/10.1016/j.coph.2012.05.004] [PMID: 22726555]
[167]
Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat Rev Cancer 2009; 9(3): 153-66.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[168]
Lyon PC, Griffiths LF, Lee J, et al. Clinical trial protocol for TARDOX: A phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (Thermo-Dox®) using focused ultrasound in patients with liver tumours. J Ther Ultrasound 2017; 5(1): 28.
[http://dx.doi.org/10.1186/s40349-017-0104-0] [PMID: 29118984]
[169]
Golan T, Grenader T, Ohana P, et al. Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: A phase 1 study in advanced solid tumor patients. Cancer Med 2015; 4(10): 1472-83.
[http://dx.doi.org/10.1002/cam4.491] [PMID: 26172205]
[170]
Ishida T, Huang CL, Wada H. Inventors; delta fly pharma inc, assignee. Liposome containing shRNA molecule targeting a thymidylate synthase and use thereof US 8,592,572, 2013.
[171]
Xunjin ZH, Wong WK, Fengshou WU. Conjugated porphyrin carbon quantum dots for targeted photodynamic therapy Hong Kong Baptist University HKBU United States patent. US 10369221, 2019.
[172]
Cabeza L, Perazzoli G, Mesas C, et al. Nanoparticles in colorectal cancer therapy: Latest in vivo assays, clinical trials, and patents. AAPS PharmSciTech 2020; 21(5): 178.
[http://dx.doi.org/10.1208/s12249-020-01731-y] [PMID: 32591920]
[173]
Mármol I, Sánchez-de-Diego C, Dieste AP, Cerrada E, Yoldi MJR. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18(1): 197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[174]
Patelli G, Tosi F, Amatu A, et al. Strategies to tackle RAS-mutated metastatic colorectal cancer. ESMO Open 2021; 6(3): 100156.
[http://dx.doi.org/10.1016/j.esmoop.2021.100156] [PMID: 34044286]
[175]
Xu T, Wang X, Xin Y, et al. Trastuzumab combined with irinotecan in patients with her2-positive metastatic colorectal cancer: A phase ii single-arm study and exploratory biomarker analysis. Cancer Res Treat 2023; 55(2): 626-35.
[http://dx.doi.org/10.4143/crt.2022.1058] [PMID: 36550683]
[176]
Brar B, Ranjan K, Palria A, et al. Nanotechnology in colorectal cancer for precision diagnosis and therapy. Frontiers in Nanotechnology 2021; 3: 699266.
[http://dx.doi.org/10.3389/fnano.2021.699266]