Advancements in Micellar Formulation: Drug Delivery Vehicle for Water-Insoluble Drugs

Page: [188 - 207] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Micellar systems, particularly polymeric micelles, have emerged as a promising drug delivery vehicle for water-insoluble compounds. Polymeric micelles, self-assembled nanostructures made from amphiphilic block copolymers, have emerged as a promising drug delivery vehicle for water-insoluble compounds. These micelles offer high drug loading capacity, stability, and the ability to solubilize large amounts of hydrophobic drugs, making them an attractive option for delivering drugs with limited solubility and bioavailability. Their small size allows for efficient delivery and targeting of specific tissues or cells, reducing off-target effects and improving therapeutic outcomes. This review provides a brief overview of drug delivery system challenges, solutions, techniques of micelle formation, factors affecting micelle stability and drug loading, applications, pharmacokinetics and pharmacodynamics of micellar formulations, toxicological considerations, limitations, recent advancements, and clinical trials of micelles in drug delivery. By addressing these key aspects, this review seeks to provide a comprehensive understanding of the current status and prospects of polymeric micelles as a promising drug delivery system.

[1]
Zong TX, Silveira AP, Morais JAV, et al. Recent advances in antimicrobial nano-drug delivery systems. Nanomaterials 2022; 12(11): 1855.
[http://dx.doi.org/10.3390/nano12111855] [PMID: 35683711]
[2]
Kapare HS, Metkar SR. Micellar drug delivery system: A review. Pharmaceut Resonance 2020; 2(2): 1-6.
[3]
Deshmukh AS, Chauhan PN, Noolvi MN, et al. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017; 532(1): 249-68.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.005] [PMID: 28882486]
[4]
Lu Y, Lin J, Wang L, Zhang L, Cai C. Self-assembly of copolymer micelles: Higher-level assembly for constructing hierarchical structure. Chem Rev 2020; 120(9): 4111-40.
[http://dx.doi.org/10.1021/acs.chemrev.9b00774] [PMID: 32212685]
[5]
Hou Y, Zou L, Li Q, et al. Supramolecular assemblies based on natural small molecules: Union would be effective. Mater Today Bio 2022; 15: 100327.
[http://dx.doi.org/10.1016/j.mtbio.2022.100327] [PMID: 35757027]
[6]
Brackman JC, Engberts JBFN. Polymer–micelle interactions: Physical organic aspects. Chem Soc Rev 1993; 22(2): 85-92.
[http://dx.doi.org/10.1039/CS9932200085]
[7]
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020; 105: 101242.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101242]
[8]
Lodge TP, Seitzinger CL, Seeger SC, Yang S, Gupta S, Dorfman KD. Dynamics and equilibration mechanisms in block copolymer particles. ACS Polym Au 2022; 2(6): 397-416.
[http://dx.doi.org/10.1021/acspolymersau.2c00033] [PMID: 36536887]
[9]
Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Deliv Rev 2020; 156: 80-118.
[http://dx.doi.org/10.1016/j.addr.2020.09.009] [PMID: 32980449]
[10]
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332: 127-47.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[11]
Majumder N, G Das N, Das SK. Polymeric micelles for anticancer drug delivery. Ther Deliv 2020; 11(10): 613-35.
[http://dx.doi.org/10.4155/tde-2020-0008] [PMID: 32933425]
[12]
Villacís Aguirre CA. Obtención de una novedosa formulación que permita la nanoencapsulación de interferón alfa 2b recombinante humano (rhIFNα-2b). 2021. Available From: http://repositorio.espe.edu.ec/bitstream/21000/23961/1/T-ESPE-044370.pdf
[13]
Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022; 10(9): 2055.
[http://dx.doi.org/10.3390/biomedicines10092055] [PMID: 36140156]
[14]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[15]
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023; 15(7): 1916.
[http://dx.doi.org/10.3390/pharmaceutics15071916] [PMID: 37514102]
[16]
Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: Preparation, characterization and application in drug delivery. J Control Release 2005; 109(1-3): 169-88.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.034] [PMID: 16289422]
[17]
Saha U, De R, Das B. Interactions between loaded drugs and surfactant molecules in micellar drug delivery systems: A critical review. J Mol Liq 2023; 382: 121906.
[http://dx.doi.org/10.1016/j.molliq.2023.121906]
[18]
Carvalho SG, Araujo VHS, dos Santos AM, et al. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int J Pharm 2020; 580: 119214.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119214] [PMID: 32165220]
[19]
Wakaskar RR. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target 2018; 26(4): 311-8.
[http://dx.doi.org/10.1080/1061186X.2017.1367006] [PMID: 28797169]
[20]
Da Silva FLO, Marques MBDF, Kato KC, Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin Drug Discov 2020; 15(7): 853-64.
[http://dx.doi.org/10.1080/17460441.2020.1750591] [PMID: 32290727]
[21]
Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic block copolymers: Their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles. Polymers 2022; 14(21): 4702.
[http://dx.doi.org/10.3390/polym14214702] [PMID: 36365696]
[22]
Langridge TD, Gemeinhart RA. Toward understanding polymer micelle stability: Density ultracentrifugation offers insight into polymer micelle stability in human fluids. J Control Release 2020; 319: 157-67.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.038] [PMID: 31881319]
[23]
Lu Y, Yue Z, Xie J, et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng 2018; 2(5): 318-25.
[http://dx.doi.org/10.1038/s41551-018-0234-x] [PMID: 30936455]
[24]
Gradzielski M. Polyelectrolyte–surfactant complexes as a formulation tool for drug delivery. Langmuir 2022; 38(44): 13330-43.
[http://dx.doi.org/10.1021/acs.langmuir.2c02166] [PMID: 36278880]
[25]
Ghosh S, Ray A, Pramanik N. Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophys Chem 2020; 265: 106429.
[http://dx.doi.org/10.1016/j.bpc.2020.106429] [PMID: 32693319]
[26]
Yadav S, Sharma AK, Kumar P. Nanoscale self-assembly for therapeutic delivery. Front Bioeng Biotechnol 2020; 8: 127.
[http://dx.doi.org/10.3389/fbioe.2020.00127] [PMID: 32158749]
[27]
Han X, Lu Y, Xie J, et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat Nanotechnol 2020; 15(7): 605-14.
[http://dx.doi.org/10.1038/s41565-020-0693-6] [PMID: 32483319]
[28]
Wang Y, Thies-Weesie DME, Bosman EDC, et al. Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. J Control Release 2022; 343: 338-46.
[http://dx.doi.org/10.1016/j.jconrel.2022.01.042] [PMID: 35104571]
[29]
Rasoulianboroujeni M, Repp L, Lee HJ, Kwon GS. Production of paclitaxel-loaded PEG-b-PLA micelles using PEG for drug loading and freeze-drying. J Control Release 2022; 350: 350-9.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.032] [PMID: 35988780]
[30]
Liu Y, Fens MHAM, Capomaccio RB, et al. Correlation between in vitro stability and pharmacokinetics of poly(ε-caprolactone)-based micelles loaded with a photosensitizer. J Control Release 2020; 328: 942-51.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.040] [PMID: 33098910]
[31]
Lu Z, Bu C, Hu W, et al. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci Biotechnol Biochem 2018; 82(2): 238-46.
[http://dx.doi.org/10.1080/09168451.2017.1419852] [PMID: 29327653]
[32]
Garg S, Peeters M, Mahajan RK, Singla P. Loading of hydrophobic drug silymarin in pluronic and reverse pluronic mixed micelles. J Drug Deliv Sci Technol 2022; 75: 103699.
[http://dx.doi.org/10.1016/j.jddst.2022.103699]
[33]
Feng S, Zhang Z, Almotairy A, Repka MA. Development and evaluation of polymeric mixed micelles prepared using Hot-melt extrusion for extended delivery of poorly water-soluble drugs. J Pharm Sci 2023; 112(11): 2869-78.
[http://dx.doi.org/10.1016/j.xphs.2023.06.007] [PMID: 37327994]
[34]
Vasiliu T, Craciun BF, Neamtu A, et al. In silico study of PEI-PEG-squalene-dsDNA polyplex formation: The delicate role of the PEG length in the binding of PEI to DNA. Biomater Sci 2021; 9(19): 6623-40.
[http://dx.doi.org/10.1039/D1BM00973G] [PMID: 34582532]
[35]
Kim YH, Lee K, Li S. Nucleic acids based polyelectrolyte complexes: Their complexation mechanism, morphology, and stability. Chem Mater 2021; 33(20): 7923-43.
[http://dx.doi.org/10.1021/acs.chemmater.1c01832]
[36]
Osada K. Structural polymorphism of single pDNA condensates elicited by cationic block polyelectrolytes. Polymers 2020; 12(7): 1603.
[http://dx.doi.org/10.3390/polym12071603] [PMID: 32707655]
[37]
Eftekhari M, Schwarzenberger K, Javadi A, Eckert K. The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: Electrostatic repulsion or the effect of ionic strength? Phys Chem Chem Phys 2020; 22(4): 2238-48.
[http://dx.doi.org/10.1039/C9CP05475H] [PMID: 31915756]
[38]
Afrouz M, Ahmadi-Nouraldinvand F, Amani A, et al. Preparation and characterization of magnetic PEG-PEI-PLA-PEI-PEG/Fe3O4-PCL/DNA micelles for gene delivery into MCF-7 cells. J Drug Deliv Sci Technol 2023; 79: 104016.
[http://dx.doi.org/10.1016/j.jddst.2022.104016]
[39]
Valente JFA, Pereira P, Sousa A, Queiroz JA, Sousa F. Effect of plasmid DNA size on chitosan or polyethyleneimine polyplexes formulation. Polymers 2021; 13(5): 793.
[http://dx.doi.org/10.3390/polym13050793] [PMID: 33807586]
[40]
Perumal S, Atchudan R, Lee W. A review of polymeric micelles and their applications. Polymers 2022; 14(12): 2510.
[http://dx.doi.org/10.3390/polym14122510] [PMID: 35746086]
[41]
Pham DT, Chokamonsirikun A, Phattaravorakarn V, Tiyaboonchai W. Polymeric micelles for pulmonary drug delivery: A comprehensive review. J Mater Sci 2021; 56(3): 2016-36.
[http://dx.doi.org/10.1007/s10853-020-05361-4]
[42]
Ranger M, Jones MC, Yessine MA, Leroux JC. From well‐defined diblock copolymers prepared by a versatile atom transfer radical polymerization method to supramolecular assemblies. J Polym Sci A Polym Chem 2001; 39(22): 3861-74.
[http://dx.doi.org/10.1002/pola.10029]
[43]
Kumar A, Tiwari S, Singh M, Singh S, Singh M, Kumar A. A comprehensive review on polymeric micelles: A promising drug delivery carrier. J Anal Pharm Res 2021; 10(3): 102-7.
[http://dx.doi.org/10.15406/japlr.2021.10.00372]
[44]
Li X, Cao C, Wei P, et al. Self-assembly of amphiphilic peptides for recognizing high furin-expressing cancer cells. ACS Appl Mater Interfaces 2019; 11(13): 12327-34.
[http://dx.doi.org/10.1021/acsami.9b01281] [PMID: 30864434]
[45]
Selhorst R, Gaitor J, Lee M, et al. Multiblock copolymer anion-exchange membranes derived from vinyl addition polynorbornenes. ACS Appl Energy Mater 2021; 4(9): 10273-9.
[http://dx.doi.org/10.1021/acsaem.1c02094]
[46]
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: Advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15(11): 1085-104.
[http://dx.doi.org/10.1080/17425247.2018.1529756] [PMID: 30259762]
[47]
Guerrero-Hernández L, Meléndez-Ortiz HI, Cortez-Mazatan GY, Vaillant-Sánchez S, Peralta-Rodríguez RD. Gemini and bicephalous surfactants: A review on their synthesis, micelle formation, and uses. Int J Mol Sci 2022; 23(3): 1798.
[http://dx.doi.org/10.3390/ijms23031798] [PMID: 35163721]
[48]
Tsourtou FD, Peroukidis SD, Peristeras LD. The phase behaviour of cetyltrimethylammonium chloride surfactant aqueous solutions at high concentrations: An all-atom molecular dynamics simulation study. Soft Matter 2022; 18(7): 1371-84.
[http://dx.doi.org/10.1039/D1SM01639C] [PMID: 35076047]
[49]
Patel D, Patel D, Ray D, Kuperkar K, Aswal VK, Bahadur P. Single and mixed Pluronics® micelles with solubilized hydrophobic additives: Underscoring the aqueous solution demeanor and micellar transition. J Mol Liq 2021; 343: 117625.
[http://dx.doi.org/10.1016/j.molliq.2021.117625]
[50]
Schäfer K, Kolli HB, Killingmoe Christensen M, et al. Supramolecular packing drives morphological transitions of charged surfactant micelles. Angew Chem Int Ed 2020; 59(42): 18591-8.
[http://dx.doi.org/10.1002/anie.202004522] [PMID: 32543728]
[51]
Rezaeisadat M, Bordbar AK, Omidyan R. Molecular dynamics simulation study of curcumin interaction with nano-micelle of PNIPAAm-b-PEG co-polymer as a smart efficient drug delivery system. J Mol Liq 2021; 332: 115862.
[http://dx.doi.org/10.1016/j.molliq.2021.115862]
[52]
Rafique AS, Khodaparast S, Poulos AS, Sharratt WN, Robles ESJ, Cabral JT. Micellar structure and transformations in sodium alkylbenzenesulfonate (NaLAS) aqueous solutions: Effects of concentration, temperature, and salt. Soft Matter 2020; 16(33): 7835-44.
[http://dx.doi.org/10.1039/D0SM00982B] [PMID: 32756697]
[53]
Krishnan A, Roy S, Menon S. Amphiphilic block copolymers: From synthesis including living polymerization methods to applications in drug delivery. Eur Polym J 2022; 172: 111224.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111224]
[54]
Yu W, Sun Y, Li W, et al. Self-assembly of antimicrobial peptide-based micelles breaks the limitation of Trypsin. ACS Appl Mater Interfaces 2023; 15(1): 494-510.
[http://dx.doi.org/10.1021/acsami.2c17941] [PMID: 36577517]
[55]
Beibei D, Tiantang F, Jiafeng L, et al. PLLA‐grafted gelatin amphiphilic copolymer and its self‐assembled nano carrier for anticancer drug delivery. Macromol Chem Phys 2019; 220(5): 1800528.
[http://dx.doi.org/10.1002/macp.201800528]
[56]
Shekunov B. Theoretical analysis of drug dissolution in micellar media. J Pharm Sci 2017; 106(1): 248-57.
[http://dx.doi.org/10.1016/j.xphs.2016.08.027] [PMID: 28029341]
[57]
Bagheri M, Bresseleers J, Varela-Moreira A, et al. effect of formulation and processing parameters on the size of mPEG-b-p (HPMA-Bz) polymeric micelles. Langmuir 2018; 34(50): 15495-506.
[http://dx.doi.org/10.1021/acs.langmuir.8b03576] [PMID: 30415546]
[58]
Chen S, Guo Y, Liu R, et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids Surf B Biointerfaces 2018; 164: 58-69.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.022] [PMID: 29413621]
[59]
Silva JVC, Jacquette B, Amagliani L, Schmitt C, Nicolai T, Chassenieux C. Heat-induced gelation of micellar casein/plant protein oil-in-water emulsions. Colloids Surf A Physicochem Eng Asp 2019; 569: 85-92.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.065]
[60]
Feng YH, Zhang XP, Li JY, Guo XD. How is a micelle formed from amphiphilic polymers in a dialysis process: Insight from mesoscopic studies. Chem Phys Lett 2020; 754: 137711.
[http://dx.doi.org/10.1016/j.cplett.2020.137711]
[61]
Baldino L, Scognamiglio M, Reverchon E. Supercritical fluid technologies applied to the extraction of compounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: A review. J Supercrit Fluids 2020; 165: 104960.
[http://dx.doi.org/10.1016/j.supflu.2020.104960]
[62]
Gupta A, Costa AP, Xu X, et al. Formulation and characterization of curcumin loaded polymeric micelles produced via continuous processing. Int J Pharm 2020; 583: 119340.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119340] [PMID: 32305363]
[63]
Prhashanna A, Dormidontova EE. Tadpole and mixed linear/tadpole micelles of diblock copolymers: Thermodynamics and chain exchange kinetics. Macromolecules 2017; 50(4): 1740-8.
[http://dx.doi.org/10.1021/acs.macromol.6b02481]
[64]
Khoee S, Rahimi S. Reversible core–shell crosslinked micelles for controlled release of bioactive agents.Nanoarchitectonics in Biomedicine. Amsterdam: Elsevier 2019; pp. 119-67.
[65]
Guerin G, Molev G, Rupar PA, Manners I, Winnik MA. Understanding the dissolution and regrowth of core-crystalline block copolymer micelles: A scaling approach. Macromolecules 2020; 53(22): 10198-211.
[http://dx.doi.org/10.1021/acs.macromol.0c02215]
[66]
Varela-Moreira A, van Leur H, Krijgsman D, et al. Utilizing in vitro drug release assays to predict in vivo drug retention in micelles. Int J Pharm 2022; 618: 121638.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121638] [PMID: 35257802]
[67]
Harris JJ, Pantelopulos GA, Straub JE. Finite-size effects and optimal system sizes in simulations of surfactant micelle self-assembly. J Phys Chem B 2021; 125(19): 5068-77.
[http://dx.doi.org/10.1021/acs.jpcb.1c01186] [PMID: 33961427]
[68]
Turchi M, Karcz AP, Andersson MP. First-principles prediction of critical micellar concentrations for ionic and nonionic surfactants. J Colloid Interface Sci 2022; 606(Pt 1): 618-27.
[http://dx.doi.org/10.1016/j.jcis.2021.08.044] [PMID: 34416454]
[69]
Abooali D, Soleimani R. Structure-based modeling of critical micelle concentration (CMC) of anionic surfactants in brine using intelligent methods. Sci Rep 2023; 13(1): 13361.
[http://dx.doi.org/10.1038/s41598-023-40466-1] [PMID: 37591920]
[70]
Mabrouk MM, Hamed NA, Mansour FR. Physicochemical and electrochemical methods for determination of critical micelle concentrations of surfactants: A comprehensive review. Monatsh Chem 2022; 153(2): 125-38.
[http://dx.doi.org/10.1007/s00706-022-02891-2]
[71]
Topel Ö, Çakır BA, Budama L, Hoda N. Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq 2013; 177: 40-3.
[http://dx.doi.org/10.1016/j.molliq.2012.10.013]
[72]
Chan H, Cherukara M, Loeffler TD, Narayanan B, Sankaranarayanan SK. Machine learning enabled autonomous microstructural characterization in 3D samples. NPJ Computation Mater 2020; 6(1): 1.
[73]
Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci 2020; 280: 102166.
[http://dx.doi.org/10.1016/j.cis.2020.102166] [PMID: 32387755]
[74]
da Silva LCE, Borges AC, de Oliveira MG, de Farias MA. Visualization of supramolecular structure of Pluronic F127 micellar hydrogels using cryo-TEM. MethodsX 2020; 7: 101084.
[http://dx.doi.org/10.1016/j.mex.2020.101084] [PMID: 33102155]
[75]
Kotta S, Aldawsari H, Badr-Eldin S, Nair A, Yt K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics 2022; 14(8): 1636.
[http://dx.doi.org/10.3390/pharmaceutics14081636]
[76]
Guo C, Zhang C, Xia Z, et al. Nano-designed CO donor ameliorates bleomycin-induced pulmonary fibrosis via macrophage manipulation. J Control Release 2022; 341: 566-77.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.047] [PMID: 34864115]
[77]
Khan S, Vahdani Y, Hussain A, et al. Polymeric micelles functionalized with cell penetrating peptides as potential pH-sensitive platforms in drug delivery for cancer therapy: A review. Arab J Chem 2021; 14(8): 103264.
[http://dx.doi.org/10.1016/j.arabjc.2021.103264]
[78]
Chaudhuri A, Ramesh K, Kumar DN, et al. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022; 77: 103886.
[http://dx.doi.org/10.1016/j.jddst.2022.103886]
[79]
Negut I, Bita B. Polymeric micellar systems—A special emphasis on “Smart” drug delivery. Pharmaceutics 2023; 15(3): 976.
[http://dx.doi.org/10.3390/pharmaceutics15030976] [PMID: 36986837]
[80]
Jain A, Bhardwaj K, Bansal M. Polymeric micelles as drug delivery system: Recent advances, approaches, applications and patents. Curr Drug Saf 2024; 19(2): 163-71.
[http://dx.doi.org/10.2174/1574886318666230605120433] [PMID: 37282644]
[81]
Zhang X, Niu J, Zhou Z, et al. Stimuli-responsive polymeric micelles based on cellulose derivative containing imine groups with improved bioavailability and reduced aquatic toxicity of pyraclostrobin. Chem Eng J 2023; 474: 145789.
[http://dx.doi.org/10.1016/j.cej.2023.145789]
[82]
Cuggino JC, Picchio ML, Gugliotta A, et al. Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy. Eur Polym J 2021; 145: 110237.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110237]
[83]
Jin GW, Rejinold NS, Choy JH. Multifunctional polymeric micelles for cancer therapy. Polymers (Basel) 2022; 14(22): 4839.
[http://dx.doi.org/10.3390/polym14224839] [PMID: 36432965]
[84]
Barve A, Jain A, Liu H, Zhao Z, Cheng K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater 2020; 113: 501-11.
[http://dx.doi.org/10.1016/j.actbio.2020.06.019] [PMID: 32562805]
[85]
Joy R, George J, John F. Brief outlook on polymeric nanoparticles, micelles, niosomes, hydrogels and liposomes: Preparative methods and action. ChemistrySelect 2022; 7(6): e202104045.
[http://dx.doi.org/10.1002/slct.202104045]
[86]
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180: 114034.
[http://dx.doi.org/10.1016/j.addr.2021.114034] [PMID: 34736986]
[87]
Aijaz MO, Yang SB, Karim MR, Othman MHD, Alnaser IA. Preparation and characterization of poly(lactic acid)/poly (ethylene glycol)-poly(propyl glycol)-poly(ethylene glycol) blended nanofiber membranes for fog collection. Membranes 2022; 13(1): 32.
[http://dx.doi.org/10.3390/membranes13010032] [PMID: 36676839]
[88]
Guo Y, Gao T, Fang F, et al. A novel polymer micelle as a targeted drug delivery system for 10-hydroxycamptothecin with high drug-loading properties and anti-tumor efficacy. Biophys Chem 2021; 279: 106679.
[http://dx.doi.org/10.1016/j.bpc.2021.106679] [PMID: 34547633]
[89]
Rostamizadeh K, Torchilin VP. Polymeric nanomicelles as versatile tool for multidrug delivery in chemotherapy. Nanopharmaceuticals. Amsterdam: Elsevier 2020; pp. 45-72.
[90]
Rashidzadeh H, Tabatabaei Rezaei SJ, Danafar H, Ramazani A. Multifunctional pH-responsive nanogel for malaria and cancer treatment: Hitting two targets with one arrow. J Drug Deliv Sci Technol 2022; 76: 103740.
[http://dx.doi.org/10.1016/j.jddst.2022.103740]
[91]
Wang X, Zheng Y, Qiu L, et al. Evaluation and antitumor mechanism of functionalized chitosan-based polymeric micelles for oral delivery of paclitaxel. Int J Pharm 2022; 625: 122138.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122138] [PMID: 36029990]
[92]
Banda S. Tumor biology; usefulness of thermosensitive and ph sensitive polymeric nanoparticles for tumor targeting: A review. J Drug Deliv Ther 2022; 12(4): 141-53.
[http://dx.doi.org/10.22270/jddt.v12i4.5420]
[93]
Kazemi-Andalib F, Mohammadikish M, Divsalar A, Sahebi U. Hollow microcapsule with pH-sensitive chitosan/polymer shell for in vitro delivery of curcumin and gemcitabine. Eur Polym J 2022; 162: 110887.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110887]
[94]
Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-sensitive biomaterials for drug delivery. Molecules 2020; 25(23): 5649.
[http://dx.doi.org/10.3390/molecules25235649] [PMID: 33266162]
[95]
Debele TA, Lee KY, Hsu NY, et al. A pH sensitive polymeric micelle for co-delivery of doxorubicin and α-TOS for colon cancer therapy. J Mater Chem B Mater Biol Med 2017; 5(29): 5870-80.
[http://dx.doi.org/10.1039/C7TB01031A] [PMID: 32264220]
[96]
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J 2021; 20: 562-84.
[PMID: 33883983]
[97]
Fernández-García R, Muñoz-García JC, Wallace M, et al. Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: Poly-aggregates, oligomers and monomers. J Control Release 2022; 341: 716-32.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.019] [PMID: 34933052]
[98]
Nimtrakul P, Williams DB, Tiyaboonchai W, Prestidge CA. Copolymeric micelles overcome the oral delivery challenges of amphotericin B. Pharmaceuticals 2020; 13(6): 121.
[http://dx.doi.org/10.3390/ph13060121] [PMID: 32545189]
[99]
Helal HM, Samy WM, Kamoun EA, et al. Potential privilege of maltodextrin-α-tocopherol nano-micelles in seizing tacrolimus renal toxicity, managing rheumatoid arthritis and accelerating bone regeneration. Int J Nanomedicine 2021; 16: 4781-803.
[http://dx.doi.org/10.2147/IJN.S317409] [PMID: 34290503]
[100]
Lanza JS, Pomel S, Loiseau PM, Frézard F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin Drug Deliv 2019; 16(10): 1063-79.
[http://dx.doi.org/10.1080/17425247.2019.1659243] [PMID: 31433678]
[101]
Wang X, Mohammad IS, Fan L, et al. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021; 11(8): 2585-604.
[http://dx.doi.org/10.1016/j.apsb.2021.04.010] [PMID: 34522599]
[102]
Zhang P, Yang X, He Y, et al. Preparation, characterization and toxicity evaluation of amphotericin B loaded MPEG-PCL micelles and its application for buccal tablets. Appl Microbiol Biotechnol 2017; 101(19): 7357-70.
[http://dx.doi.org/10.1007/s00253-017-8463-6] [PMID: 28868587]
[103]
Rodriguez YJ, Quejada LF, Villamil JC, Baena Y, Parra-Giraldo CM, Perez LD. Development of amphotericin B micellar formulations based on copolymers of Poly(ethylene glycol) and Poly(ε-caprolactone) conjugated with retinol. Pharmaceutics 2020; 12(3): 196.
[http://dx.doi.org/10.3390/pharmaceutics12030196] [PMID: 32106492]
[104]
Hu JB, Kang XQ, Liang J, et al. E-selectin-targeted sialic acid-PEG-dexamethasone Micelles for enhanced anti-inflammatory efficacy for acute kidney injury. Theranostics 2017; 7(8): 2204-19.
[http://dx.doi.org/10.7150/thno.19571] [PMID: 28740545]
[105]
Perinelli DR, Cespi M, Lorusso N, Palmieri GF, Bonacucina G, Blasi P. Surfactant self-assembling and critical micelle concentration: One approach fits all? Langmuir 2020; 36(21): 5745-53.
[http://dx.doi.org/10.1021/acs.langmuir.0c00420] [PMID: 32370512]
[106]
Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent advances in nanomicelles delivery systems. Nanomaterials 2020; 11(1): 70.
[http://dx.doi.org/10.3390/nano11010070] [PMID: 33396938]
[107]
Sedaghat Doost A, Devlieghere F, Stevens CV, Claeys M, Van der Meeren P. Self-assembly of Tween 80 micelles as nanocargos for oregano and trans-cinnamaldehyde plant-derived compounds. Food Chem 2020; 327: 126970.
[http://dx.doi.org/10.1016/j.foodchem.2020.126970] [PMID: 32473414]
[108]
Zhang R, Zhang Z, McClements DJ. Nanoemulsions: An emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids Surf B Biointerfaces 2020; 194: 111202.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111202] [PMID: 32585537]
[109]
Wei Y, Xie Y, Cai Z, et al. Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach. J Colloid Interface Sci 2020; 580: 480-92.
[http://dx.doi.org/10.1016/j.jcis.2020.07.048] [PMID: 32711199]
[110]
Bu X, Ji N, Dai L, et al. Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends Food Sci Technol 2021; 114: 386-98.
[http://dx.doi.org/10.1016/j.tifs.2021.06.001]
[111]
Yogaraj V, Gautham G, Akshata C, Manikandan R, Murugan E, Arumugam M. Quaternary ammonium poly (amidoamine) dendrimeric encapsulated nanocurcumin efficiently prevents cataract of rat pups through regulation of pro-inflammatory gene expression. J Drug Deliv Sci Technol 2020; 58: 101785.
[http://dx.doi.org/10.1016/j.jddst.2020.101785]
[112]
Lyu Y, Azevedo HS. Supramolecular hydrogels for protein delivery in tissue engineering. Molecules 2021; 26(4): 873.
[http://dx.doi.org/10.3390/molecules26040873] [PMID: 33562215]
[113]
Sadiq U, Gill H, Chandrapala J. Ultrasound-assisted encapsulation of anthraquinones extracted from aloe-vera plant into casein micelles. Gels 2022; 8: 597.
[http://dx.doi.org/10.3390/gels8090597]
[114]
Gonçalves RFS, Martins JT, Duarte CMM, Vicente AA, Pinheiro AC. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci Technol 2018; 78: 270-91.
[http://dx.doi.org/10.1016/j.tifs.2018.06.011]
[115]
Thotakura N, Parashar P, Raza K. Assessing the pharmacokinetics and toxicology of polymeric micelle conjugated therapeutics. Expert Opin Drug Metab Toxicol 2021; 17(3): 323-32.
[http://dx.doi.org/10.1080/17425255.2021.1862085] [PMID: 33292023]
[116]
Hosseini SM, Mohammadnejad J, Salamat S, Beiram Zadeh Z, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review. Mater Today Chem 2023; 29: 101400.
[http://dx.doi.org/10.1016/j.mtchem.2023.101400]
[117]
Lee J, Choi MK, Song IS. Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting. Pharmaceuticals 2023; 16(6): 802.
[http://dx.doi.org/10.3390/ph16060802] [PMID: 37375753]
[118]
Sharma R, Jain H, Pratibha , Godugu C, Chella N. Formulation and optimization of aceclofenac loaded hyaluronic-oleic acid based micellar gel for the management of osteoarthritis. J Drug Deliv Sci Technol 2023; 84: 104560.
[http://dx.doi.org/10.1016/j.jddst.2023.104560]
[119]
Li J, Wang Q, Xia G, et al. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics 2023; 15(9): 2233.
[http://dx.doi.org/10.3390/pharmaceutics15092233] [PMID: 37765202]
[120]
Almajidi YQ, Kadhim MM, Alsaikhan F, et al. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. Environ Res 2023; 227: 115722.
[http://dx.doi.org/10.1016/j.envres.2023.115722] [PMID: 36948284]
[121]
Zheng W, Zhu T, Tang L, Li Z, Jiang G, Huang X. Inhalable CAR-T cell-derived exosomes as paclitaxel carriers for treating lung cancer. J Transl Med 2023; 21(1): 383.
[http://dx.doi.org/10.1186/s12967-023-04206-3] [PMID: 37308954]
[122]
Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH ‐sensitive polymers: Classification and some fine potential applications. Polym Adv Technol 2021; 32(4): 1455-84.
[http://dx.doi.org/10.1002/pat.5230]
[123]
Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: A review. Sci Technol Adv Mater 2019; 20(1): 324-36.
[http://dx.doi.org/10.1080/14686996.2019.1590126] [PMID: 31068982]
[124]
Ni C, Fang J, Qian H, Xu Q, Shen F. Liposomal doxorubicin-related palmar–plantar erythrodysesthesia (hand–foot syndrome): A case report. J Int Med Res 2020; 48(12): 300060520974854.
[http://dx.doi.org/10.1177/0300060520974854] [PMID: 33356712]
[125]
Jin IS, Jo MJ, Park CW, Chung YB, Kim JS, Shin DH. Physicochemical, pharmacokinetic, and toxicity evaluation of soluplus® polymeric micelles encapsulating fenbendazole. Pharmaceutics 2020; 12(10): 1000.
[http://dx.doi.org/10.3390/pharmaceutics12101000] [PMID: 33096915]
[126]
Zhao B, Wang XQ, Wang XY, et al. Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Part Fibre Toxicol 2013; 10(1): 47.
[http://dx.doi.org/10.1186/1743-8977-10-47] [PMID: 24088372]
[127]
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res 2018; 11(10): 4985-98.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[128]
Zhang L, Tan L, Chen L, et al. A simple method to improve the stability of docetaxel micelles. Sci Rep 2016; 6(1): 36957.
[http://dx.doi.org/10.1038/srep36957] [PMID: 27833135]
[129]
Lin M, Dai Y, Xia F, Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Mater Sci Eng C 2021; 119: 111626.
[http://dx.doi.org/10.1016/j.msec.2020.111626] [PMID: 33321667]
[130]
Tănase MA, Raducan A, Oancea P, et al. Mixed pluronic—Cremophor polymeric micelles as nanocarriers for poorly soluble antibiotics—The influence on the antibacterial activity. Pharmaceutics 2021; 13(4): 435.
[http://dx.doi.org/10.3390/pharmaceutics13040435] [PMID: 33804932]
[131]
Wu H, Ting JM, Tirrell MV. Mechanism of dissociation kinetics in polyelectrolyte complex micelles. Macromolecules 2020; 53(1): 102-11.
[http://dx.doi.org/10.1021/acs.macromol.9b01814]
[132]
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the application of micellar drug delivery systems in cancer nanomedicine. Pharmaceuticals 2023; 16(3): 433.
[http://dx.doi.org/10.3390/ph16030433] [PMID: 36986532]
[133]
Liu T, Zou H, Mu J, et al. PDLLA length on anti-breast cancer efficacy of acid-responsive self-assembling mPEG-PDLLA‒docetaxel conjugates. Chin Chem Lett 2023; 34(9): 108135.
[http://dx.doi.org/10.1016/j.cclet.2023.108135]
[134]
Patha AS, Patil T, Pandey PK, Kuche K, Ghadi R, Jain S. Block copolymer micelles as long-circulating drug vehicles. Smart Polymeric Nano-Constructs in Drug Delivery. Amsterdm: Elsevier 2023; pp. 187-220.
[http://dx.doi.org/10.1016/B978-0-323-91248-8.00008-8]