Current Pharmaceutical Design

Author(s): Adenia Mirela Alves Nunes, José de Oliveira Alves Júnior, Valéria Springer Haydée and João Augusto Oshiro Júnior*

DOI: 10.2174/0113816128291108240613094515

DownloadDownload PDF Flyer Cite As
Intelligent Systems based on Cyclodextrins for the Treatment of Breast Cancer

Page: [2345 - 2363] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The incidence of breast cancer has been increasing over the last four decades, although the mortality rate has decreased. Endocrine therapy and chemotherapy are the most used options for cancer treatment but several obstacles are still attributed to these therapies. Smart materials, such as nanocarriers for targeting, delivery and release of active ingredients, sensitive to intrinsic-stimuli (pH-responsive, redox-responsive, enzyme- responsive, and thermo-responsive) and extrinsic-stimuli (ultrasound-responsive, magnetic-responsive, light-responsive) have been studied as a novel strategy in breast cancer therapy. Cyclodextrins (CDs) are used in the design of these stimuli-responsive drug carrier and delivery systems, either through inclusion complexes with hydrophobic molecules or covalent bonds with large structures to generate new materials. The present work aims to gather and integrate recent data from in vitro and in vivo preclinical studies of CD-based stimuli- responsive systems to contribute to the research in treating breast cancer. All drug carriers showed high in vitro release rates in the presence of a stimulus. The stimuli-responsive nanoplatforms presented biocompatibility and satisfactory results of IC50, inhibition of cell viability and antitumor activity against several breast cancer cell lines. Additionally, these systems led to a significant reduction in drug dosages, which encouraged possible clinical studies for better alternatives to traditional antitumor therapies.

Keywords: Responsive systems, intrinsic stimulus, extrinsic stimulus, nanocarriers, cancer cells, polymeric systems.

[1]
Abuçafy MP, da Silva BL, Oshiro-Junior JA, et al. Advances in the use of MOFs for cancer diagnosis and treatment: An overview. Curr Pharm Des 2020; 26(33): 4174-84.
[http://dx.doi.org/10.2174/1381612826666200406153949] [PMID: 32250216]
[2]
Metawea ORM, Teleb M, Haiba NS, et al. Folic acid-poly(N-isopropylacrylamide-maltodextrin) nanohydrogels as novel thermo-/pH-responsive polymer for resveratrol breast cancer targeted therapy. Eur Polym J 2023; 182: 111721.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111721]
[3]
Costa KMN, de Melo DF, da Silva Soares IL, et al. Immunotherapy for Breast Cancer. Handbook of Cancer and Immunology. 1-30.
[4]
Darvishi N, Rahimi K, Mansouri K, et al. MiR-646 prevents proliferation and progression of human breast cancer cell lines by suppressing HDAC2 expression. Mol Cell Probes 2020; 53: 101649.
[http://dx.doi.org/10.1016/j.mcp.2020.101649] [PMID: 32777446]
[5]
Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. CA Cancer J Clin 2022; 72(6): 524-41.
[http://dx.doi.org/10.3322/caac.21754] [PMID: 36190501]
[6]
Costa KMN, Araújo CBB, Barros ALS, et al. Nanostructured lipid carrier as a strategy for the treatment of breast cancer. Interdisciplinary Cancer Research. Cham: Springer 2022; pp. 1-27.
[http://dx.doi.org/10.1007/16833_2022_13]
[7]
Finlay-Schultz J, Jacobsen BM, Riley D, et al. New generation breast cancer cell lines developed from patient-derived xenografts. Breast Cancer Res 2020; 22(1): 68.
[http://dx.doi.org/10.1186/s13058-020-01300-y] [PMID: 32576280]
[8]
Molani Gol R, Kheirouri S. The effects of quercetin on the apoptosis of human breast cancer cell lines MCF-7 and MDA-MB-231: A systematic review. Nutr Cancer 2022; 74(2): 405-22.
[http://dx.doi.org/10.1080/01635581.2021.1897631] [PMID: 33682528]
[9]
Smolarz B, Nowak AZ, Romanowicz H. Breast cancer-epidemiology, classification, pathogenesis and treatment (review of literature). Cancers 2022; 14(10): 2569.
[http://dx.doi.org/10.3390/cancers14102569] [PMID: 35626173]
[10]
Ashique S, Bhowmick M, Pal R, et al. Multi drug resistance in colorectal cancer approaches to overcome, advancements and future success. Adv Canc Biol Metast 2024; 10: 100114.
[11]
Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233.
[http://dx.doi.org/10.1208/s12249-023-02670-0] [PMID: 37973643]
[12]
Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted drug delivery: Trends and perspectives. Curr Drug Deliv 2021; 18(10): 1435-55.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[13]
Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem Eng J 2022; 433: 134569.
[http://dx.doi.org/10.1016/j.cej.2022.134569]
[14]
Shaik BB, Katari NK, Jonnalagadda SB. Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: A review. Ther Deliv 2023; 14(9): 595-613.
[http://dx.doi.org/10.4155/tde-2023-0041] [PMID: 37877308]
[15]
Oshiro-Júnior JA, Rodero C, Hanck-Silva G, et al. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr Med Chem 2020; 27(15): 2494-513.
[http://dx.doi.org/10.2174/0929867325666181009120610] [PMID: 30306849]
[16]
Zhang YM, Liu YH, Liu Y. Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv Mater 2020; 32(3): 1806158.
[http://dx.doi.org/10.1002/adma.201806158] [PMID: 30773709]
[17]
Costa KM, de Sousa LB, de Melo DF, da Silva Lima DP, de Lima Damasceno BP, Oshiro-Júnior JA. siRNA loaded in drug delivery nanosystems as a strategy for breast cancer treatment. Interdiscip Cancer Res 2022; pp 1-21.
[http://dx.doi.org/10.1007/16833_2022_88]
[18]
Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr Polym 2021; 251: 116871.
[http://dx.doi.org/10.1016/j.carbpol.2020.116871] [PMID: 33142550]
[19]
Wu D, Shi X, Zhao F, et al. An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy. Acta Biomater 2019; 96: 123-36.
[http://dx.doi.org/10.1016/j.actbio.2019.06.033] [PMID: 31247382]
[20]
Wei R, Liu S, Zhang S, Min L, Zhu S. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal Cell Pathol 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/6283796] [PMID: 32377504]
[21]
Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym 2020; 232: 115805.
[http://dx.doi.org/10.1016/j.carbpol.2019.115805] [PMID: 31952603]
[22]
Topuz F, Uyar T. Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond. Carbohydr Polym 2022; 297: 120033.
[http://dx.doi.org/10.1016/j.carbpol.2022.120033] [PMID: 36184144]
[23]
Hao Z, Yi Z, Bowen C, Yaxing L, Sheng Z. Preparing γ-cyclodextrin-immobilized starch and the study of its removal properties to dyestuff from wastewater. Pol J Environ Stud 2019; 28(3): 1701-11.
[http://dx.doi.org/10.15244/pjoes/90028]
[24]
Wankar J, Kotla NG, Gera S, Rasala S, Pandit A, Rochev YA. Recent advances in host-guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv Funct Mater 2020; 30(44): 1909049.
[http://dx.doi.org/10.1002/adfm.201909049]
[25]
Silvestre ALP, Oshiro-Júnior JA, Garcia C, et al. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr Med Chem 2021; 28(2): 401-18.
[http://dx.doi.org/10.2174/1875533XMTAzfNzkzy] [PMID: 31965938]
[26]
Boczar D, Michalska K. Cyclodextrin inclusion complexes with antibiotics and antibacterial agents as drug-delivery systems : A pharmaceutical perspective. Pharmaceutics 2022; 14(7): 1389.
[http://dx.doi.org/10.3390/pharmaceutics14071389] [PMID: 35890285]
[27]
Xu W, Li X, Wang L, et al. Design of cyclodextrin-based functional systems for biomedical applications. Front Chem 2021; 9: 635507.
[http://dx.doi.org/10.3389/fchem.2021.635507] [PMID: 33681149]
[28]
Krabicová I, Appleton SL, Tannous M, et al. History of cyclodextrin nanosponges. Polymers 2020; 12(5): 1122.
[http://dx.doi.org/10.3390/polym12051122] [PMID: 32423091]
[29]
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264: 118042.
[http://dx.doi.org/10.1016/j.carbpol.2021.118042] [PMID: 33910745]
[30]
Qiu J, Kong L, Cao X, et al. Enhanced delivery of therapeutic siRNA into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials 2018; 8(3): 131.
[http://dx.doi.org/10.3390/nano8030131] [PMID: 29495429]
[31]
Liu J, Liang H, Li M, et al. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018; 157: 107-24.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.003] [PMID: 29268142]
[32]
Chen G, Qian Y, Zhang H, et al. Advances in cancer theranostics using organic-inorganic hybrid nanotechnology. Appl Mater Today 2021; 23: 101003.
[http://dx.doi.org/10.1016/j.apmt.2021.101003]
[33]
Mousazadeh H, Bonabi E, Zarghami N. Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy. Carbohydr Polym 2022; 276: 118747.
[http://dx.doi.org/10.1016/j.carbpol.2021.118747] [PMID: 34823779]
[34]
Kasinathan K, Marimuthu K, Murugesan B, et al. Cyclodextrin functionalized multi-layered MoS2 nanosheets and its biocidal activity against pathogenic bacteria and MCF-7 breast cancer cells: Synthesis, characterization and in-vitro biomedical evaluation. J Mol Liq 2021; 323: 114631.
[http://dx.doi.org/10.1016/j.molliq.2020.114631]
[35]
Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 2017; 158: 589-601.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.044] [PMID: 28750341]
[36]
Wu Y, Xu Z, Sun W, et al. Co-responsive smart cyclodextrin-gated mesoporous silica nanoparticles with ligand-receptor engagement for anti-cancer treatment. Mater Sci Eng C 2019; 103: 109831.
[http://dx.doi.org/10.1016/j.msec.2019.109831] [PMID: 31349481]
[37]
Liu J, Luo Z, Zhang J, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials 2016; 83: 51-65.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.008] [PMID: 26773665]
[38]
Malanga M, Seggio M, Kirejev V, et al. A phototherapeutic fluorescent β-cyclodextrin branched polymer delivering nitric oxide. Biomater Sci 2019; 7(6): 2272-6.
[http://dx.doi.org/10.1039/C9BM00395A] [PMID: 31033967]
[39]
Ding H, Tan P, Fu S, et al. Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348: 206-38.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.056] [PMID: 35660634]
[40]
Dan Z, Cao H, He X, et al. A pH-responsive host-guest nanosystem loading succinobucol suppresses lung metastasis of breast cancer. Theranostics 2016; 6(3): 435-45.
[http://dx.doi.org/10.7150/thno.13896] [PMID: 26909117]
[41]
Bhattacharya S, Prajapati BG, Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit Rev Oncol Hematol 2023; 185: 103961.
[http://dx.doi.org/10.1016/j.critrevonc.2023.103961] [PMID: 36921781]
[42]
Rashidzadeh H, Ramazani A, Tabatabaei Rezaei SJ, et al. Targeted co-delivery of methotrexate and chloroquine via a pH/enzyme-responsive biocompatible polymeric nanohydrogel for colorectal cancer treatment. J Biomater Sci Polym Ed 2023; 34(13): 1824-42.
[http://dx.doi.org/10.1080/09205063.2023.2187986] [PMID: 36869798]
[43]
Shen Y, Li M, Liu T, et al. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomed 2019; 14: 4029-44.
[http://dx.doi.org/10.2147/IJN.S201688] [PMID: 31213813]
[44]
Rahmani A, Rahimi F, Iranshahi M, et al. Co-delivery of doxorubicin and conferone by novel pH-responsive β-cyclodextrin grafted micelles triggers apoptosis of metastatic human breast cancer cells. Sci Rep 2021; 11(1): 21425.
[http://dx.doi.org/10.1038/s41598-021-00954-8] [PMID: 34728703]
[45]
Karimi S, Namazi H. Synthesis of folic acid-conjugated glycodendrimer with magnetic β-cyclodextrin core as a pH-responsive system for tumor-targeted co-delivery of doxorubicin and curcumin. Colloids Surf A Physicochem Eng Asp 2021; 627: 127205.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127205]
[46]
Mihanfar A, Targhazeh N, Sadighparvar S, Darband SG, Majidinia M, Yousefi B. Doxorubicin loaded magnetism nanoparticles based on cyclodextrin dendritic-graphene oxide inhibited MCF-7 cell proliferation. Biomol Concepts 2021; 12(1): 8-15.
[http://dx.doi.org/10.1515/bmc-2021-0002] [PMID: 33878249]
[47]
Abed HF, Abuwatfa WH, Husseini GA. Redox-responsive drug delivery systems: A chemical perspective. Nanomaterials 2022; 12(18): 3183.
[http://dx.doi.org/10.3390/nano12183183] [PMID: 36144971]
[48]
Rao NV, Ko H, Lee J, Park JH. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front Bioeng Biotechnol 2018; 6: 110.
[http://dx.doi.org/10.3389/fbioe.2018.00110] [PMID: 30159310]
[49]
Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asi J Pharmac Sci 2020; 15(3): 311-25.
[http://dx.doi.org/10.1016/j.ajps.2019.06.003] [PMID: 32636949]
[50]
Liu J, Chang B, Li Q, et al. Redox-responsive dual drug delivery nanosystem suppresses cancer repopulation by abrogating doxorubicin-promoted cancer stemness, metastasis, and drug resistance. Adv Sci 2019; 6(7): 1801987.
[http://dx.doi.org/10.1002/advs.201801987] [PMID: 31139556]
[51]
Nieto C, Vega MA, Rodríguez V, Pérez-Esteban P, Martín del Valle EM. Biodegradable gellan gum hydrogels loaded with paclitaxel for HER2+ breast cancer local therapy. Carbohydr Polym 2022; 294: 119732.
[http://dx.doi.org/10.1016/j.carbpol.2022.119732] [PMID: 35868800]
[52]
Gallego-Yerga L, de la Torre C, Sansone F, et al. Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles. Carbohydr Polym 2021; 252: 117135.
[http://dx.doi.org/10.1016/j.carbpol.2020.117135] [PMID: 33183594]
[53]
Degirmenci A, Ipek H, Sanyal R, Sanyal A. Cyclodextrin-containing redox-responsive nanogels: Fabrication of a modular targeted drug delivery system. Eur Polym J 2022; 181: 111645.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111645]
[54]
Ehsanimehr S, Moghadam PN, Dehaen W, Shafiei-Irannejad V. Redox and pH-responsive NCC/L-cysteine/CM-β-CD/FA contains disulfide bond-bridged as nanocarriers for biosafety and anti-tumor efficacy system. Stärke 2021; 73(9-10): 2100061.
[http://dx.doi.org/10.1002/star.202100061]
[55]
Mu J, Lin J, Huang P, Chen X. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem Soc Rev 2018; 47(15): 5554-73.
[http://dx.doi.org/10.1039/C7CS00663B] [PMID: 29856446]
[56]
Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J Control Release 2019; 308: 172-89.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.004] [PMID: 31295542]
[57]
Lee J, Oh ET, Yoon H, et al. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale 2017; 9(20): 6901-9.
[http://dx.doi.org/10.1039/C7NR00808B] [PMID: 28503686]
[58]
Namgung R, Mi Lee Y, Kim J, et al. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat Commun 2014; 5(1): 3702.
[http://dx.doi.org/10.1038/ncomms4702] [PMID: 24805848]
[59]
Katz J, Finlay TH, Banerjee S, Levitz M. An estrogen-dependent esterase activity in MCF-7 cells. J Steroid Biochem 1987; 26(6): 687-92.
[http://dx.doi.org/10.1016/0022-4731(87)91040-5] [PMID: 3613568]
[60]
Wang Z, Yang C, Zhang H, et al. In situ transformable supramolecular nanomedicine targeted activating hippo pathway for triple-negative breast cancer growth and metastasis inhibition. ACS Nano 2022; 16(9): 14644-57.
[http://dx.doi.org/10.1021/acsnano.2c05263] [PMID: 36048539]
[61]
Pramod PS, Shah R, Jayakannan M. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells. Nanoscale 2015; 7(15): 6636-52.
[http://dx.doi.org/10.1039/C5NR00799B] [PMID: 25797322]
[62]
Roozbehi S, Dadashzadeh S, Sajedi RH. An enzyme-mediated controlled release system for curcumin based on cyclodextrin/cyclodextrin degrading enzyme. Enzyme Microb Technol 2021; 144: 109727.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109727] [PMID: 33541570]
[63]
Nasrollahi S, Golalizadeh L, Sajedi RH, Taghdir M, Asghari SM, Rassa M. Substrate preference of a Geobacillus maltogenic amylase: A kinetic and thermodynamic analysis. Int J Biol Macromol 2013; 60: 1-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.063] [PMID: 23639697]
[64]
Yallapu MM, Jaggi M, Chauhan SC. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces 2010; 79(1): 113-25.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.039] [PMID: 20456930]
[65]
Gourevich D, Dogadkin O, Volovick A, et al. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. J Control Release 2013; 170(3): 316-24.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.038] [PMID: 23770006]
[66]
Ghamkhari A, Abbasi F, Abbasi E, Ghorbani M. A novel thermo-responsive system based on β-cyclodextrin-nanocomposite for improving the docetaxel activity. Int J Polym Mater 2021; 70(12): 830-40.
[http://dx.doi.org/10.1080/00914037.2020.1765357]
[67]
Kushwaha SKS, Rai AK, Singh S. Formulation of thermosensitive hydrogel containing cyclodextrin for controlled drug delivery of camptothecin. Trop J Pharm Res 2014; 13(7): 1007.
[http://dx.doi.org/10.4314/tjpr.v13i7.1]
[68]
Khan S, Minhas MU, Ahmad M, Sohail M. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic® 127 as controlled delivery depot of curcumin. Development, characterization and in vitro evaluation. J Biomater Sci Polym Ed 2018; 29(1): 1-34.
[http://dx.doi.org/10.1080/09205063.2017.1396707] [PMID: 29059021]
[69]
Adeli F, Abbasi F, Babazadeh M, Davaran S. Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery. J Nanobiotechnology 2022; 20(1): 91.
[http://dx.doi.org/10.1186/s12951-022-01290-3] [PMID: 35193612]
[70]
Awad NS, Paul V, AlSawaftah NM, et al. Ultrasound-responsive nanocarriers in cancer treatment: A review. ACS Pharmacol Transl Sci 2021; 4(2): 589-612.
[http://dx.doi.org/10.1021/acsptsci.0c00212] [PMID: 33860189]
[71]
Ayana G, Ryu J, Choe S. Ultrasound-responsive nanocarriers for breast cancer chemotherapy. Micromachines 2022; 13(9): 1508.
[http://dx.doi.org/10.3390/mi13091508] [PMID: 36144131]
[72]
Shi J, Chen Z, Wang B, Wang L, Lu T, Zhang Z. Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy. ACS Appl Mater Interfaces 2015; 7(51): 28554-65.
[http://dx.doi.org/10.1021/acsami.5b09937] [PMID: 26587885]
[73]
Zhao Y, Zhu Y, Fu J, Wang L. Effective cancer cell killing by hydrophobic nanovoid-enhanced cavitation under safe low-energy ultrasound. Chem Asian J 2014; 9(3): 790-6.
[http://dx.doi.org/10.1002/asia.201301333] [PMID: 24339016]
[74]
Wang J, Jiao Y, Shao Y. Mesoporous silica nanoparticles for dual-mode chemo-sonodynamic therapy by low-energy ultrasound. Materials 2018; 11(10): 2041.
[http://dx.doi.org/10.3390/ma11102041] [PMID: 30347751]
[75]
Nikolova MP, Kumar EM, Chavali MS. Updates on responsive drug delivery based on liposome vehicles for cancer treatment. Pharmaceutics 2022; 14(10): 2195.
[http://dx.doi.org/10.3390/pharmaceutics14102195] [PMID: 36297630]
[76]
Yao X, Mu J, Zeng L, et al. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater Horiz 2019; 6(5): 846-70.
[http://dx.doi.org/10.1039/C9MH00166B]
[77]
Wu H, Song L, Chen L, et al. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model. Acta Biomater 2018; 74: 302-11.
[http://dx.doi.org/10.1016/j.actbio.2018.04.052] [PMID: 29729897]
[78]
Solanki A, Sanghvi S, Devkar R, Thakore S. β-Cyclodextrin based magnetic nanoconjugates for targeted drug delivery in cancer therapy. RSC Adv 2016; 6(101): 98693-707.
[http://dx.doi.org/10.1039/C6RA18030B]
[79]
Jeon H, Kim J, Lee YM, et al. Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system. J Control Release 2016; 231: 68-76.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.006] [PMID: 26780174]
[80]
Saneja A, Kumar R, Arora D, Kumar S, Panda AK, Jaglan S. Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov Today 2018; 23(5): 1115-25.
[http://dx.doi.org/10.1016/j.drudis.2018.02.005] [PMID: 29481876]
[81]
Zhao W, Zhao Y, Wang Q, Liu T, Sun J, Zhang R. Remote light-responsive nanocarriers for controlled drug delivery: Advances and perspectives. Small 2019; 15(45): 1903060.
[http://dx.doi.org/10.1002/smll.201903060] [PMID: 31599125]
[82]
Silva JM, Silva E, Reis RL. Light-triggered release of photocaged therapeutics: Where are we now? J Control Release 2019; 298: 154-76.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.006] [PMID: 30742854]
[83]
Corma A, Botella P, Rivero-Buceta E. Silica-based stimuli-responsive systems for antitumor drug delivery and controlled release. Pharmaceutics 2022; 14(1): 110.
[http://dx.doi.org/10.3390/pharmaceutics14010110] [PMID: 35057006]
[84]
Ha W, Zhao XB, Jiang K, et al. A three-dimensional graphene oxide supramolecular hydrogel for infrared light-responsive cascade release of two anticancer drugs. Chem Commun 2016; 52(100): 14384-7.
[http://dx.doi.org/10.1039/C6CC08123A] [PMID: 27886300]
[85]
Liu C, Guo X, Ruan C, et al. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomater 2019; 96: 281-94.
[http://dx.doi.org/10.1016/j.actbio.2019.07.024] [PMID: 31319202]
[86]
Ruan C, Liu C, Hu H, et al. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci 2019; 10(17): 4699-706.
[http://dx.doi.org/10.1039/C9SC00375D] [PMID: 31123581]
[87]
Wang M, Wang T, Wang D, Jiang W, Fu J. Acid and light stimuli-responsive mesoporous silica nanoparticles for controlled release. J Mater Sci 2019; 54(8): 6199-211.
[http://dx.doi.org/10.1007/s10853-019-03325-x]
[88]
Chen M, Pérez RL, Du P, et al. Tumor-targeting NIRF NanoGUMBOS with cyclodextrin-enhanced chemo/photothermal antitumor activities. ACS Appl Mater Interfaces 2019; 11(31): 27548-57.
[http://dx.doi.org/10.1021/acsami.9b08047] [PMID: 31310100]
[89]
Fang Z, Shen Y, Gao D. Stimulus-responsive nanocarriers for targeted drug delivery. New J Chem 2021; 45(10): 4534-44.
[http://dx.doi.org/10.1039/D0NJ05169A]
[90]
Ahmadi S, Rabiee N, Bagherzadeh M, et al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 2020; 34: 100914.
[http://dx.doi.org/10.1016/j.nantod.2020.100914] [PMID: 32788923]
[91]
Li L, Lei D, Zhang J, et al. Dual-responsive alginate hydrogel constructed by sulfhdryl dendrimer as an intelligent system for drug delivery. Molecules 2022; 27(1): 281.
[http://dx.doi.org/10.3390/molecules27010281] [PMID: 35011513]
[92]
Aldrich S. Sigma Aldrich. γ-Ciclodextrina. Merck. 2021. Available from: https://www.sigmaaldrich.com/BR/pt/product/sigma/c4892
[93]
Aldrich S. α-Cyclodextrin. 2021. Available from: https://www.sigmaaldrich.com/BR/pt/substance/acyclodextrin9728410016203
[94]
Aldrich S. Caraway, Cycloheptaamylose, Cyclomaltoheptaose, Schardinger β-Dextrin, β-Cyclodextrin. 2021. Available from: https://www.sigmaaldrich.com/US/en/substance/bcyclodextrin1134987585399
[95]
Kiss E, Szabó VA, Horváth P. Simple circular dichroism method for selection of the optimal cyclodextrin for drug complexation. J Incl Phenom Macrocycl Chem 2019; 95(3-4): 223-33.
[http://dx.doi.org/10.1007/s10847-019-00938-2]
[96]
Crini G. Review: A history of cyclodextrins. Chem Rev 2014; 114(21): 10940-75.
[http://dx.doi.org/10.1021/cr500081p] [PMID: 25247843]
[97]
Ahmadi A, Ayoubi-Chianeh M, Kassaee MZ, Bayat F. Inclusion complexes of atorvastatin calcium (ATV-Ca) and rosuvastatin calcium (ROV-Ca) drugs with α-CD, β -CD, γ-CD, HP-β-CD, M-β-CD, and maltodextrin along with their characterizations through experimental and computational methods. Can J Chem Eng 2023; 101(7): 4200-16.
[http://dx.doi.org/10.1002/cjce.24769]
[98]
Arti S, Kaur K, Kaur J, Ghosh TK, Banipal TS, Banipal PK. Host-guest interaction of trimethoprim drug with cyclodextrins in aqueous solutions: Calorimetric, spectroscopic, volumetric and theoretical approach. J Mol Liq 2021; 329: 115431.
[http://dx.doi.org/10.1016/j.molliq.2021.115431]
[99]
Deng J, Chen QJ, Li W, et al. Toward improvements for carrying capacity of the cyclodextrin-based nanosponges: Recent progress from a material and drug delivery. J Mater Sci 2021; 56(10): 5995-6015.
[http://dx.doi.org/10.1007/s10853-020-05646-8]
[100]
Cal K, Centkowska K. Use of cyclodextrins in topical formulations: Practical aspects. Eur J Pharm Biopharm 2008; 68(3): 467-78.
[http://dx.doi.org/10.1016/j.ejpb.2007.08.002] [PMID: 17826046]
[101]
Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragrance J 2010; 25(5): 313-26.
[http://dx.doi.org/10.1002/ffj.2019]
[102]
Wang X, Qiu Y, Wang M, et al. Endocytosis and organelle targeting of nanomedicines in cancer therapy. Int J Nanomedicine 2020; 15: 9447-67.
[http://dx.doi.org/10.2147/IJN.S274289] [PMID: 33268987]
[103]
Wang R, Wang X, Jia X, Wang H, Li W, Li J. Impacts of particle size on the cytotoxicity, cellular internalization, pharmacokinetics and biodistribution of betulinic acid nanosuspensions in combined chemotherapy. Int J Pharm 2020; 588: 119799.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119799] [PMID: 32828973]
[104]
Cavalcanti IDL, Soares JCS, Medeiros SMFRS, Cavalcanti IMF, Lira Nogueira MCB. Can antioxidant vitamins avoid the cardiotoxicity of doxorubicin in treating breast cancer? PharmaNutrition 2021; 16: 100259.
[http://dx.doi.org/10.1016/j.phanu.2021.100259]
[105]
Costa KMN, Barros RM, Jorge EO, et al. Doxorubicin-loaded nanostructured lipid carriers functionalized with folic acid against MCF-7 breast cancer cell line. J Nanopart Res 2023; 25(4): 56.
[http://dx.doi.org/10.1007/s11051-023-05704-7]
[106]
Hernandes EP, Lazarin-Bidóia D, Bini RD, Nakamura CV, Cótica LF, de Oliveira Silva Lautenschlager S. Doxorubicin-loaded iron oxide nanoparticles induce oxidative stress and cell cycle arrest in breast cancer cells. Antioxidants 2023; 12(2): 237.
[http://dx.doi.org/10.3390/antiox12020237] [PMID: 36829796]
[107]
Unger JM, Vaidya R, Hershman DL, Minasian LM, Fleury ME. Systematic review and meta-analysis of the magnitude of structural, clinical, and physician and patient barriers to cancer clinical trial participation 2019; 111: 245-55.