A Quest for Potential Role of Vitamin D in Type II Diabetes Mellitus Induced Diabetic Kidney Disease
  • * (Excluding Mailing and Handling)

Abstract

Diabetes mellitus is a metabolic disorder characterized by high blood sugar levels. In recent years, T2DM has become a worldwide health issue due to an increase in incidence and prevalence. Diabetic kidney disease (DKD) is one of the devastating consequences of diabetes, especially owing to T2DM and the key clinical manifestation of DKD is weakened renal function and progressive proteinuria. DKD affects approximately 1/3rd of patients with diabetes mellitus, and T2DM is the predominant cause of end-stage kidney disease (ESKD). Several lines of studies have observed the association between vitamin D deficiency and the progression and etiology of type II diabetes mellitus. Emerging experimental evidence has shown that T2DM is associated with various kinds of kidney diseases. Recent evidence has also shown that an alteration in VDR (vitamin D receptor) signaling in podocytes leads to DKD. The present review aims to examine vitamin D metabolism and its correlation with T2DM. Furthermore, we discuss the potential role of vitamin D and VDR in diabetic kidney disease.

[1]
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes-global burden of disease and forecasted trends. J Epidemiol Glob Health 2019; 10(1): 107-11.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[2]
Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci 2017; 11(2): 65-71.
[PMID: 28539866]
[3]
Holman N, Young B, Gadsby R. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet Med 2015; 32(9): 1119-20.
[http://dx.doi.org/10.1111/dme.12791] [PMID: 25962518]
[4]
Bruno G, Runzo C, Cavallo-Perin P, et al. Incidence of type 1 and type 2 diabetes in adults aged 30-49 years: The population-based registry in the province of Turin, Italy. Diabetes Care 2005; 28(11): 2613-9.
[http://dx.doi.org/10.2337/diacare.28.11.2613] [PMID: 16249528]
[5]
Gheith O, Farouk N, Nampoory N, Halim MA, Al-Otaibi T. Diabetic kidney disease: World wide difference of prevalence and risk factors. J Nephropharmacol 2015; 5(1): 49-56.
[PMID: 28197499]
[6]
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017; 12(12): 2032-45.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[7]
Zhang XX, Kong J, Yun K. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: A meta-analysis of observational studies. J Diabetes Res 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/2315607] [PMID: 32090116]
[8]
Szymczak-Pajor I, Śliwińska A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients 2019; 11(4): 794.
[http://dx.doi.org/10.3390/nu11040794] [PMID: 30959886]
[9]
Bikle D. Vitamin D: Production, metabolism, and mechanisms of action. South Dartmouth (MA): MDText.com, Inc. 2000.
[10]
Jean G, Souberbielle J, Chazot C. Vitamin D in chronic kidney disease and dialysis patients. Nutrients 2017; 9(4): 328.
[http://dx.doi.org/10.3390/nu9040328] [PMID: 28346348]
[11]
Patel TV, Singh AK. Role of vitamin D in chronic kidney disease. Semin Nephrol 2009; 29(2): 113-21.
[http://dx.doi.org/10.1016/j.semnephrol.2009.01.004]
[12]
Kim CS, Kim SW. Vitamin D and chronic kidney disease. Korean J Intern Med 2014; 29(4): 416-27.
[http://dx.doi.org/10.3904/kjim.2014.29.4.416] [PMID: 25045287]
[13]
Wang Y, Deb DK, Zhang Z, et al. Vitamin D receptor signaling in podocytes protects against diabetic nephropathy. J Am Soc Nephrol 2012; 23(12): 1977-86.
[http://dx.doi.org/10.1681/ASN.2012040383] [PMID: 23123403]
[14]
Zhang Z, Sun L, Wang Y, et al. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int 2008; 73(2): 163-71.
[http://dx.doi.org/10.1038/sj.ki.5002572] [PMID: 17928826]
[15]
Song Z, Xiao C, Jia X, et al. Vitamin D/VDR protects against diabetic kidney disease by restoring podocytes autophagy. Diabetes Metab Syndr Obes 2021; 14: 1681-93.
[http://dx.doi.org/10.2147/DMSO.S303018] [PMID: 33889003]
[16]
Kadowaki S, Norman AW. Pancreatic vitamin D-dependent calcium binding protein: Biochemical properties and response to vitamin D. Arch Biochem Biophys 1984; 233(1): 228-36.
[http://dx.doi.org/10.1016/0003-9861(84)90621-0] [PMID: 6087742]
[17]
Nakashima A, Yokoyama K, Yokoo T, Urashima M. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes 2016; 7(5): 89-100.
[http://dx.doi.org/10.4239/wjd.v7.i5.89] [PMID: 26981182]
[18]
Xu F, Lu H, Lai T, Lin L, Chen Y. Association between vitamin D status and mortality among adults with diabetic kidney disease. J Diabetes Res 2022; 2022: 1-7.
[http://dx.doi.org/10.1155/2022/9632355] [PMID: 35586117]
[19]
Fernández-Juárez G, Luño J, Barrio V, et al. 25 (OH) vitamin D levels and renal disease progression in patients with type 2 diabetic nephropathy and blockade of the renin-angiotensin system. Clin J Am Soc Nephrol 2013; 8(11): 1870-6.
[http://dx.doi.org/10.2215/CJN.00910113] [PMID: 24135218]
[20]
LaClair RE, Hellman RN, Karp SL, et al. Prevalence of calcidiol deficiency in CKD: A cross-sectional study across latitudes in the United States. Am J Kidney Dis 2005; 45(6): 1026-33.
[http://dx.doi.org/10.1053/j.ajkd.2005.02.029] [PMID: 15957131]
[21]
González EA, Sachdeva A, Oliver DA, Martin KJ. Vitamin D insufficiency and deficiency in chronic kidney disease. A single center observational study. Am J Nephrol 2004; 24(5): 503-10.
[http://dx.doi.org/10.1159/000081023] [PMID: 15452403]
[22]
Li YC. Vitamin D receptor signaling in renal and cardiovascular protection. Semin Nephrol 2013; 33(5): 433-47.
[23]
Zhang X, Song Z, Guo Y, Zhou M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol Cell Biochem 2015; 399(1-2): 155-65.
[http://dx.doi.org/10.1007/s11010-014-2242-9] [PMID: 25292315]
[24]
Wan J, Li P, Liu DW, et al. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes. Mol Med Rep 2016; 14(2): 1771-84.
[http://dx.doi.org/10.3892/mmr.2016.5441] [PMID: 27357417]
[25]
Sanchez-Niño MD, Bozic M, Córdoba-Lanús E, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Renal Physiol 2012; 302(6): F647-57.
[http://dx.doi.org/10.1152/ajprenal.00090.2011] [PMID: 22169009]
[26]
Manucha W, Juncos LI. The protective role of vitamin D on the heart and the kidney. Ther Adv Cardiovasc Dis 2017; 11(1): 12-9.
[http://dx.doi.org/10.1177/1753944716675820] [PMID: 27784812]
[27]
Zhang Y, Kong J, Deb DK, Chang A, Li YC. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J Am Soc Nephrol 2010; 21(6): 966-73.
[http://dx.doi.org/10.1681/ASN.2009080872] [PMID: 20378820]
[28]
Makin HL, Jones G, Kaufmann M, Calverley MJ. Analysis of vitamins D, their metabolites and analogues InSteroid analysis. Dordrecht: Springer 2010; pp. 967-1096.
[29]
Guo J, Lu C, Zhang F, et al. VDR activation reduces proteinuria and high-glucose-induced injury of kidneys and podocytes by regulating Wnt signaling pathway. Cell Physiol Biochem 2017; 43(1): 39-51.
[http://dx.doi.org/10.1159/000480315] [PMID: 28848172]
[30]
Lee SM, Meyer MB, Benkusky NA, O’Brien CA, Pike JW. The impact of VDR expression and regulation in vivo. J Steroid Biochem Mol Biol 2018; 177: 36-45.
[http://dx.doi.org/10.1016/j.jsbmb.2017.06.002] [PMID: 28602960]
[31]
Irani M, Merhi Z. Role of vitamin D in ovarian physiology and its implication in reproduction: A systematic review. Fertil Steril 2014; 102(2): 460-468.e3.
[http://dx.doi.org/10.1016/j.fertnstert.2014.04.046] [PMID: 24933120]
[32]
Adams JS, Hewison M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys 2012; 523(1): 95-102.
[http://dx.doi.org/10.1016/j.abb.2012.02.016] [PMID: 22446158]
[33]
Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De-orphanization of cytochrome P450 2R1. J Biol Chem 2003; 278(39): 38084-93.
[http://dx.doi.org/10.1074/jbc.M307028200] [PMID: 12867411]
[34]
Galuška D, Pácal L, Kaňková K. Pathophysiological implication of vitamin D in diabetic kidney disease. Kidney Blood Press Res 2021; 46(2): 152-61.
[http://dx.doi.org/10.1159/000514286] [PMID: 33756482]
[35]
Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci 2004; 101(20): 7711-5.
[http://dx.doi.org/10.1073/pnas.0402490101] [PMID: 15128933]
[36]
Smith JE, Goodman DS. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest 1971; 50(10): 2159-67.
[http://dx.doi.org/10.1172/JCI106710] [PMID: 4330006]
[37]
Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D3 1α-hydroxylase and vitamin D synthesis. Science 1997; 277(5333): 1827-30.
[http://dx.doi.org/10.1126/science.277.5333.1827] [PMID: 9295274]
[38]
Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its important role in the degradation of vitamin D. Arch Biochem Biophys 2012; 523(1): 9-18.
[http://dx.doi.org/10.1016/j.abb.2011.11.003] [PMID: 22100522]
[39]
Ross AC, Taylor CL, Yaktine AL, Del Valle HB. Committee to review dietary reference intakes for vitamin D and calcium. Food Nutr Board 2011; 22: 35-111.
[40]
Ferrari D, Lombardi G, Banfi G. Concerning the vitamin D reference range: Pre-analytical and analytical variability of vitamin D measurement. Biochem Med 2017; 27(3): 030501.
[http://dx.doi.org/10.11613/BM.2017.030501] [PMID: 28900363]
[41]
Zittermann A. Vitamin D in preventive medicine: Are we ignoring the evidence? Br J Nutr 2003; 89(5): 552-72.
[http://dx.doi.org/10.1079/BJN2003837] [PMID: 12720576]
[42]
Boucher BJ. Inadequate vitamin D status: Does it contribute to the disorders comprising syndrome ‘X’? Br J Nutr 1998; 79(4): 315-27.
[http://dx.doi.org/10.1079/BJN19980055] [PMID: 9624222]
[43]
Chiu KC, Chu A, Go VLW, Saad MF. Hypovitaminosis D is associated with insulin resistance and β cell dysfunction. Am J Clin Nutr 2004; 79(5): 820-5.
[http://dx.doi.org/10.1093/ajcn/79.5.820] [PMID: 15113720]
[44]
Grammatiki M, Karras S, Kotsa K. The role of vitamin D in the pathogenesis and treatment of diabetes mellitus: A narrative review. Hormones 2019; 18(1): 37-48.
[http://dx.doi.org/10.1007/s42000-018-0063-z] [PMID: 30255482]
[45]
Boucher BJ, Mannan N, Noonan K, Hales CN, Evans SJW. Glucose intolerance and impairment of insulin secretion in relation to vitamin D deficiency in East London Asians. Diabetologia 1995; 38(10): 1239-45.
[http://dx.doi.org/10.1007/BF00422375] [PMID: 8690178]
[46]
Ogunkolade BW, Boucher BJ, Prahl JM, et al. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes 2002; 51(7): 2294-300.
[http://dx.doi.org/10.2337/diabetes.51.7.2294] [PMID: 12086963]
[47]
Scragg R, Holdaway I, Singh V, Metcalf P, Baker J, Dryson E. Serum 25-hydroxyvitamin D3 levels decreased in impaired glucose tolerance and diabetes mellitus. Diabetes Res Clin Pract 1995; 27(3): 181-8.
[http://dx.doi.org/10.1016/0168-8227(95)01040-K] [PMID: 7555599]
[48]
Al-Timimi DJ, Ali AF. Serum 25 (OH) D in diabetes mellitus type 2: Relation to glycaemic control. J Clin Diagn Res 2013; 7(12): 2686-8.
[http://dx.doi.org/10.7860/JCDR/2013/6712.3733] [PMID: 24551612]
[49]
Maestro B, Molero S, Bajo S, Davila N, Calle C. Transcriptional activation of the Human insulin receptor gene by 1,25-dihydroxy vitamin D3. Cell Biochem Funct: Cell Biochem Modul Active Agents Dis 2002; 20(3): 227-32.
[50]
Maestro B, Dávila N, Carranza MC, Calle C. Identification of a vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 2003; 84(2-3): 223-30.
[http://dx.doi.org/10.1016/S0960-0760(03)00032-3] [PMID: 12711007]
[51]
Dunlop TW, Väisänen S, Frank C, Molnár F, Sinkkonen L, Carlberg C. The human peroxisome proliferator-activated receptor δ gene is a primary target of 1α,25-dihydroxy vitamin D3 and its nuclear receptor. J Mol Biol 2005; 349(2): 248-60.
[http://dx.doi.org/10.1016/j.jmb.2005.03.060] [PMID: 15890193]
[52]
Li X, Liu Y, Zheng Y, Wang P, Zhang Y. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Nutrients 2018; 10(3): 375.
[http://dx.doi.org/10.3390/nu10030375] [PMID: 29562681]
[53]
Wolden-Kirk H, Overbergh L, Christesen HT, Brusgaard K, Mathieu C. Vitamin D and diabetes: Its importance for beta cell and immune function. Mol Cell Endocrinol 2011; 347(1-2): 106-20.
[http://dx.doi.org/10.1016/j.mce.2011.08.016] [PMID: 21889571]
[54]
Fadda GZ, Akmal M, Lipson LG, Massry SG. Direct effect of parathyroid hormone on insulin secretion from pancreatic islets. Am J Physiol 1990; 258(6 Pt 1): E975-84.
[PMID: 2193536]
[55]
Kramer CK, Swaminathan B, Hanley AJ, et al. Prospective associations of vitamin D status with β-cell function, insulin sensitivity, and glycemia: The impact of parathyroid hormone status. Diabetes 2014; 63(11): 3868-79.
[http://dx.doi.org/10.2337/db14-0489] [PMID: 24875346]
[56]
Kong J, Qiao G, Zhang Z, Liu SQ, Li YC. Targeted vitamin D receptor expression in juxtaglomerular cells suppresses renin expression independent of parathyroid hormone and calcium. Kidney Int 2008; 74(12): 1577-81.
[http://dx.doi.org/10.1038/ki.2008.452] [PMID: 19034301]
[57]
de Borst MH, Hajhosseiny R, Tamez H, Wenger J, Thadhani R, Goldsmith DJA. Active vitamin D treatment for reduction of residual proteinuria: A systematic review. J Am Soc Nephrol 2013; 24(11): 1863-71.
[http://dx.doi.org/10.1681/ASN.2013030203] [PMID: 23929770]
[58]
Pradhan A. Obesity, metabolic syndrome, and type 2 diabetes: Inflammatory basis of glucose metabolic disorders. Nutr Rev 2007; 65(12) (Suppl. 3): 152-6.
[http://dx.doi.org/10.1301/nr.2007.dec.S152-S156] [PMID: 18240540]
[59]
Gysemans CA, Cardozo AK, Callewaert H, et al. 1,25-Dihydroxy vitamin D3 modulates expression of chemokines and cytokines in pancreatic islets: Implications for prevention of diabetes in nonobese diabetic mice. Endocrinology 2005; 146(4): 1956-64.
[http://dx.doi.org/10.1210/en.2004-1322] [PMID: 15637289]
[60]
Riachy R, Vandewalle B, Kerr Conte J, et al. 1,25-dihydroxy vitamin D3 protects RINm5F and human islet cells against cytokine-induced apoptosis: Implication of the antiapoptotic protein A20. Endocrinology 2002; 143(12): 4809-19.
[http://dx.doi.org/10.1210/en.2002-220449] [PMID: 12446608]
[61]
Giulietti A, van Etten E, Overbergh L, Stoffels K, Bouillon R, Mathieu C. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. Diabetes Res Clin Pract 2007; 77(1): 47-57.
[http://dx.doi.org/10.1016/j.diabres.2006.10.007] [PMID: 17112620]
[62]
Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR. Risk factors for renal dysfunction in type 2 diabetes: UK Prospective Diabetes Study 74. Diabetes 2006; 55(6): 1832-9.
[63]
Pavkov ME, Knowler WC, Bennett PH, Looker HC, Krakoff J, Nelson RG. Increasing incidence of proteinuria and declining incidence of end-stage renal disease in diabetic Pima Indians. Kidney Int 2006; 70(10): 1840-6.
[http://dx.doi.org/10.1038/sj.ki.5001882] [PMID: 17003816]
[64]
Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol 2006; 17(11): 2974-84.
[http://dx.doi.org/10.1681/ASN.2006040377] [PMID: 17035611]
[65]
Sulaiman MK. Diabetic nephropathy: Recent advances in pathophysiology and challenges in dietary management. Diabetol Metab Syndr 2019; 11(1): 7.
[http://dx.doi.org/10.1186/s13098-019-0403-4] [PMID: 30679960]
[66]
Moore DD, Kato S, Xie W, et al. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: Constitutive androstane receptor, pregnene X receptor, farnesoid X receptor α, farnesoid X receptor β, liver X receptor α, liver X receptor β, and vitamin D receptor. Pharmacol Rev 2006; 58(4): 742-59.
[http://dx.doi.org/10.1124/pr.58.4.6] [PMID: 17132852]
[67]
Gembillo G, Cernaro V, Salvo A, et al. Role of vitamin D status in diabetic patients with renal disease. Medicina 2019; 55(6): 273.
[http://dx.doi.org/10.3390/medicina55060273] [PMID: 31200589]
[68]
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. The role of vitamin D in diabetic nephropathy: A translational approach. Int J Mol Sci 2022; 23(2): 807.
[http://dx.doi.org/10.3390/ijms23020807] [PMID: 35054991]
[69]
Shang M, Sun J. Vitamin D/VDR, probiotics, and gastrointestinal diseases. Curr Med Chem 2017; 24(9): 876-87.
[http://dx.doi.org/10.2174/0929867323666161202150008] [PMID: 27915988]
[70]
Wang Y, Borchert ML, DeLuca HF. Identification of the vitamin D receptor in various cells of the mouse kidney. Kidney Int 2012; 81(10): 993-1001.
[http://dx.doi.org/10.1038/ki.2011.463] [PMID: 22278022]
[71]
Lei M, Liu Z, Guo J. The emerging role of vitamin D and vitamin D receptor in diabetic nephropathy. BioMed Res Int 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/4137268] [PMID: 32766307]
[72]
Yang S, Li A, Wang J, et al. Vitamin D receptor: A novel therapeutic target for kidney diseases. Curr Med Chem 2018; 25(27): 3256-71.
[http://dx.doi.org/10.2174/0929867325666180214122352] [PMID: 29446731]
[73]
Deb DK, Wang Y, Zhang Z, et al. Molecular mechanism underlying 1,25-dihydroxy vitamin D regulation of nephrin gene expression. J Biol Chem 2011; 286(37): 32011-7.
[http://dx.doi.org/10.1074/jbc.M111.269118] [PMID: 21803771]
[74]
Okamura M, Takano Y, Saito Y, Yao J, Kitamura M. Induction of nephrin gene expression by selective cooperation of the retinoic acid receptor and the vitamin D receptor. Nephrol Dial Transplant 2009; 24(10): 3006-12.
[http://dx.doi.org/10.1093/ndt/gfp243] [PMID: 19474283]
[75]
Nowak N. Protective factors as biomarkers and targets for prevention and treatment of diabetic nephropathy: From current human evidence to future possibilities. J Diabetes Investig 2020; 11(5): 1085-96.
[http://dx.doi.org/10.1111/jdi.13257] [PMID: 32196975]
[76]
Trohatou O, Tsilibary EF, Charonis A, Iatrou C, Drossopoulou G. Vitamin D3 ameliorates podocyte injury through the nephrin signalling pathway. J Cell Mol Med 2017; 21(10): 2599-609.
[http://dx.doi.org/10.1111/jcmm.13180] [PMID: 28664547]
[77]
Xu L, Zhang P, Guan H, et al. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-β, angiotensinogen expression and podocytes apoptosis through the nuclear factor-κB pathway. J Diabetes Investig 2016; 7(5): 680-8.
[http://dx.doi.org/10.1111/jdi.12505] [PMID: 27180929]
[78]
Chandel N, Ayasolla K, Wen H, et al. Vitamin D receptor deficit induces activation of renin angiotensin system via SIRT1 modulation in podocytes. Exp Mol Pathol 2017; 102(1): 97-105.
[http://dx.doi.org/10.1016/j.yexmp.2017.01.001] [PMID: 28069388]
[79]
Ilatovskaya DV, Staruschenko A. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. Am J Physiol Renal Physiol 2015; 309(5): F393-7.
[http://dx.doi.org/10.1152/ajprenal.00186.2015] [PMID: 26084930]
[80]
Wang Q, Tian X, Wang Y, et al. Role of transient receptor potential canonical channel 6 (TRPC6) in diabetic kidney disease by regulating podocyte actin cytoskeleton rearrangement. J Diabetes Res 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/6897390] [PMID: 31998809]
[81]
Zhang Y, Deb DK, Kong J, et al. Long-term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: Strong synergism with AT1 receptor antagonist. Am J Physiol Renal Physiol 2009; 297(3): F791-801.
[http://dx.doi.org/10.1152/ajprenal.00247.2009] [PMID: 19535571]
[82]
Dahan I, Thawho N, Farber E, et al. The iron-Klotho-VDR axis is a major determinant of proximal convoluted tubule injury in Haptoglobin 2-2 genotype diabetic nephropathy patients and mice. J Diabetes Res 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/7163652] [PMID: 30250850]
[83]
Li A, Zhang H, Han H, et al. LC3 promotes the nuclear translocation of the vitamin D receptor and decreases fibrogenic gene expression in proximal renal tubules. Metabolism 2019; 98: 95-103.
[http://dx.doi.org/10.1016/j.metabol.2019.06.008] [PMID: 31226352]
[84]
Zhu X, Wu S, Guo H. Active vitamin D and vitamin D receptor help prevent high glucose induced oxidative stress of renal tubular cells via AKT/UCP2 signaling pathway. BioMed Res Int 2019; 2019: 1-7.
[http://dx.doi.org/10.1155/2019/9013904] [PMID: 31275989]
[85]
Tan X, Li Y, Liu Y. Therapeutic role and potential mechanisms of active Vitamin D in renal interstitial fibrosis. J Steroid Biochem Mol Biol 2007; 103(3-5): 491-6.
[http://dx.doi.org/10.1016/j.jsbmb.2006.11.011] [PMID: 17207995]
[86]
Tan X, Li Y, Liu Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 2006; 17(12): 3382-93.
[http://dx.doi.org/10.1681/ASN.2006050520] [PMID: 17082242]
[87]
Martínez-Arias L, Panizo S, Alonso-Montes C, et al. Effects of calcitriol and paricalcitol on renal fibrosis in CKD. Nephrol Dial Transplant 2021; 36(5): 793-803.
[http://dx.doi.org/10.1093/ndt/gfaa373] [PMID: 33416889]
[88]
Chen S, Zhu J, Zuo S, et al. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells. Biochem Biophys Res Commun 2015; 468(1-2): 130-5.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.146] [PMID: 26523511]
[89]
Li RX, Yiu WH, Tang SCW. Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol 2015; 6: 114.
[http://dx.doi.org/10.3389/fphys.2015.00114] [PMID: 25954203]
[90]
Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and inflammation. World J Diabetes 2014; 5(3): 393-8.
[http://dx.doi.org/10.4239/wjd.v5.i3.393] [PMID: 24936261]
[91]
Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19(3): 433-42.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[92]
Barutta F, Bruno G, Grimaldi S, Gruden G. Inflammation in diabetic nephropathy: Moving toward clinical biomarkers and targets for treatment. Endocrine 2015; 48(3): 730-42.
[http://dx.doi.org/10.1007/s12020-014-0437-1] [PMID: 25273317]
[93]
Yi H, Peng R, Zhang L, et al. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis 2017; 8(2): e2583.
[http://dx.doi.org/10.1038/cddis.2016.451] [PMID: 28151474]
[94]
Jeffery LE, Burke F, Mura M, et al. 1,25-Dihydroxy vitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 2009; 183(9): 5458-67.
[http://dx.doi.org/10.4049/jimmunol.0803217] [PMID: 19843932]
[95]
Wang Y, Yang S, Zhou Q, Zhang H, Yi B. Effects of vitamin D supplementation on renal function, inflammation and glycemic control in patients with diabetic nephropathy: A systematic review and meta-analysis. Kidney Blood Press Res 2019; 44(1): 72-87.
[http://dx.doi.org/10.1159/000498838] [PMID: 30808855]
[96]
Uwaezuoke SN. Vitamin D analogs can retard the onset or progression of diabetic kidney disease: A systematic review. Front Clin Diabetes Healthcare 2021; 2: 763844.
[97]
Eren Z, Günal MY, Bakir EA, et al. Effects of paricalcitol and aliskiren combination therapy on experimental diabetic nephropathy model in rats. Kidney Blood Press Res 2014; 39(6): 581-90.
[http://dx.doi.org/10.1159/000368471] [PMID: 25532067]
[98]
de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): A randomised controlled trial. Lancet 2010; 376(9752): 1543-51.
[http://dx.doi.org/10.1016/S0140-6736(10)61032-X] [PMID: 21055801]
[99]
Lambers Heerspink HJ, Agarwal R, Coyne DW, et al. The selective vitamin D receptor activator for albuminuria lowering (VITAL) study: Study design and baseline characteristics. Am J Nephrol 2009; 30(3): 280-6.
[http://dx.doi.org/10.1159/000225903] [PMID: 19521070]
[100]
Felício JS, Oliveira AF, Peixoto AS, et al. Albuminuria reduction after high dose of vitamin D in patients with type 1 diabetes mellitus: A pilot study. Front Endocrinol 2017; 8: 199.
[http://dx.doi.org/10.3389/fendo.2017.00199] [PMID: 28855892]
[101]
Goswami R, Nair A. Diabetes mellitus, vitamin D & osteoporosis: Insights. Indian J Med Res 2019; 150(5): 425-8.
[http://dx.doi.org/10.4103/ijmr.IJMR_1920_19] [PMID: 31939384]
[102]
Cojic M, Kocic R, Klisic A, Kocic G. The effects of vitamin D supplementation on metabolic and oxidative stress markers in patients with type 2 diabetes: A 6-month follow up randomized controlled study. Front Endocrinol 2021; 12: 610893.
[http://dx.doi.org/10.3389/fendo.2021.610893] [PMID: 34489860]
[103]
Cojic M, Kocic R, Klisic A, Cvejanov-Kezunovic L, Kavaric N, Kocic G. A novel mechanism of vitamin D anti-inflammatory/antioxidative potential in type 2 diabetic patients on metformin therapy. Arch Med Sci 2020; 16(5): 1004-12.
[http://dx.doi.org/10.5114/aoms.2020.92832] [PMID: 32863988]