A Look at the Etiology of Alzheimer's Disease based on the Brain Ischemia Model
  • * (Excluding Mailing and Handling)

Abstract

Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, i.e., progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.

[1]
Sun MS, Jin H, Sun X, et al. Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev 2018; 2018: 1-17.
[http://dx.doi.org/10.1155/2018/3804979] [PMID: 29770166]
[2]
Rahman MH, Akter R, Bhattacharya T, et al. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease. Front Pharmacol 2020; 11: 619024.
[http://dx.doi.org/10.3389/fphar.2020.619024] [PMID: 33456444]
[3]
Pluta R, Kiś J, Januszewski S, Jabłoński M, Czuczwar SJ. Cross-talk between amyloid, tau protein and free radicals in post-ischemic brain neurodegeneration in the form of alzheimer’s disease proteinopathy. Antioxidants 2022; 11(1): 146.
[http://dx.doi.org/10.3390/antiox11010146] [PMID: 35052650]
[4]
Behl T, Makkar R, Sehgal A, et al. Current trends in neurodegeneration: Cross talks between oxidative stress, cell death, and inflammation. Int J Mol Sci 2021; 22(14): 7432.
[http://dx.doi.org/10.3390/ijms22147432] [PMID: 34299052]
[5]
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 pathway in ischemic stroke: A review. Molecules 2021; 26(16): 5001.
[http://dx.doi.org/10.3390/molecules26165001] [PMID: 34443584]
[6]
Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics—2018 update: A report from the american heart association. Circulation 2018; 137(12): e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[7]
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From preclinical stroke models to humans: Polyphenols in the prevention and treatment of stroke. Nutrients 2020; 13(1): 85.
[http://dx.doi.org/10.3390/nu13010085] [PMID: 33383852]
[8]
Nelson KB, Lynch JK. Stroke in newborn infants. Lancet Neurol 2004; 3(3): 150-8.
[http://dx.doi.org/10.1016/S1474-4422(04)00679-9] [PMID: 14980530]
[9]
Faustino-Mendes T, Machado-Pereira M, Castelo-Branco M, Ferreira R. The ischemic immature brain: Views on current experimental models. Front Cell Neurosci 2018; 12: 277.
[http://dx.doi.org/10.3389/fncel.2018.00277] [PMID: 30210301]
[10]
Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial cells: Role of the immune response in ischemic stroke. Front Immunol 2020; 11: 294.
[http://dx.doi.org/10.3389/fimmu.2020.00294] [PMID: 32174916]
[11]
Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021; 20(10): 795-820.
[http://dx.doi.org/10.1016/S1474-4422(21)00252-0] [PMID: 34487721]
[12]
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells 2021; 10(7): 1639.
[http://dx.doi.org/10.3390/cells10071639] [PMID: 34208834]
[13]
Kamarova M, Baig S, Patel H, et al. Antiplatelet use in ischemic stroke. Ann Pharmacother 2022; 56(10): 1159-73.
[http://dx.doi.org/10.1177/10600280211073009] [PMID: 35094598]
[14]
Patabendige A, Singh A, Jenkins S, Sen J, Chen R. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int J Mol Sci 2021; 22(8): 4280.
[http://dx.doi.org/10.3390/ijms22084280] [PMID: 33924191]
[15]
Pluta R, Januszewski S, Czuczwar SJ. Neuroinflammation in post-ischemic neurodegeneration of the brain: Friend, foe, or both? Int J Mol Sci 2021; 22(9): 4405.
[http://dx.doi.org/10.3390/ijms22094405] [PMID: 33922467]
[16]
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: A report from the american heart association. Heart disease and stroke statistics-2021 update: A report from the american heart association. Circulation 2021; 143(8): e254-743.
[PMID: 33501848]
[17]
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 2022; 16: 980722.
[http://dx.doi.org/10.3389/fncel.2022.980722] [PMID: 36052339]
[18]
Dang H, Mao W, Wang S, et al. Systemic inflammation response index as a prognostic predictor in patients with acute ischemic stroke: A propensity score matching analysis. Front Neurol 2023; 13: 1049241.
[http://dx.doi.org/10.3389/fneur.2022.1049241] [PMID: 36703636]
[19]
Venketasubramanian N, Yoon BW, Pandian J, Navarro JC. Stroke epidemiology in south, east, and south-east Asia: A review. J Stroke 2017; 19(3): 286-94.
[http://dx.doi.org/10.5853/jos.2017.00234] [PMID: 29037005]
[20]
Tu WJ, Wang LD, Yan F, et al. China stroke surveillance report 2021. Mil Med Res 2023; 10(1): 33.
[http://dx.doi.org/10.1186/s40779-023-00463-x] [PMID: 37468952]
[21]
Tu WJ, Zhao Z, Yin P, et al. Estimated burden of stroke in china in 2020. JAMA Netw Open 2023; 6(3): e231455.
[http://dx.doi.org/10.1001/jamanetworkopen.2023.1455] [PMID: 36862407]
[22]
Tu WJ. Is the world of stroke research entering the Chinese era? Front Neurol 2023; 14: 1189760.
[http://dx.doi.org/10.3389/fneur.2023.1189760] [PMID: 37213904]
[23]
Varkey BP, Joseph J, Varghese A, et al. The distribution of lifestyle risk factors among patients with stroke in the indian setting: Systematic review and meta-analysis. Ann Neurosci 2023; 30(1): 40-53.
[http://dx.doi.org/10.1177/09727531221115899] [PMID: 37313337]
[24]
Joseph J, Dhandapani M, Sharma S, et al. The quality of life of stroke survivors in the Indian setting: A systematic review and meta-analysis. Ann Indian Acad Neurol 2022; 25(3): 376-82.
[http://dx.doi.org/10.4103/aian.aian_1069_21] [PMID: 35936592]
[25]
Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors, genetics, and prevention. Circ Res 2017; 120(3): 472-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308398] [PMID: 28154098]
[26]
Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol 2019; 18(5): 439-58.
[http://dx.doi.org/10.1016/S1474-4422(19)30034-1] [PMID: 30871944]
[27]
Bulygin KV, Beeraka NM, Saitgareeva AR, et al. Can miRNAs be considered as diagnostic and therapeutic molecules in ischemic stroke pathogenesis? Current Status. Int J Mol Sci 2020; 21(18): 6728.
[http://dx.doi.org/10.3390/ijms21186728] [PMID: 32937836]
[28]
Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: A global response is needed. Bull World Health Organ 2016; 94(9): 634-634A.
[http://dx.doi.org/10.2471/BLT.16.181636] [PMID: 27708464]
[29]
Owolabi MO, Akarolo-Anthony S, Akinyemi R, et al. The burden of stroke in Africa: A glance at the present and a glimpse into the future: Review article. Cardiovasc J Afr 2015; 26(2) (Suppl. 1): S27-38.
[http://dx.doi.org/10.5830/CVJA-2015-038] [PMID: 25962945]
[30]
Wafa HA, Wolfe CDA, Emmett E, Roth GA, Johnson CO, Wang Y. Burden of stroke in europe. Stroke 2020; 51(8): 2418-27.
[http://dx.doi.org/10.1161/STROKEAHA.120.029606] [PMID: 32646325]
[31]
Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2012 update: A report from the american heart association. Circulation 2012; 125(1): e2-e220.
[PMID: 22179539]
[32]
Appelros P, Nydevik I, Viitanen M. Poor outcome after first-ever stroke: Predictors for death, dependency, and recurrent stroke within the first year. Stroke 2003; 34(1): 122-6.
[http://dx.doi.org/10.1161/01.STR.0000047852.05842.3C] [PMID: 12511762]
[33]
Feigin VL, Lawes CMM, Bennett DA, Anderson CS. Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003; 2(1): 43-53.
[http://dx.doi.org/10.1016/S1474-4422(03)00266-7] [PMID: 12849300]
[34]
Yoo J, Hong B, Jo L, et al. Effects of age on long-term functional recovery in patients with stroke. Medicina 2020; 56(9): 451.
[http://dx.doi.org/10.3390/medicina56090451] [PMID: 32906615]
[35]
Pluta R, Miziak B, Czuczwar SJ. Apitherapy in post-ischemic brain neurodegeneration of alzheimer’s disease proteinopathy: Focus on honey and its flavonoids and phenolic acids. Molecules 2023; 28(15): 5624.
[http://dx.doi.org/10.3390/molecules28155624] [PMID: 37570596]
[36]
Pluta R, Miziak B, Czuczwar SJ. Post-ischemic permeability of the blood–brain barrier to amyloid and platelets as a factor in the maturation of alzheimer’s disease-type brain neurodegeneration. Int J Mol Sci 2023; 24(13): 10739.
[http://dx.doi.org/10.3390/ijms241310739] [PMID: 37445917]
[37]
Howard G, Goff DC. Population shifts and the future of stroke: forecasts of the future burden of stroke. Ann N Y Acad Sci 2012; 1268(1): 14-20.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06665.x] [PMID: 22994216]
[38]
Simats A, Liesz A. Systemic inflammation after stroke: Implications for post-stroke comorbidities. EMBO Mol Med 2022; 14(9): e16269.
[http://dx.doi.org/10.15252/emmm.202216269] [PMID: 35971650]
[39]
Cerasuolo JO, Mandzia J, Cipriano LE, et al. Intravenous thrombolysis after first-ever ischemic stroke and reduced incident dementia rate. Stroke 2022; 53(4): 1170-7.
[http://dx.doi.org/10.1161/STROKEAHA.121.034969] [PMID: 34965738]
[40]
Wang QH, Wang X, Bu XL, et al. Comorbidity burden of dementia: A hospital-based retrospective study from 2003 to 2012 in seven cities in China. Neurosci Bull 2017; 33(6): 703-10.
[http://dx.doi.org/10.1007/s12264-017-0193-3] [PMID: 29134450]
[41]
Neurology TL. A unified European action plan on stroke. Lancet Neurol 2020; 19(12): 963.
[http://dx.doi.org/10.1016/S1474-4422(20)30409-9] [PMID: 33181090]
[42]
Lim J, Monteiro A, Ruggiero N, et al. Mechanical thrombectomy versus best medical management for acute ischemic stroke in elderly patients: A cost-effectiveness analysis. World Neurosurg 2023; 175: e730-7.
[http://dx.doi.org/10.1016/j.wneu.2023.04.012] [PMID: 37037370]
[43]
Rasquin SMC, Lodder J, Verhey FRJ. Predictors of reversible mild cognitive impairment after stroke: A 2-year follow-up study. J Neurol Sci 2005; 229-230: 21-5.
[http://dx.doi.org/10.1016/j.jns.2004.11.015] [PMID: 15760615]
[44]
Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar S. Amyloid pathology in the brain after ischemia. Folia Neuropathol 2019; 57(3): 220-6.
[http://dx.doi.org/10.5114/fn.2019.88450] [PMID: 31588708]
[45]
Goulay R, Mena Romo L, Hol EM, Dijkhuizen RM. From stroke to dementia: A comprehensive review exposing tight interactions between stroke and amyloid-β formation. Transl Stroke Res 2020; 11(4): 601-14.
[http://dx.doi.org/10.1007/s12975-019-00755-2] [PMID: 31776837]
[46]
Garre-Olmo J. Epidemiology of Alzheimer’s disease and other dementias. Rev Neurol 2018; 66(11): 377-86.
[PMID: 29790571]
[47]
Dumurgier J, Sabia S. Epidemiology of Alzheimer’s disease: Latest trends. Rev Prat 2020; 70(2): 149-51.
[PMID: 32877124]
[48]
Reiss AB, Glass AD, Wisniewski T, et al. Alzheimer’s disease: Many failed trials, so where do we go from here? J Investig Med 2020; 68(6): 1135-40.
[http://dx.doi.org/10.1136/jim-2020-001297] [PMID: 32699179]
[49]
Pluta R, Ułamek M, Jabłoński M. Alzheimer’s mechanisms in ischemic brain degeneration. Anat Rec 2009; 292(12): 1863-81.
[http://dx.doi.org/10.1002/ar.21018] [PMID: 19943340]
[50]
Gemmell E, Bosomworth H, Allan L, et al. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke 2012; 43(3): 808-14.
[http://dx.doi.org/10.1161/STROKEAHA.111.636498] [PMID: 22207507]
[51]
Pluta R, Kida E, Lossinsky AS, Golabek AA, Mossakowski MJ, Wisniewski HM. Complete cerebral ischemia with short-term survival in rats induced by cardiac arrest. I. Extracellular accumulation of Alzheimer’s β-amyloid protein precursor in the brain. Brain Res 1994; 649(1-2): 323-8.
[http://dx.doi.org/10.1016/0006-8993(94)91081-2] [PMID: 7525011]
[52]
Pluta R, Barcikowska M, Januszewski S, Misicka A, Lipkowski AW. Evidence of blood-brain barrier permeability/leakage for circulating human Alzheimerʼs β-amyloid-(1–42)-peptide. Neuroreport 1996; 7(7): 1261-5.
[http://dx.doi.org/10.1097/00001756-199605170-00008] [PMID: 8817545]
[53]
Pluta R, Misicka A, Januszewski S, Barcikowska M, Lipkowski AW. Transport of human β-amyloid peptide through the rat blood-brain barrier after global cerebral ischemia. Acta Neurochir Suppl 1997; 70 (Suppl.): 247-9.
[http://dx.doi.org/10.1007/978-3-7091-6837-0_76] [PMID: 9416336]
[54]
Pluta R, Barcikowska M, Misicka A, Lipkowski AW, Spisacka S, Januszewski S. Ischemic rats as a model in the study of the neurobiological role of human β-amyloid peptide. Time-dependent disappearing diffuse amyloid plaques in braina. Neuroreport 1999; 10(17): 3615-9.
[http://dx.doi.org/10.1097/00001756-199911260-00028] [PMID: 10619654]
[55]
Pluta R, Misicka A, Barcikowska M, Spisacka S, Lipkowski AW, Januszewski S. Possible reverse transport of β-amyloid peptide across the blood-brain barrier. Acta Neurochir Suppl 2000; 76: 73-7.
[http://dx.doi.org/10.1007/978-3-7091-6346-7_15] [PMID: 11450095]
[56]
Honig LS, Tang MX, Albert S, et al. Stroke and the risk of Alzheimer disease. Arch Neurol 2003; 60(12): 1707-12.
[http://dx.doi.org/10.1001/archneur.60.12.1707] [PMID: 14676044]
[57]
Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J Neurochem 2017; 140(4): 536-49.
[http://dx.doi.org/10.1111/jnc.13932] [PMID: 27987381]
[58]
Eskandari S, Sajadimajd S, Alaei L, Soheilikhah Z, Derakhshankhah H, Bahrami G. Targeting common signaling pathways for the treatment of stroke and alzheimer’s: A comprehensive review. Neurotox Res 2021; 39(5): 1589-612.
[http://dx.doi.org/10.1007/s12640-021-00381-7] [PMID: 34169405]
[59]
Kriska J, Hermanova Z, Knotek T, Tureckova J, Anderova M. On the common journey of neural cells through ischemic brain injury and alzheimer’s disease. Int J Mol Sci 2021; 22(18): 9689.
[http://dx.doi.org/10.3390/ijms22189689] [PMID: 34575845]
[60]
Elman-Shina K, Efrati S. Ischemia as a common trigger for Alzheimer’s disease. Front Aging Neurosci 2022; 14: 1012779.
[http://dx.doi.org/10.3389/fnagi.2022.1012779] [PMID: 36225888]
[61]
Das TK, Ganesh BP, Fatima-Shad K. Common signaling pathways involved in alzheimer’s disease and stroke: Two faces of the same coin. J Alzheimers Dis Rep 2023; 7(1): 381-98.
[http://dx.doi.org/10.3233/ADR-220108] [PMID: 37220617]
[62]
Yamashima T, Seike T, Mochly-Rosen D, Chen CH, Kikuchi M, Mizukoshi E. Implication of the cooking oil-peroxidation product “hydroxynonenal” for Alzheimer’s disease. Front Aging Neurosci 2023; 15: 1211141.
[http://dx.doi.org/10.3389/fnagi.2023.1211141] [PMID: 37693644]
[63]
Kocki J, Ułamek-Kozioł M, Bogucka-Kocka A, et al. Dysregulation of amyloid-β protein precursor, β-secretase, presenilin 1 and 2 genes in the rat selectively vulnerable ca1 subfield of hippocampus following transient global brain ischemia. J Alzheimers Dis 2015; 47(4): 1047-56.
[http://dx.doi.org/10.3233/JAD-150299] [PMID: 26401782]
[64]
Pluta R, Ułamek-Kozioł M, Kocki J, et al. Expression of the tau protein and amyloid protein precursor processing genes in the CA3 area of the hippocampus in the ischemic model of Alzheimer’s disease in the rat. Mol Neurobiol 2020; 57(2): 1281-90.
[http://dx.doi.org/10.1007/s12035-019-01799-z] [PMID: 31713815]
[65]
Czuczwar SJ, Kocki J, Miziak B, Bogucki J, Bogucka-Kocka A, Pluta R. Alpha-, beta-, and gamma-secretase, amyloid precursor protein, and tau protein genes in the hippocampal CA3 subfield in an ischemic model of alzheimer’s disease with survival up to 2 years. J Alzheimers Dis 2024; 98(1): 151-61.
[http://dx.doi.org/10.3233/JAD-231333] [PMID: 38393914]
[66]
Pluta R, Kocki J, Ułamek-Kozioł M, et al. Discrepancy in expression of β-secretase and amyloid-β protein precursor in alzheimer-related genes in the rat medial temporal lobe cortex following transient global brain ischemia. J Alzheimers Dis 2016; 51(4): 1023-31.
[http://dx.doi.org/10.3233/JAD-151102] [PMID: 26890784]
[67]
Pluta R, Kocki J, Ułamek-Kozioł M, et al. Alzheimer-associated presenilin 2 gene is dysregulated in rat medial temporal lobe cortex after complete brain ischemia due to cardiac arrest. Pharmacol Rep 2016; 68(1): 155-61.
[http://dx.doi.org/10.1016/j.pharep.2015.08.002] [PMID: 26721367]
[68]
Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M, et al. Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer’s phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer’s disease. Pharmacol Rep 2018; 70(5): 881-4.
[http://dx.doi.org/10.1016/j.pharep.2018.03.004] [PMID: 30096486]
[69]
Pluta R, Kocki J, Bogucki J, Bogucka-Kocka A, Czuczwar SJ. LRP1 and RAGE genes transporting amyloid and tau protein in the hippocampal CA3 area in an ischemic model of alzheimer’s disease with 2-year survival. Cells 2023; 12(23): 2763.
[http://dx.doi.org/10.3390/cells12232763] [PMID: 38067191]
[70]
Ułamek-Kozioł M, Kocki J, Bogucka-Kocka A, et al. Autophagy, mitophagy and apoptotic gene changes in the hippocampal CA1 area in a rat ischemic model of Alzheimer’s disease. Pharmacol Rep 2017; 69(6): 1289-94.
[http://dx.doi.org/10.1016/j.pharep.2017.07.015] [PMID: 29128811]
[71]
Ułamek-Kozioł M, Czuczwar SJ, Kocki J, et al. Dysregulation of autophagy, mitophagy, and apoptosis genes in the CA3 region of the hippocampus in the ischemic model of alzheimer’s disease in the rat. J Alzheimers Dis 2019; 72(4): 1279-86.
[http://dx.doi.org/10.3233/JAD-190966] [PMID: 31707369]
[72]
Ułamek-Kozioł M, Kocki J, Bogucka-Kocka A, et al. Dysregulation of autophagy, mitophagy and apoptotic genes in the medial temporal lobe cortex in an ischemic model of Alzheimer’s disease. J Alzheimers Dis 2016; 54(1): 113-21.
[http://dx.doi.org/10.3233/JAD-160387] [PMID: 27472881]
[73]
Abe K, Tanzi RE, Kogure K. Selective induction of Kunitz-type protease inhibitor domain-containing amyloid precursor protein mRNA after persistent focal ischemia in rat cerebral cortex. Neurosci Lett 1991; 125(2): 172-4.
[http://dx.doi.org/10.1016/0304-3940(91)90020-T] [PMID: 1908958]
[74]
Kim HS, Lee SH, Kim SS, et al. Post-ischemic changes in the expression of Alzheimerʼs APP isoforms in rat cerebral cortex. Neuroreport 1998; 9(3): 534-7.
[http://dx.doi.org/10.1097/00001756-199802160-00029] [PMID: 9512402]
[75]
Shi J, Panickar KS, Yang SH, Rabbani O, Day AL, Simpkins JW. Estrogen attenuates over-expression of β-amyloid precursor protein messager RNA in an animal model of focal ischemia. Brain Res 1998; 810(1-2): 87-92.
[http://dx.doi.org/10.1016/S0006-8993(98)00888-9] [PMID: 9813255]
[76]
Shi J, Yang SH, Stubley L, Day AL, Simpkins JW. Hypoperfusion induces overexpression of β-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res 2000; 853(1): 1-4.
[http://dx.doi.org/10.1016/S0006-8993(99)02113-7] [PMID: 10627301]
[77]
Koistinaho J, Pyykönen I, Keinänen R, Hökfelt T. Expression of β-amyloid precursor protein mRNAs following transient focal ischaemia. Neuroreport 1996; 7(15): 2727-32.
[http://dx.doi.org/10.1097/00001756-199611040-00064] [PMID: 8981456]
[78]
Tanimukai H, Imaizumi K, Kudo T, et al. Alzheimer-associated presenilin-1 gene is induced in gerbil hippocampus after transient ischemia. Brain Res Mol Brain Res 1998; 54(2): 212-8.
[http://dx.doi.org/10.1016/S0169-328X(97)00337-9] [PMID: 9555019]
[79]
Pennypacker KR, Hernandez H, Benkovic S, Morgan DG, Willing AE, Sanberg PR. Induction of presenilins in the rat brain after middle cerebral arterial occlusion. Brain Res Bull 1999; 48(5): 539-43.
[http://dx.doi.org/10.1016/S0361-9230(99)00031-3] [PMID: 10372515]
[80]
Ali SM, Dunn E, Oostveen JA, Hall ED, Carter DB. Induction of apolipoprotein E mRNA in the hippocampus of the gerbil after transient global ischemia. Brain Res Mol Brain Res 1996; 38(1): 37-44.
[http://dx.doi.org/10.1016/0169-328X(95)00301-8] [PMID: 8737665]
[81]
Kamada H, Sato K, Zhang WR, et al. Spatiotemporal changes of apolipoprotein E immunoreactivity and apolipoprotein E mRNA expression after transient middle cerebral artery occlusion in rat brain. J Neurosci Res 2003; 73(4): 545-56.
[http://dx.doi.org/10.1002/jnr.10658] [PMID: 12898539]
[82]
Van Beek J, Chan P, Bernaudin M, Petit E, MacKenzie ET, Fontaine M. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse. Glia 2000; 31(1): 39-50.
[http://dx.doi.org/10.1002/(SICI)1098-1136(200007)31:1<39::AID-GLIA40>3.0.CO;2-1] [PMID: 10816605]
[83]
Nalivaevaa NN, Fisk L, Kochkina EG, et al. Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann N Y Acad Sci 2004; 1035(1): 21-33.
[http://dx.doi.org/10.1196/annals.1332.002] [PMID: 15681798]
[84]
Yan FL, Zhang J, Guan XN, Hong Z. [mRNA expression and activity of ADAM17 in hippocampus after chronic cerebral hypoperfusion: Experiment with aged rats]. Zhonghua Yi Xue Za Zhi 2007; 87(35): 2515-7.
[PMID: 18067820]
[85]
Blasko I, Beer R, Bigl M, et al. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer?s disease β-secretase (BACE-1). J Neural Transm 2004; 111(4): 523-36.
[http://dx.doi.org/10.1007/s00702-003-0095-6] [PMID: 15057522]
[86]
Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol 2004; 165(2): 357-71.
[http://dx.doi.org/10.1016/S0002-9440(10)63303-2] [PMID: 15277212]
[87]
Wen Y, Onyewuchi O, Yang S, Liu R, Simpkins JW. Increased β-secretase activity and expression in rats following transient cerebral ischemia. Brain Res 2004; 1009(1-2): 1-8.
[http://dx.doi.org/10.1016/j.brainres.2003.09.086] [PMID: 15120577]
[88]
Chuang CM, Hsieh CL, Lin HY, Lin JG. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1, BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats. Am J Chin Med 2008; 36(4): 685-93.
[http://dx.doi.org/10.1142/S0192415X08006156] [PMID: 18711766]
[89]
Ye J, Pi R, Mao X, et al. Alterations in mRNA expression of BACE1, cathepsin B, and glutaminyl cyclase in mice ischemic brain. Neuroreport 2009; 20(16): 1456-60.
[http://dx.doi.org/10.1097/WNR.0b013e328332024a] [PMID: 19809370]
[90]
Polavarapu R, An J, Zhang C, Yepes M. Regulated intramembrane proteolysis of the low-density lipoprotein receptor-related protein mediates ischemic cell death. Am J Pathol 2008; 172(5): 1355-62.
[http://dx.doi.org/10.2353/ajpath.2008.070975] [PMID: 18403601]
[91]
Hall ED, Oostveen JA, Dunn E, Carter DB. Increased amyloid protein precursor and apolipoprotein E immunoreactivity in the selectively vulnerable hippocampus following transient forebrain ischemia in gerbils. Exp Neurol 1995; 135(1): 17-27.
[http://dx.doi.org/10.1006/exnr.1995.1062] [PMID: 7556550]
[92]
Tomimoto H, Akiguchi I, Wakita H, Nakamura S, Kimura J. Ultrastructural localization of amyloid protein precursor in the normal and postischemic gerbil brain. Brain Res 1995; 672(1-2): 187-95.
[http://dx.doi.org/10.1016/0006-8993(94)01160-J] [PMID: 7749741]
[93]
Ishimaru H, Ishikawa K, Haga S, et al. Accumulation of apolipoprotein E and β-amyloid-like protein in a trace of the hippocampal CA1 pyramidal cell layer after ischaemic delayed neuronal death. Neuroreport 1996; 7(18): 3063-8.
[http://dx.doi.org/10.1097/00001756-199611250-00054] [PMID: 9116241]
[94]
Yokota M, Saido TC, Tani E, Yamaura I, Minami N. Cytotoxic fragment of amyloid precursor protein accumulates in hippocampus after global forebrain ischemia. J Cereb Blood Flow Metab 1996; 16(6): 1219-23.
[http://dx.doi.org/10.1097/00004647-199611000-00016] [PMID: 8898694]
[95]
Lin B, Schmidt-Kastner R, Busto R, Ginsberg MD. Progressive parenchymal deposition of β-amyloid precursor protein in rat brain following global cerebral ischemia. Acta Neuropathol 1999; 97(4): 359-68.
[http://dx.doi.org/10.1007/s004010050999] [PMID: 10208275]
[96]
Pluta R. The role of apolipoprotein E in the deposition of β-amyloid peptide during ischemia-reperfusion brain injury. A model of early Alzheimer’s disease. Ann N Y Acad Sci 2000; 903(1): 324-34.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06383.x] [PMID: 10818522]
[97]
Pluta R. No effect of anti-oxidative therapy on cerebral amyloidosis following ischemia-reperfusion brain injury. Folia Neuropathol 2000; 38(4): 188-90.
[PMID: 11693724]
[98]
Lin B, Ginsberg MD, Busto R. Hyperglycemic but not normoglycemic global ischemia induces marked early intraneuronal expression of β-amyloid precursor protein. Brain Res 2001; 888(1): 107-16.
[http://dx.doi.org/10.1016/S0006-8993(00)03023-7] [PMID: 11146057]
[99]
Sinigaglia-Coimbra R, Cavalheiro E, Coimbra C. Postischemic hyperthermia induces Alzheimer-like pathology in the rat brain. Acta Neuropathol 2002; 103(5): 444-52.
[http://dx.doi.org/10.1007/s00401-001-0487-3] [PMID: 11935259]
[100]
Fujioka M, Taoka T, Matsuo Y, et al. Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 2003; 54(6): 732-47.
[http://dx.doi.org/10.1002/ana.10751] [PMID: 14681883]
[101]
Jabłoński M, Maciejewski R, Januszewski S, Ułamek M, Pluta R. One year follow up in ischemic brain injury and the role of Alzheimer factors. Physiol Res 2011; 60 (Suppl. 1): S113-9.
[http://dx.doi.org/10.33549/physiolres.932186] [PMID: 21777016]
[102]
Banati RB, Gehrmann J, Wießner C, Hossmann KA, Kreutzberg GW. Glial expression of the β-amyloid precursor protein (APP) in global ischemia. J Cereb Blood Flow Metab 1995; 15(4): 647-54.
[http://dx.doi.org/10.1038/jcbfm.1995.80] [PMID: 7790414]
[103]
Palacios G, Mengod G, Tortosa A, Ferrer I, Palacios JM. Increased β-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: Association with proliferation of astrocytes. Eur J Neurosci 1995; 7(3): 501-10.
[http://dx.doi.org/10.1111/j.1460-9568.1995.tb00346.x] [PMID: 7773447]
[104]
Nihashi T, Inao S, Kawai T, et al. Expression and distribution of beta amyloid precursor protein and beta amyloid peptide in reactive astrocytes after transient middle cerebral artery occlusion. Acta Neurochir 2001; 143(3): 287-95.
[http://dx.doi.org/10.1007/s007010170109] [PMID: 11460917]
[105]
Badan I, Platt D, Kessler C, Popa-Wagner A. Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats. Gerontology 2003; 49(6): 356-65.
[http://dx.doi.org/10.1159/000073763] [PMID: 14624064]
[106]
Badan I, Dinca I, Buchhold B, et al. Accelerated accumulation of N- and C-terminal βAPP fragments and delayed recovery of microtubule-associated protein 1B expression following stroke in aged rats. Eur J Neurosci 2004; 19(8): 2270-80.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03323.x] [PMID: 15090053]
[107]
Pluta R, Ułamek M, Januszewski S. Micro-blood-brain barrier openings and cytotoxic fragments of amyloid precursor protein accumulation in white matter after ischemic brain injury in long-lived rats. Acta Neurochir Suppl 2006; 96 (Suppl.): 267-71.
[http://dx.doi.org/10.1007/3-211-30714-1_57] [PMID: 16671468]
[108]
Pluta R, Januszewski S, Ułamek M. Ischemic blood-brain barrier and amyloid in white matter as etiological factors in leukoaraiosis. Acta Neurochir Suppl 2008; 102 (Suppl.): 353-6.
[http://dx.doi.org/10.1007/978-3-211-85578-2_67] [PMID: 19388344]
[109]
Yam PS, Takasago T, Dewar D, Graham DI, McCulloch J. Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion. Brain Res 1997; 760(1-2): 150-7.
[http://dx.doi.org/10.1016/S0006-8993(97)00290-4] [PMID: 9237529]
[110]
Pluta R. Glial expression of the β-amyloid peptide in cardiac arrest. J Neurol Sci 2002; 203-204: 277-80.
[http://dx.doi.org/10.1016/S0022-510X(02)00305-2] [PMID: 12417398]
[111]
Pluta R. Astroglial expression of the beta-amyloid in ischemia-reperfusion brain injury. Ann N Y Acad Sci 2002; 977(1): 102-8.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04803.x] [PMID: 12480738]
[112]
Pluta R. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival. Acta Neurochir Suppl 2003; 86 (Suppl.): 117-22.
[http://dx.doi.org/10.1007/978-3-7091-0651-8_26] [PMID: 14753418]
[113]
Pluta R. Pathological opening of the blood-brain barrier to horseradish peroxidase and amyloid precursor protein following ischemia-reperfusion brain injury. Chemotherapy 2005; 51(4): 223-6.
[http://dx.doi.org/10.1159/000086924] [PMID: 16006769]
[114]
van Groen T, Puurunen K, Mäki HM, Sivenius J, Jolkkonen J. Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 2005; 36(7): 1551-6.
[http://dx.doi.org/10.1161/01.STR.0000169933.88903.cf] [PMID: 15933257]
[115]
Pluta R. Role of ischemic blood-brain barrier on amyloid plaques development in Alzheimer’s disease brain. Curr Neurovasc Res 2007; 4(2): 121-9.
[http://dx.doi.org/10.2174/156720207780637207] [PMID: 17504210]
[116]
Pluta R, Januszewski S, Jabłoński M, Ułamek M. Factors in creepy delayed neuronal death in hippocampus following brain ischemia-reperfusion injury with long-term survival. Acta Neurochir Suppl 2010; 106 (Suppl.): 37-41.
[http://dx.doi.org/10.1007/978-3-211-98811-4_5] [PMID: 19812917]
[117]
Oster-Granite ML, McPhie DL, Greenan J, Neve RL. Age-dependent neuronal and synaptic degeneration in mice transgenic for the C terminus of the amyloid precursor protein. J Neurosci 1996; 16(21): 6732-41.
[http://dx.doi.org/10.1523/JNEUROSCI.16-21-06732.1996] [PMID: 8824314]
[118]
Dewar D, Graham DI, Teasdale GM, McCulloch J. Alz-50 and ubiquitin immunoreactivity is induced by permanent focal cerebral ischaemia in the cat. Acta Neuropathol 1993; 86(6): 623-9.
[http://dx.doi.org/10.1007/BF00294302] [PMID: 8310818]
[119]
Dewar D, Graham DI, Teasdale GM, McCulloch J. Cerebral ischemia induces alterations in tau and ubiquitin proteins. Dementia 1994; 5(3-4): 168-73.
[PMID: 8087173]
[120]
Geddes JW, Schwab C, Craddock S, Wilson JL, Pettigrew LC. Alterations in tau immunostaining in the rat hippocampus following transient cerebral ischemia. J Cereb Blood Flow Metab 1994; 14(4): 554-64.
[http://dx.doi.org/10.1038/jcbfm.1994.69] [PMID: 7516935]
[121]
Dewar D, Dawson D. Tau protein is altered by focal cerebral ischaemia in the rat: An immunohistochemical and immunoblotting study. Brain Res 1995; 684(1): 70-8.
[http://dx.doi.org/10.1016/0006-8993(95)00417-O] [PMID: 7583206]
[122]
Irving EA, Yatsushiro K, McCulloch J, Dewar D. Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: Involvement of free radicals. J Cereb Blood Flow Metab 1997; 17(6): 612-22.
[http://dx.doi.org/10.1097/00004647-199706000-00003] [PMID: 9236718]
[123]
Uchihara T, Nakamura A, Arai T, Ikeda K, Tsuchiya K. Microglial tau undergoes phosphorylation-independent modification after ischemia. Glia 2004; 45(2): 180-7.
[http://dx.doi.org/10.1002/glia.10318] [PMID: 14730711]
[124]
Fujii H, Takahashi T, Mukai T, et al. Modifications of tau protein after cerebral ischemia and reperfusion in rats are similar to those occurring in Alzheimer’s disease – Hyperphosphorylation and cleavage of 4- and 3-repeat tau. J Cereb Blood Flow Metab 2017; 37(7): 2441-57.
[http://dx.doi.org/10.1177/0271678X16668889] [PMID: 27629097]
[125]
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002; 156(6): 1051-63.
[http://dx.doi.org/10.1083/jcb.200108057] [PMID: 11901170]
[126]
Wen Y, Yang S, Liu R, Simpkins JW. Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res 2004; 1022(1-2): 30-8.
[http://dx.doi.org/10.1016/j.brainres.2004.05.106] [PMID: 15353210]
[127]
Wen Y, Yang S, Liu R, Brun-Zinkernagel AM, Koulen P, Simpkins JW. Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer’s disease-like tauopathy in female rats. J Biol Chem 2004; 279(21): 22684-92.
[http://dx.doi.org/10.1074/jbc.M311768200] [PMID: 14982935]
[128]
Wen Y, Yang SH, Liu R, et al. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim Biophys Acta Mol Basis Dis 2007; 1772(4): 473-83.
[http://dx.doi.org/10.1016/j.bbadis.2006.10.011] [PMID: 17113760]
[129]
Pluta R, Januszewski S, Jabłoński M. Acetylated tau protein: A new piece in the puzzle between brain ischemia and alzheimer’s disease. Int J Mol Sci 2022; 23(16): 9174.
[http://dx.doi.org/10.3390/ijms23169174] [PMID: 36012440]
[130]
Khan S, Yuldasheva NY, Batten TFC, Pickles AR, Kellett KAB, Saha S. Tau pathology and neurochemical changes associated with memory dysfunction in an optimised murine model of global cerebral ischaemia - A potential model for vascular dementia? Neurochem Int 2018; 118: 134-44.
[http://dx.doi.org/10.1016/j.neuint.2018.04.004] [PMID: 29649504]
[131]
Seddigh N, Taabodi D, Dadzadi M, Shahpasand K. cis P-tau accumulation triggers neurodegeneration after ischemic stroke. ACS Omega 2024; 9(5): acsomega.3c07285.
[http://dx.doi.org/10.1021/acsomega.3c07285] [PMID: 38343967]
[132]
Pluta R, Czuczwar SJ. Trans- and Cis-phosphorylated tau protein: new pieces of the puzzle in the development of neurofibrillary tangles in post-ischemic brain neurodegeneration of the alzheimer’s disease-like type. Int J Mol Sci 2024; 25(6): 3091.
[http://dx.doi.org/10.3390/ijms25063091] [PMID: 38542064]
[133]
Kida E, Pluta R, Lossinsky AS, et al. Complete cerebral ischemia with short-term survival in rat induced by cardiac arrest. II. Extracellular and intracellular accumulation of apolipoproteins E and J in the brain. Brain Res 1995; 674(2): 341-6.
[http://dx.doi.org/10.1016/0006-8993(94)01467-V] [PMID: 7796114]
[134]
Ishimaru H, Ishikawa K, Ohe Y, Takahashi A, Maruyama Y. Cystatin C and apolipoprotein E immunoreactivities in CA1 neurons in ischemic gerbil hippocampus. Brain Res 1996; 709(2): 155-62.
[http://dx.doi.org/10.1016/0006-8993(95)01232-X] [PMID: 8833751]
[135]
Pluta R. Proteins associated with Alzheimer’s disease in conditions predisposing to Alzheimer’s-type neurodegeneration. J Cereb Blood Flow Metab 2001; 21 (Suppl. 1): S424.
[136]
Mattson MP, Zhu H, Yu J, Kindy MS. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: Involvement of perturbed calcium homeostasis. J Neurosci 2000; 20(4): 1358-64.
[http://dx.doi.org/10.1523/JNEUROSCI.20-04-01358.2000] [PMID: 10662826]
[137]
Yang Y, Kinney GA, Spain WJ, Breitner JCS, Cook DG. Presenilin-1 and intracellular calcium stores regulate neuronal glutamate uptake. J Neurochem 2004; 88(6): 1361-72.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02279.x] [PMID: 15009636]
[138]
Ishimaru H, Uéda K, Takahashi A, Maruyama Y. Changes in presynaptic protein NACP/α-synuclein in an ischemic gerbil hippocampus. Brain Res 1998; 788(1-2): 311-4.
[http://dx.doi.org/10.1016/S0006-8993(98)00033-X] [PMID: 9555070]
[139]
Kitamura Y, Ishida Y, Takata K, et al. α-Synuclein protein is not scavenged in neuronal loss induced by kainic acid or focal ischemia. Brain Res 2001; 898(1): 181-5.
[http://dx.doi.org/10.1016/S0006-8993(01)02159-X] [PMID: 11292464]
[140]
Goedert M. Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001; 2(7): 492-501.
[http://dx.doi.org/10.1038/35081564] [PMID: 11433374]
[141]
Hashimoto M, Masliah E. Alpha-synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol 1999; 9(4): 707-20.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00552.x] [PMID: 10517509]
[142]
Jendroska K, Poewe W, Daniel SE, et al. Ischemic stress induces deposition of amyloid beta immunoreactivity in human brain. Acta Neuropathol 1995; 90(5): 461-6.
[http://dx.doi.org/10.1007/BF00294806] [PMID: 8560978]
[143]
Wiśniewski HM, Maślińska D. Beta-protein immunoreactivity in the human brain after cardiac arrest. Folia Neuropathol 1996; 34(2): 65-71.
[PMID: 8791894]
[144]
Jendroska K, Hoffmann OM, Patt S. Amyloid β peptide and precursor protein (APP) in mild and severe brain ischemia. Ann N Y Acad Sci 1997; 826(1): 401-5.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb48492.x] [PMID: 9329712]
[145]
Qi J, Wu H, Yang Y, et al. Cerebral ischemia and Alzheimer’s disease: the expression of amyloid-β and apolipoprotein E in human hippocampus. J Alzheimers Dis 2007; 12(4): 335-41.
[http://dx.doi.org/10.3233/JAD-2007-12406] [PMID: 18198420]
[146]
Lee PH, Bang OY, Hwang EM, et al. Circulating beta amyloid protein is elevated in patients with acute ischemic stroke. J Neural Transm 2005; 112(10): 1371-9.
[http://dx.doi.org/10.1007/s00702-004-0274-0] [PMID: 15682267]
[147]
Zetterberg H, Mörtberg E, Song L, et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLoS One 2011; 6(12): e28263.
[http://dx.doi.org/10.1371/journal.pone.0028263] [PMID: 22194817]
[148]
Mörtberg E, Zetterberg H, Nordmark J, et al. Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia. Acta Anaesthesiol Scand 2011; 55(9): 1132-8.
[http://dx.doi.org/10.1111/j.1399-6576.2011.02505.x] [PMID: 22092212]
[149]
Randall J, Mörtberg E, Provuncher GK, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: Results of a pilot study. Resuscitation 2013; 84(3): 351-6.
[http://dx.doi.org/10.1016/j.resuscitation.2012.07.027] [PMID: 22885094]
[150]
Maślińska D, Laure-Kamionowska M, Taraszewska A, Deręgowski K, Maśliński S. Immunodistribution of amyloid beta protein (Aβ) and advanced glycation end-product receptors (RAGE) in choroid plexus and ependyma of resuscitated patients. Folia Neuropathol 2011; 49(4): 295-300.
[PMID: 22212919]
[151]
Sekeljic V, Bataveljic D, Stamenkovic S, et al. Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct Funct 2012; 217(2): 411-20.
[http://dx.doi.org/10.1007/s00429-011-0336-7] [PMID: 21706330]
[152]
Xing C, Arai K, Lo EH, Hommel M. Pathophysiologic cascades in ischemic stroke. Int J Stroke 2012; 7(5): 378-85.
[http://dx.doi.org/10.1111/j.1747-4949.2012.00839.x] [PMID: 22712739]
[153]
Radenovic L, Nenadic M, Ułamek-Kozioł M, et al. Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer’s disease after 2 years of survival. Aging 2020; 12(12): 12251-67.
[http://dx.doi.org/10.18632/aging.103411] [PMID: 32501292]
[154]
Pluta R, Salínska E, Puka M, Stafiej A, Łazarewicz JW. Early changes in extracellular amino acids and calcium concentrations in rabbit hippocampus following complete 15-min cerebral ischemia. Resuscitation 1988; 16(3): 193-210.
[http://dx.doi.org/10.1016/0300-9572(88)90046-9] [PMID: 2845543]
[155]
Neumann JT, Cohan CH, Dave KR, Wright CB, Perez-Pinzon MA. Global cerebral ischemia: Synaptic and cognitive dysfunction. Curr Drug Targets 2013; 14(1): 20-35.
[http://dx.doi.org/10.2174/138945013804806514] [PMID: 23170794]
[156]
Zamboni G, Griffanti L, Jenkinson M, et al. White matter imaging correlates of early cognitive impairment detected by the Montreal Cognitive Assessment after transient ischemic attack and minor stroke. Stroke 2017; 48(6): 1539-47.
[http://dx.doi.org/10.1161/STROKEAHA.116.016044] [PMID: 28487328]
[157]
Wisniewski HM, Lossinsky AS, Pluta R, Mossakowski MJ. Ultrastructural studies of cerebral vascular spasm after cardiac arrest-related global cerebral ischemia in rats. Acta Neuropathol 1995; 90(5): 432-40.
[http://dx.doi.org/10.1007/BF00294802] [PMID: 8560974]
[158]
Chen Y, Ye M. Risk factors and their correlation with severity of cerebral microbleed in acute large artery atherosclerotic cerebral infarction patients. Clin Neurol Neurosurg 2022; 221: 107380.
[http://dx.doi.org/10.1016/j.clineuro.2022.107380] [PMID: 35917727]
[159]
Rost NS, Brodtmann A, Pase MP, et al. Post-stroke cognitive impairment and dementia. Circ Res 2022; 130(8): 1252-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.319951] [PMID: 35420911]
[160]
Lee HY, Jung YH, Mamadjonov N, et al. Assessment of the effects of sodium nitroprusside administered via intracranial subdural catheters on the cerebral blood flow and lactate using dynamic susceptibility contrast magnetic resonance imaging and proton magnetic resonance spectroscopy in a pig cardiac arrest model. J Am Heart Assoc 2023; 12(19): e029774.
[http://dx.doi.org/10.1161/JAHA.123.029774] [PMID: 37776216]
[161]
Bivard A, Lillicrap T, Maréchal B, et al. Transient ischemic attack results in delayed brain atrophy and cognitive decline. Stroke 2018; 49(2): 384-90.
[http://dx.doi.org/10.1161/STROKEAHA.117.019276] [PMID: 29301970]
[162]
de la Tremblaye PB, Plamondon H. Impaired conditioned emotional response and object recognition are concomitant to neuronal damage in the amygdala and perirhinal cortex in middle-aged ischemic rats. Behav Brain Res 2011; 219(2): 227-33.
[http://dx.doi.org/10.1016/j.bbr.2011.01.009] [PMID: 21238489]
[163]
Kiryk A, Pluta R, Figiel I, et al. Transient brain ischemia due to cardiac arrest causes irreversible long-lasting cognitive injury. Behav Brain Res 2011; 219(1): 1-7.
[http://dx.doi.org/10.1016/j.bbr.2010.12.004] [PMID: 21147171]
[164]
Li J, Wang YJ, Zhang M, Fang CQ, Zhou HD. Cerebral ischemia aggravates cognitive impairment in a rat model of Alzheimer’s disease. Life Sci 2011; 89(3-4): 86-92.
[http://dx.doi.org/10.1016/j.lfs.2011.04.024] [PMID: 21620868]
[165]
Cohan CH, Neumann JT, Dave KR, et al. Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats. PLoS One 2015; 10(5): e0124918.
[http://dx.doi.org/10.1371/journal.pone.0124918] [PMID: 25933411]
[166]
Block F. Global ischemia and behavioural deficits. Prog Neurobiol 1999; 58(3): 279-95.
[http://dx.doi.org/10.1016/S0301-0082(98)00085-9] [PMID: 10341364]
[167]
Kuroiwa T, Bonnekoh P, Hossmann KA. Locomotor hyperactivity and hippocampal CA1 injury after transient forebrain ischemia of gerbils. Neurosci Lett 1991; 122(2): 141-4.
[http://dx.doi.org/10.1016/0304-3940(91)90842-H] [PMID: 2027511]
[168]
Karasawa Y, Araki H, Otomo S. Changes in locomotor activity and passive avoidance task performance induced by cerebral ischemia in Mongolian gerbils. Stroke 1994; 25(3): 645-50.
[http://dx.doi.org/10.1161/01.STR.25.3.645] [PMID: 8128520]
[169]
Langdon KD, Granter-Button S, Corbett D. Persistent behavioral impairments and neuroinflammation following global ischemia in the rat. Eur J Neurosci 2008; 28(11): 2310-8.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06513.x] [PMID: 19019197]
[170]
Colbourne F, Corbett D. Delayed postischemic hypothermia: A six month survival study using behavioral and histological assessments of neuroprotection. J Neurosci 1995; 15(11): 7250-60.
[http://dx.doi.org/10.1523/JNEUROSCI.15-11-07250.1995] [PMID: 7472479]
[171]
Kiyota Y, Miyamoto M, Nagaoka A. Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia. Brain Res 1991; 538(2): 295-302.
[http://dx.doi.org/10.1016/0006-8993(91)90443-Y] [PMID: 2012971]
[172]
Karhunen H, Pitkänen A, Virtanen T, et al. Long-term functional consequences of transient occlusion of the middle cerebral artery in rats. Epilepsy Res 2003; 54(1): 1-10.
[http://dx.doi.org/10.1016/S0920-1211(03)00034-2] [PMID: 12742590]
[173]
Ishibashi S, Kuroiwa T, LiYuan S, et al. Long-term cognitive and neuropsychological symptoms after global cerebral ischemia in Mongolian gerbils. Acta Neurochir Suppl 2006; 96 (Suppl.): 299-302.
[http://dx.doi.org/10.1007/3-211-30714-1_64] [PMID: 16671475]
[174]
Flynn RWV, MacWalter RSM, Doney ASF. The cost of cerebral ischaemia. Neuropharmacology 2008; 55(3): 250-6.
[http://dx.doi.org/10.1016/j.neuropharm.2008.05.031] [PMID: 18573263]
[175]
Surawan J, Areemit S, Tiamkao S, Sirithanawuthichai T, Saensak S. Risk factors associated with post-stroke dementia: A systematic review and meta-analysis. Neurol Int 2017; 9(3): 7216.
[http://dx.doi.org/10.4081/ni.2017.7216] [PMID: 29071041]
[176]
Ihle-Hansen H, Thommessen B, Bruun Wyller T, et al. Incidence and subtypes of MCI and dementia 1 year after first-ever stroke in patients without pre-existing cognitive impairment. Dement Geriatr Cogn Disord 2011; 32(6): 401-7.
[http://dx.doi.org/10.1159/000335361] [PMID: 22311341]
[177]
Douiri A, Rudd AG, Wolfe CDA. Prevalence of poststroke cognitive impairment: South London stroke register 1995-2010. Stroke 2013; 44(1): 138-45.
[http://dx.doi.org/10.1161/STROKEAHA.112.670844] [PMID: 23150656]
[178]
Jacquin A, Binquet C, Rouaud O, et al. Post-stroke cognitive impairment: High prevalence and determining factors in a cohort of mild stroke. J Alzheimers Dis 2014; 40(4): 1029-38.
[http://dx.doi.org/10.3233/JAD-131580] [PMID: 24577459]
[179]
Lo JW, Crawford JD, Desmond DW, et al. Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups. Neurology 2019; 93(24): e2257-71.
[http://dx.doi.org/10.1212/WNL.0000000000008612] [PMID: 31712368]
[180]
Hashim S, Ahmad S, Al Hatamleh MAI, et al. Trigona honey as a potential supplementary therapy to halt the progression of post-stroke vascular cognitive impairment. Int Med J 2021; 28: 335-8.
[181]
El Husseini N, Katzan IL, Rost NS, et al. cognitive impairment after ischemic and hemorrhagic stroke: A scientific statement from the American heart association/American stroke association. Stroke 2023; 54(6): e272-91.
[http://dx.doi.org/10.1161/STR.0000000000000430] [PMID: 37125534]
[182]
Brainin M, Tuomilehto J, Heiss WD, et al. Post-stroke cognitive decline: An update and perspectives for clinical research. Eur J Neurol 2015; 22(2): 229-238, e13-e16.
[http://dx.doi.org/10.1111/ene.12626] [PMID: 25492161]
[183]
Mok VCT, Lam BYK, Wang Z, et al. Delayed-onset dementia after stroke or transient ischemic attack. Alzheimers Dement 2016; 12(11): 1167-76.
[http://dx.doi.org/10.1016/j.jalz.2016.05.007] [PMID: 27327542]
[184]
Portegies MLP, Wolters FJ, Hofman A, Ikram MK, Koudstaal PJ, Ikram MA. Prestroke vascular pathology and the risk of recurrent stroke and poststroke dementia. Stroke 2016; 47(8): 2119-22.
[http://dx.doi.org/10.1161/STROKEAHA.116.014094] [PMID: 27418596]
[185]
Kim JH, Lee Y. Dementia and death after stroke in older adults during a 10-year follow-up: Results from a competing risk model. J Nutr Health Aging 2018; 22(2): 297-301.
[http://dx.doi.org/10.1007/s12603-017-0914-3] [PMID: 29380858]
[186]
Pendlebury ST, Wadling S, Silver LE, Mehta Z, Rothwell PM. Transient cognitive impairment in TIA and minor stroke. Stroke 2011; 42(11): 3116-21.
[http://dx.doi.org/10.1161/STROKEAHA.111.621490] [PMID: 21903955]
[187]
Fillit H, Hill J. The costs of vascular dementia. J Neurol Sci 2002; 203-204: 35-9.
[http://dx.doi.org/10.1016/S0022-510X(02)00257-5] [PMID: 12417354]
[188]
Loeb C, Gandolfo C, Croce R, Conti M. Dementia associated with lacunar infarction. Stroke 1992; 23(9): 1225-9.
[http://dx.doi.org/10.1161/01.STR.23.9.1225] [PMID: 1519275]
[189]
Tatemichi TK, Foulkes MA, Mohr JP, et al. Dementia in stroke survivors in the Stroke Data Bank cohort. Prevalence, incidence, risk factors, and computed tomographic findings. Stroke 1990; 21(6): 858-66.
[http://dx.doi.org/10.1161/01.STR.21.6.858] [PMID: 2349588]
[190]
Hénon H, Durieu I, Guerouaou D, Lebert F, Pasquier F, Leys D. Poststroke dementia. Neurology 2001; 57(7): 1216-22.
[http://dx.doi.org/10.1212/WNL.57.7.1216] [PMID: 11591838]
[191]
Altieri M, Di Piero V, Pasquini M, et al. Delayed poststroke dementia. Neurology 2004; 62(12): 2193-7.
[http://dx.doi.org/10.1212/01.WNL.0000130501.79012.1A] [PMID: 15210881]
[192]
Bornstein NM, Gur AY, Treves TA, et al. Do silent brain infarctions predict the development of dementia after first ischemic stroke? Stroke 1996; 27(5): 904-5.
[http://dx.doi.org/10.1161/01.STR.27.5.904] [PMID: 8623111]
[193]
Kokmen E, Whisnant JP, O’Fallon WM, Chu CP, Beard CM. Dementia after ischemic stroke. Neurology 1996; 46(1): 154-9.
[http://dx.doi.org/10.1212/WNL.46.1.154] [PMID: 8559366]
[194]
Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 1997; 277(10): 813-7.
[http://dx.doi.org/10.1001/jama.1997.03540340047031] [PMID: 9052711]
[195]
Samuelsson M, Söderfeldt B, Olsson GB. Functional outcome in patients with lacunar infarction. Stroke 1996; 27(5): 842-6.
[http://dx.doi.org/10.1161/01.STR.27.5.842] [PMID: 8623103]