Recent Patents on Engineering

Author(s): Atomsa Demiso Hirpa, Endalkachew Mosisa Gutema, Hirpa G. Lemu* and Mahesh Gopal

DOI: 10.2174/0118722121310810240621095952

DownloadDownload PDF Flyer Cite As
Comparative Study of Machining Parameters of Single and Double Cutting Tools During Turning of AISI 1045 Steel

Article ID: e020724231489 Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: The patent of cutting operations is carried out with a cutting tool that is fed parallel to or at right angles to the work axis. The main objective of this study is to minimize surface roughness and MRR.

Objective: The effect of cutting parameters on surface roughness and material removal rate is investigated using AISI 1045 steel as a workpiece material, and single and double carbide cutting tools are used under dry machining conditions.

Methods: The cutting speed, feed rate, and depth of cut are considered input parameters for experimental purposes. Taguchi L9 orthogonal array design of experiments is used for designing the experiments. Parameters are optimized using Taguchi L9 orthogonal design of experiments and Analysis of Variance (ANOVA). MINITAB 17 software is used to solve the coefficients of the regression model.

Results: The result indicates that the cutting speed was the most significant influencing factor that affects the surface roughness, followed by feed rate and depth of cut for both single and doublecutting tools.

Conclusion: The minimum surface finish for the best cutting parameter was 0.95 μm for a single and 0.92 μm for a double-turning tool. The highest material removal rates for single and double turning were 6456 mm3/min and 6603 mm3/min. The result shows that while using double tools, the rate of material removal rate increased and the machining time decreased.

Keywords: Taguchi L9 orthogonal array, ANOVA, surface roughness, material removal rate, carbide tool, cutting speed, feed rate, depth of cut.

Graphical Abstract

[1]
S.A. Iqbal, P.T. Mativenga, and M.A. Sheikh, "A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds", Int. J. Adv. Manuf. Technol., vol. 42, no. 1-2, pp. 30-40, 2009.
[http://dx.doi.org/10.1007/s00170-008-1582-6]
[2]
A. Bhattacharya, S. Das, P. Majumder, and A. Batish, "Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA", Prod. Eng., vol. 3, no. 1, pp. 31-40, 2009.
[http://dx.doi.org/10.1007/s11740-008-0132-2]
[3]
R.B.D. Pereira, D.U. Braga, F.O. Nevez, and A.S.C. da Silva, "Analysis of surface roughness and cutting force when turning AISI 1045 steel with grooved tools through Scott–Knott method", Int. J. Adv. Manuf. Technol., vol. 69, no. 5-8, pp. 1431-1441, 2013.
[http://dx.doi.org/10.1007/s00170-013-5126-3]
[4]
Y. Sun, G. Li, Z. He, and X. Kong, "Numerical analysis of Johnson-Cook damage model parameters effects on the cutting simulation of AISI 1045", Recent Pat. Eng., vol. 16, no. 6, p. e241221199376, 2022.
[http://dx.doi.org/10.2174/1872212116666211224095530]
[5]
N. Senthilkumar, and T. Tamizharasan, "Experimental investigation of cutting zone temperature and flank wear correlation in turning AISI 1045 steel with different tool geometries", Indian J. Eng. Mater. Sci., vol. 21, no. 2, pp. 139-148, 2014.
[6]
N. Ahmad, and T.V. Janahiraman, A comparison on optimization of surface roughness in machining AISI 1045 steel using Taguchi method, genetic algorithm and particle swarm optimizationIn 2015 IEEE Conference on Systems, Process and Control (ICSPC) Bandar Sunway, Malaysia, 2016.
[http://dx.doi.org/10.1109/SPC.2015.7473572]
[7]
N. Senthilkumar, J. Sudha, and V. Muthukumar, "A grey-fuzzy approach for optimizing machining parameters and the approach angle in turning AISI 1045 steel", Adv. Prod. Eng. Manag., vol. 10, no. 4, pp. 195-208, 2015.
[http://dx.doi.org/10.14743/apem2015.4.202]
[8]
M.K. Gupta, G. Singh, and P.K. Sood, "Experimental investigation of machining AISI 1040 Medium carbon steel under cryogenic machining: A comparison with dry machining", J Institut. Eng(India): Series C, vol. 96, no. 4, pp. 373-379, 2015.
[http://dx.doi.org/10.1007/s40032-015-0178-9]
[9]
A. Qasim, S. Nisar, A. Shah, M.S. Khalid, and M.A. Sheikh, "Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA", Simul. Model. Pract. Theory, vol. 59, pp. 36-51, 2015.
[http://dx.doi.org/10.1016/j.simpat.2015.08.004]
[10]
Z. Xiao, X. Liao, Z. Long, and M. Li, "Effect of cutting parameters on surface roughness using orthogonal array in hard turning of AISI 1045 steel with YT5 tool", Int. J. Adv. Manuf. Technol., vol. 93, no. 1-4, pp. 273-282, 2017.
[http://dx.doi.org/10.1007/s00170-016-8933-5]
[11]
A.T. Abbas, A.E. Ragab, F. Benyahia, and M.S. Soliman, "Taguchi robust design for optimizing surface roughness of turned AISI 1045 steel considering the tool nose radius and coolant as noise factors", Adv. Mater. Sci. Eng., vol. 2018, pp. 1-9, 2018.
[http://dx.doi.org/10.1155/2018/2560253]
[12]
A.T. Abbas, M.K. Gupta, M.S. Soliman, M. Mia, H. Hegab, M. Luqman, and D.Y. Pimenov, "Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel", Int. J. Adv. Manuf. Technol., vol. 105, no. 1-4, pp. 1311-1327, 2019.
[http://dx.doi.org/10.1007/s00170-019-04325-6]
[13]
A.T. Abbas, F. Benyahia, M.M. El Rayes, C. Pruncu, M.A. Taha, and H. Hegab, "Towards optimization of machining performance and sustainability aspects when turning AISI 1045 steel under different cooling and lubrication strategies", Materials (Basel), vol. 12, no. 18, p. 3023, 2019.
[http://dx.doi.org/10.3390/ma12183023] [PMID: 31540377]
[14]
A.T. Abbas, M.M. El Rayes, A.A. Al-Abduljabbar, A.E. Ragab, F. Benyahia, and A. Elkaseer, "Effects of tool edge geometry and cutting conditions on the performance indicators in dry turning AISI 1045 steel", Machines, vol. 11, no. 3, p. 397, 2023.
[http://dx.doi.org/10.3390/machines11030397]
[15]
A.T. Abbas, A.A. Al-Abduljabbar, M.M. El Rayes, F. Benyahia, I.H. Abdelgaliel, and A. Elkaseer, "Multi-objective optimization of performance indicators in turning of AISI 1045 under dry cutting conditions", Metals (Basel), vol. 13, no. 1, p. 96, 2023.
[http://dx.doi.org/10.3390/met13010096]
[16]
L. Tang, R.G. Landers, and S.N. Balakrishnan, "Parallel turning process parameter optimization based on a novel heuristic approach", J. Manuf. Sci. Eng., vol. 130, no. 3, p. 031002, 2008.
[http://dx.doi.org/10.1115/1.2823077]
[17]
R. Kalidasan, V. Ramanuj, D.K. Sarma, and S. Senthilvelan, "Influence of cutting speed and offset distance over cutting tool vibration in multi-tool turning process", Adv. Mat. Res., vol. 984-985, pp. 100-105, 2014.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.984-985.100]
[18]
C. Brecher, A. Epple, S. Neus, and M. Fey, "Optimal process parameters for parallel turning operations on shared cutting surfaces", Int. J. Mach. Tools Manuf., vol. 95, pp. 13-19, 2015.
[http://dx.doi.org/10.1016/j.ijmachtools.2015.05.003]
[19]
M.J. Reith, D. Bachrathy, and G. Stepan, "Optimal detuning of a parallel turning system - Theory and experiments", J. Dyn. Syst. Meas. Control, vol. 139, no. 1, p. 014503, 2017.
[http://dx.doi.org/10.1115/1.4034497]
[20]
E. Ozturk, A. Comak, and E. Budak, "Tuning of tool dynamics for increased stability of parallel (simultaneous) turning processes", J. Sound Vibrat., vol. 360, pp. 17-30, 2016.
[http://dx.doi.org/10.1016/j.jsv.2015.09.009]
[21]
A.D. Abebe, M.G. Jiru, and G. Kabeta, "Comparative study on dry and wet machining during double tool turning of AISI 1045 steel", Science, vol. 8, no. 9, pp. 71-101, 2017.
[22]
D.G. Bedane, E.M. Gutema, and M. Gopal, Experimental investigation and effect of machining parameters on surface roughness of AISI 1050 steel using parallel turning. Advances in Manufacturing, Automation, Design and Energy Technologies., Springer: Cham, 2023.
[http://dx.doi.org/10.1007/978-981-99-1288-9_12]
[23]
Z. Liu, D. Zheng, Y. Guo, Z. Xiao, and Q. Wang, "Parameters optimization of turning process under extended carbon emissions accounting method", Recent Pat. Mech. Eng., vol. 16, no. 2, pp. 118-128, 2023.
[http://dx.doi.org/10.2174/2212797616666230221145732]
[24]
A. Freddi, and M. Salmon, Introduction to the Taguchi method.Design Principles and Methodologies., Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-319-95342-7_7]
[25]
K. Kumar, and J.S. Senthilkumaar, "Analysis and optimization of output parameters using Taguchi design analysis, Recent Patents on Mech", Recent Pat. Mech. Eng., vol. 7, no. 2, pp. 169-182, 2014.
[http://dx.doi.org/10.2174/2212797607666140620003400]
[26]
N. Natarajan, and R. Thanigaivelan, "Influences of process parameters on machining micro holes in EDM", Recent Pat. Mech. Eng., vol. 7, no. 3, pp. 264-272, 2014.
[http://dx.doi.org/10.2174/2212797607666140901235031]
[27]
L.S. Tabachnick, Experimental Designs Using ANOVA., Thomson/Brooks/Cole: California, United States, 2007.
[28]
Hindustan Machine Tools (HMT),Production Technology., McGraw Hill Education: New York, United States, 2017.