The Effect of MiR320a on Lung Cancer
  • * (Excluding Mailing and Handling)

Abstract

Lung cancer has a high mortality rate among cancers in both women and men. Currently, lung cáncer diagnosis is made with clinical examination, low-dose CT scan and molecular-based methods and its treatment options include chemotherapy, surgery, radiotherapy or immunotherapy. However, the life expectancy of lung cancer is not very high, and still it is usually diagnosed very lately, which leads to poorer prognosis. MicroRNAs [miRNAs] are small noncoding RNAs that regulate many diverse activities in the cell that can affect tumorigenesis by regulating many cell functions related to cancer, such as cell cycle, metastasis, angiogenesis, me-tabolism, and apoptosis. Also, it can have a potential diagnostic, therapeutic, and prognostic value for lung cancer. MiR320a is a promising microRNA that may help us in the diagnosis, treatment and prognosis of lung cancer, but some aspects of its clinical application are still vague, especially its effect on heavy smokers, delivery mechanism, toxicity and lack of reliable critical value. In this paper, we examined its comprehensive molecular interactions that lead to its tumor suppres-sor effect, and we reviewed its clinical application until now.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Oberndorfer F, Müllauer L. Molecular pathology of lung cancer: Current status and perspectives. Curr Opin Oncol 2018; 30(2): 69-76.
[http://dx.doi.org/10.1097/CCO.0000000000000429] [PMID: 29251665]
[3]
Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J Thorac Oncol 2022; 17(3): 362-87.
[http://dx.doi.org/10.1016/j.jtho.2021.11.003] [PMID: 34808341]
[4]
Field JK, Oudkerk M, Pedersen JH, Duffy SW. Prospects for population screening and diagnosis of lung cancer. Lancet 2013; 382(9893): 732-41.
[http://dx.doi.org/10.1016/S0140-6736(13)61614-1] [PMID: 23972816]
[5]
Arroyo M, Larrosa R, Gómez-Maldonado J, Cobo MÁ, Claros MG, Bautista R. Expression-based, consistent biomarkers for prognosis and diagnosis in lung cancer. Clin Transl Oncol 2020; 22(10): 1867-74.
[http://dx.doi.org/10.1007/s12094-020-02328-4] [PMID: 32180209]
[6]
Visconti R, Morra F, Guggino G, Celetti A. The between now and then of lung cancer chemotherapy and immunotherapy. Int J Mol Sci 2017; 18(7): 1374.
[http://dx.doi.org/10.3390/ijms18071374] [PMID: 28653990]
[7]
Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. Ann Glob Health 2019; 85(1): 8.
[http://dx.doi.org/10.5334/aogh.2419] [PMID: 30741509]
[8]
Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin 2022; 72(5): 409-36.
[http://dx.doi.org/10.3322/caac.21731] [PMID: 35736631]
[9]
Du X, Zhang J, Wang J, Lin X, Ding F. Role of miRNA in lung cancer-potential biomarkers and therapies. Curr Pharm Des 2018; 23(39): 5997-6010.
[http://dx.doi.org/10.2174/1381612823666170714150118] [PMID: 28714414]
[10]
Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2019; 70: 3-20.
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929]
[11]
Cassim S, Chepulis L, Keenan R, Kidd J, Firth M, Lawrenson R. Patient and carer perceived barriers to early presentation and diagnosis of lung cancer: A systematic review. BMC Cancer 2019; 19(1): 25.
[http://dx.doi.org/10.1186/s12885-018-5169-9] [PMID: 30621616]
[12]
Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform 2019; 20(5): 1836-52.
[http://dx.doi.org/10.1093/bib/bby054] [PMID: 29982332]
[13]
Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA Therapeutics in Cancer — An Emerging Concept. EBioMedicine 2016; 12: 34-42.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.017] [PMID: 27720213]
[14]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[15]
Mendez MF. Early-Onset alzheimer Disease. Neurol Clin 2017; 35(2): 263-81.
[http://dx.doi.org/10.1016/j.ncl.2017.01.005] [PMID: 28410659]
[16]
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4(3): 143-59.
[http://dx.doi.org/10.1002/emmm.201100209] [PMID: 22351564]
[17]
Hu C, Meiners S, Lukas C, Stathopoulos GT, Chen J. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif 2020; 53(6): e12828.
[http://dx.doi.org/10.1111/cpr.12828] [PMID: 32391938]
[18]
Tuo L, Chu X, Sha S, Zhang X. MicroRNA and Lung Cancer: A Mini Review. Zhongguo Fei Ai Za Zhi 2018; 21(9): 727-30.
[PMID: 30201074]
[19]
Xu C, Zhang L, Duan L, Lu C. MicroRNA-3196 is inhibited by H2AX phosphorylation and attenuates lung cancer cell apoptosis by downregulating PUMA. Oncotarget 2016; 7(47): 77764-76.
[http://dx.doi.org/10.18632/oncotarget.12794] [PMID: 27780918]
[20]
Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene 2008; 27 (Suppl. 1): S71-83.
[http://dx.doi.org/10.1038/onc.2009.45]
[21]
Zhu J, Zeng Y, Li W, et al. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer 2017; 16(1): 34.
[http://dx.doi.org/10.1186/s12943-017-0591-1] [PMID: 28158983]
[22]
Meng F, Wang F, Wang L, Wong SCC, Cho WCS, Chan LWC. MiR-30a-5p overexpression may overcome EGFR-inhibitor resistance through regulating PI3K/AKT signaling pathway in non-small cell lung cancer cell lines. Front Genet 2016; 7: 197.
[http://dx.doi.org/10.3389/fgene.2016.00197] [PMID: 27895663]
[23]
Kumarswamy R, Mudduluru G, Ceppi P, et al. MicroRNA‐30a inhibits epithelial‐to‐mesenchymal transition by targeting Snai1 and is down-regulated in non‐small cell lung cancer. Int J Cancer 2012; 130(9): 2044-53.
[http://dx.doi.org/10.1002/ijc.26218] [PMID: 21633953]
[24]
Lv Q, Hu JX, Li YJ, et al. MiR-320a effectively suppresses lung adenocarcinoma cell proliferation and metastasis by regulating STAT3 signals. Cancer Biol Ther 2017; 18(3): 142-51.
[http://dx.doi.org/10.1080/15384047.2017.1281497] [PMID: 28106481]
[25]
Iurca I, Tirpe A, Zimta AA, et al. Macrophages interaction and MicroRNA Interplay in the modulation of cancer development and metastasis. Front Immunol 2020; 11: 870.
[http://dx.doi.org/10.3389/fimmu.2020.00870] [PMID: 32477352]
[26]
Shi L, Xu Z, Wu G, et al. Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin J. BMC Cancer 2017; 17(1): 138.
[http://dx.doi.org/10.1186/s12885-017-3132-9] [PMID: 28202053]
[27]
Shomali N, Mansoori B, Mohammadi A, Shirafkan N, Ghasabi M, Baradaran B. MiR-146a functions as a small silent player in gastric cancer. Biomed Pharmacother 2017; 96: 238-45.
[http://dx.doi.org/10.1016/j.biopha.2017.09.138] [PMID: 28987948]
[28]
Li M, Fu W, Wo L, Shu X, Liu F, Li C. miR-128 and its target genes in tumorigenesis and metastasis. Exp Cell Res 2013; 319(20): 3059-64.
[http://dx.doi.org/10.1016/j.yexcr.2013.07.031] [PMID: 23958464]
[29]
Zhang R, Liu C, Niu Y, et al. MicroRNA-128-3p regulates mitomycin C-induced DNA damage response in lung cancer cells through repressing SPTAN1. Oncotarget 2017; 8(35): 58098-107.
[http://dx.doi.org/10.18632/oncotarget.12300] [PMID: 28938540]
[30]
Liang RF, Li M, Yang Y, Wang X, Mao Q, Liu YH. Circulating miR- 128 as a potential diagnostic biomarker for glioma. Clin Neurol Neurosurg 2017; 160: 88-91.
[http://dx.doi.org/10.1016/j.clineuro.2017.06.020] [PMID: 28704779]
[31]
Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene 2012; 31(15): 1884-95.
[http://dx.doi.org/10.1038/onc.2011.380] [PMID: 21874051]
[32]
Guidi M, Muiños-Gimeno M, Kagerbauer B, Martí E, Estivill X. Espinosa-Parrilla Y. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol Biol 2010; 11(1): 95.
[http://dx.doi.org/10.1186/1471-2199-11-95] [PMID: 21143953]
[33]
Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 2011; 17(22): 7105-15.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0071] [PMID: 21953503]
[34]
Qian P, Banerjee A, Wu ZS, et al. Loss of SNAIL regulated miR-128- 2 on chromosome 3p22.3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res 2012; 72(22): 6036-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1507] [PMID: 23019226]
[35]
Evangelisti C, Florian MC, Massimi I, et al. MiR‐128 up‐regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J 2009; 23(12): 4276-87.
[http://dx.doi.org/10.1096/fj.09-134965] [PMID: 19713529]
[36]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[37]
Bhaskaran M, Mohan M. MicroRNAs. Vet Pathol 2014; 51(4): 759-4.
[http://dx.doi.org/10.1177/0300985813502820] [PMID: 24045890]
[38]
Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403(6772): 901-6.
[http://dx.doi.org/10.1038/35002607] [PMID: 10706289]
[39]
Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 2000; 5(4): 659-69.
[http://dx.doi.org/10.1016/S1097-2765(00)80245-2] [PMID: 10882102]
[40]
Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408(6808): 86-9.
[http://dx.doi.org/10.1038/35040556] [PMID: 11081512]
[41]
Tülay Aydın P, Göz M, Kankılıç N, Aydın MS, Koyuncu İ. Micro‐ RNA gene expressions during cardiopulmonary bypass. J Card Surg 2021; 36(3): 921-7.
[http://dx.doi.org/10.1111/jocs.15329] [PMID: 33484193]
[42]
Ko NY, Chen LR, Chen KH. The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis. Int J Mol Sci 2020; 21(14): 4886.
[http://dx.doi.org/10.3390/ijms21144886] [PMID: 32664424]
[43]
Fransquet PD, Ryan J. Micro RNA as a potential blood-based epigenetic biomarker for Alzheimer’s disease. Clin Biochem 2018; 58: 5-14.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.05.020] [PMID: 29885309]
[44]
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14(10a): 1902-10.
[http://dx.doi.org/10.1101/gr.2722704] [PMID: 15364901]
[45]
Tafrihi M, Hasheminasab E. MiRNAs: Biology, biogenesis, their web- based tools, and databases. MicroRNA 2018; 8(1): 4-27.
[http://dx.doi.org/10.2174/2211536607666180827111633] [PMID: 30147022]
[46]
Qiu H, Liang D, Liu L, Xiang Q, Yi Z, Ji Y. A novel circulating MiRNA-based signature for the diagnosis and prognosis prediction of early-stage cervical cancer. Technol Cancer Res Treat 2020; 19.
[http://dx.doi.org/10.1177/1533033820970667] [PMID: 33327867]
[47]
Lin Z, Chen Y, Lin Y, et al. Potential miRNA biomarkers for the diagnosis and prognosis of esophageal cancer detected by a novel absolute quantitative RT-qPCR method. Sci Rep 2020; 10(1): 20065.
[http://dx.doi.org/10.1038/s41598-020-77119-6] [PMID: 33208781]
[48]
Keller A, Fehlmann T, Backes C, et al. Competitive learning suggests circulating miRNA profiles for cancers decades prior to diagnosis. RNA Biol 2020; 17(10): 1416-26.
[http://dx.doi.org/10.1080/15476286.2020.1771945] [PMID: 32456538]
[49]
Karabulut S, Şen S, Soydinç HO, et al. Investigation of the potential of miRNA candidates as non-invasive biomarkers for the diagnosis and follow-up of colorectal cancer. Pathol Res Pract 2024; 254: 155094.
[http://dx.doi.org/10.1016/j.prp.2024.155094] [PMID: 38219497]
[50]
Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 2014; 20(30): 10432-9.
[http://dx.doi.org/10.3748/wjg.v20.i30.10432] [PMID: 25132759]
[51]
Xia L, Zhang D, Du R, et al. miR‐15b and miR‐16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008; 123(2): 372-9.
[http://dx.doi.org/10.1002/ijc.23501] [PMID: 18449891]
[52]
Liu C, Wang S, Zhu S, et al. MAP3K1-targeting therapeutic artificial miRNA suppresses the growth and invasion of breast cancer in vivo and in vitro. Springerplus 2016; 5(1): 11.
[http://dx.doi.org/10.1186/s40064-015-1597-z] [PMID: 26759750]
[53]
Pan J, Zhou C, Zhao X, et al. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep 2018; 8(1): 16699.
[http://dx.doi.org/10.1038/s41598-018-35139-3] [PMID: 30420640]
[54]
Fu J, Li T, Jiang X, Xia B, Hu L. MicroRNA-199-3p targets Sp1 transcription factor to regulate proliferation and epithelial to mesenchymal transition of human lung cancer cells. 3 Biotech 2021; 11(7): 352.
[http://dx.doi.org/10.1007/s13205-021-02881-x]
[55]
Hanafi AR, Jayusman AM, Alfasunu S, et al. Serum MiRNA as predictive and prognosis biomarker in advanced stage non-small cell lung cancer in Indonesia. Zhongguo Fei Ai Za Zhi 2020; 23(5): 321-32.
[PMID: 32283582]
[56]
Zuo M, Yao L, Wen L, et al. The expression of miRNA-216b is negatively correlated with 18F-FDG uptake in non-small cell lung cancer. World J Surg Oncol 2021; 19(1): 262.
[http://dx.doi.org/10.1186/s12957-021-02376-2] [PMID: 34470640]
[57]
Gao X, Shen K, Wang C, et al. MiR-320a downregulation is associated with imatinib resistance in gastrointestinal stromal tumors. Acta Biochim Biophys Sin (Shanghai) 2014; 46(1): 72-5.
[http://dx.doi.org/10.1093/abbs/gmt118] [PMID: 24217767]
[58]
He M, Wang J, Yin Z, et al. MiR-320a induces diabetic nephropathy] via inhibiting MafB. Aging (Albany NY) 2019; 11(10): 3055-79.
[http://dx.doi.org/10.18632/aging.101962] [PMID: 31102503]
[59]
Law YY, Lin YM, Liu SC, et al. Visfatin increases ICAM-1 expression and monocyte adhesion in human osteoarthritis synovial fibroblasts by reducing miR-320a expression. Aging 2020; 12(18): 18635-48.
[http://dx.doi.org/10.18632/aging.103889] [PMID: 32991325]
[60]
Wang B, Yang Z, Wang H, et al. MicroRNA-320a inhibits proliferation and invasion of breast cancer cells by targeting RAB11A. Am J Cancer Res 2015; 5(9): 2719-29.
[http://dx.doi.org/10.1158/1538-7445.AM2015-2719] [PMID: 26609479]
[61]
Liu J, Song Z, Feng C, et al. The long non-coding RNA SUMO1P3 facilitates breast cancer progression by negatively regulating miR- 320a. Am J Transl Res 2017; 9(12): 5594-602.
[PMID: 29312511]
[62]
Fortunato O, Borzi C, Milione M, et al. Circulating mir‐320a promotes immunosuppressive macrophages M2 phenotype associated with lung cancer risk. Int J Cancer 2019; 144(11): 2746-61.
[http://dx.doi.org/10.1002/ijc.31988] [PMID: 30426475]
[63]
Vykoukal J, Fahrmann JF, Patel N, et al. Contributions of circulating microRNAs for early detection of lung cancer. Cancers 2022; 14(17): 4221.
[http://dx.doi.org/10.3390/cancers14174221] [PMID: 36077759]
[64]
Qin H, Liu J, Du ZH, Hu R, Yu YK, Wang QA. Circular RNA hsa_circ_0012673 facilitates lung cancer cell proliferation and invasion via miR-320a/LIMK18521 axis. Eur Rev Med Pharmacol Sci 2020; 24(4): 1841-52.
[PMID: 32141553]
[65]
Khandelwal A, Sharma U, Barwal TS, et al. Circulating miR-320a acts as a tumor suppressor and prognostic factor in non-small cell lung cancer. Front Oncol 2021; 11: 645475.
[http://dx.doi.org/10.3389/fonc.2021.645475] [PMID: 33833996]
[66]
Huang H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent advances. Sensors 2018; 18(10): 3249.
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]
[67]
Zhao W, Sun Q, Yu Z, et al. MiR-320a-3p/ELF3 axis regulates cell metastasis and invasion in non-small cell lung cancer via PI3K/Akt pathway. Gene 2018; 670: 31-7.
[http://dx.doi.org/10.1016/j.gene.2018.05.100] [PMID: 29803922]
[68]
Lv Q, Hu JX, Li YJ, et al. MiR-320a effectively suppresses lung adenocarcinoma cell proliferation and metastasis by regulating STAT3 signals. Cancer Biol Ther 2017 Mar 4; 18(3): 142-51. Epub 2017 Jan 20.
[http://dx.doi.org/10.1080/15384047.2017.1281497] [PMID: 28106481] [PMCID: PMC5389432]
[69]
Wang H, Dong H, Qiao L, Wu Y, Wu B, Jin X. ZEB1 induces non- small cell lung cancer development by targeting microRNA-320a to increase the expression of RAD51AP1. Exp Cell Res 2021; 405(2): 112687.
[http://dx.doi.org/10.1016/j.yexcr.2021.112687] [PMID: 34097859]
[70]
Wang J, Shi C, Wang J, Cao L, Zhong L, Wang D. MicroRNA-320a is downregulated in non-small cell lung cancer and suppresses tumor cell growth and invasion by directly targeting insulin-like growth factor 1 receptor. Oncol Lett 2017; 13(5): 3247-52.
[http://dx.doi.org/10.3892/ol.2017.5863] [PMID: 28521431]
[71]
Xie H, Wang J. MicroRNA-320a-containing exosomes from human umbilical cord mesenchymal stem cells curtail proliferation and metastasis in lung cancer by binding to SOX4. J Recept Signal Transduct Res 2022; 42(3): 268-78.
[http://dx.doi.org/10.1080/10799893.2021.1918166] [PMID: 34096448]
[72]
Xing A, Pan L, Gao J. p100 functions as a metastasis activator and is targeted by tumor suppressing microRNA‐320a in lung cancer. Thorac Cancer 2018; 9(1): 152-8.
[http://dx.doi.org/10.1111/1759-7714.12564] [PMID: 29159900]
[73]
Zhang G, Jiang G, Wang C, et al. Decreased expression of microRNA- 320a promotes proliferation and invasion of non-small cell lung cancer cells by increasing VDAC1 expression. Oncotarget 2016; 7(31): 49470-80.
[http://dx.doi.org/10.18632/oncotarget.9943] [PMID: 27304056]
[74]
Sun JY, Zhao ZW, Li WM, et al. Knockdown of MALAT1 expression inhibits HUVEC proliferation by upregulation of miR-320a and down- regulation of FOXM1 expression. Oncotarget 2017; 8(37): 61499-509.
[75]
Liang SK, Hsu CC, Song HL, et al. FOXM1 is required for small cell lung cancer tumorigenesis and associated with poor clinical prognosis. Oncogene 2021; 40(30): 4847-58.
[http://dx.doi.org/10.1038/s41388-021-01895-2] [PMID: 34155349]
[76]
Peng J, Wang R, Sun W, et al. Delivery of miR-320a-3p by gold nano-particles combined with photothermal therapy for directly targeting Sp1 in lung cancer. Biomater Sci 2021; 9(19): 6528-41.
[http://dx.doi.org/10.1039/D1BM01124C] [PMID: 34582541]
[77]
Xu LM, Yu H, Yuan YJ, et al. Overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1α-suppression mediated methylation of PTEN. Front Cell Dev Biol 2020; 8: 553733.
[http://dx.doi.org/10.3389/fcell.2020.553733]
[78]
Kumar S, Sharawat SK, Ali A, et al. Identification of differentially expressed circulating serum microRNA for the diagnosis and prognosis of Indian non–small cell lung cancer patients. Curr Probl Cancer 2020; 44(4): 100540.
[http://dx.doi.org/10.1016/j.currproblcancer.2020.100540] [PMID: 32007320]
[79]
Wang N, Guo W, Song X, et al. Tumor-associated exosomal miRNA biomarkers to differentiate metastatic vs. nonmetastatic non-small cell lung cancer. Clin Chem Lab Med 2020; 58(9): 1535-45.
[http://dx.doi.org/10.1515/cclm-2019-1329] [PMID: 32271158]
[80]
Lu M, Hu C, Wu F, et al. MiR-320a is associated with cisplatin resistance in lung adenocarcinoma and its clinical value in non-small cell lung cancer: A comprehensive analysis based on microarray data. Lung Cancer 2020; 147: 193-7.
[http://dx.doi.org/10.1016/j.lungcan.2020.06.020] [PMID: 32731058]
[81]
Aziz NB, Mahmudunnabi RG, Umer M, et al. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst (Lond) 2020; 145(6): 2038-57.
[http://dx.doi.org/10.1039/C9AN02263E] [PMID: 32016203]
[82]
Hunt EA, Goulding AM, Deo SK. Direct detection and quantification of microRNAs. Anal Biochem 2009; 387(1): 1-12.
[http://dx.doi.org/10.1016/j.ab.2009.01.011] [PMID: 19454247]
[83]
Ouyang Y, Du W, Zhang B. Application of ROC curve in non-communicable diseases screening. Chin J Prev Med 2015; 49(4): 369-72.
[PMID: 26081550]
[84]
Lan XQ, Niu LY, Wu ZG, Zhang CX, Chen XL. [Application of ROC curve for evaluation of the effect of prenatal screening during second trimester of pregnancy]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2013; 30(5): 616-8.
[PMID: 24078584]
[85]
Wang ZF, Li GJ. [Value evaluation of follicle stimulating hormone and luteinizing hormone in the diagnosis of precocious puberty in girls by ROC curve analysis]. Zhongguo Dang Dai Er Ke Za Zhi 2012; 14(6): 441-4.
[PMID: 22738452]
[86]
Huang X, Chen S, Chen H, et al. ROC curve analysis of the sensitivity and specificity of biochemical detection of intrahepatic cholestasis during pregnancy. Z Geburtshilfe Neonatol 2021; 225(4): 327-32.
[http://dx.doi.org/10.1055/a-1299-2298] [PMID: 33246351]
[87]
Albeck MJ, Børgesen SE. ROC-curve analysis. A statistical method for the evaluation of diagnostic tests. Ugeskr Laeger 1990; 152(23): 1650-3.
[PMID: 2194326]
[88]
Pradhan AK, Emdad L, Das SK, Sarkar D, Fisher PB. The Enigma of miRNA Regulation in Cancer. Adv Cancer Res 2017; 135: 25-52.
[http://dx.doi.org/10.1016/bs.acr.2017.06.001] [PMID: 28882224]
[89]
Rolle K. miRNA Multiplayers in glioma. From bench to bedside. Acta Biochim Pol 2015; 62(3): 353-65.
[http://dx.doi.org/10.18388/abp.2015_1072] [PMID: 26307768]
[90]
Sousa DP, Conde J. Gold Nanoconjugates for miRNA modulation in cancer therapy: From miRNA Silencing to miRNA Mimics. ACS Materials Au 2022; 2(6): 626-40.
[http://dx.doi.org/10.1021/acsmaterialsau.2c00042] [PMID: 36397876]
[91]
Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nano-particles: What we have learned so far? J Nanopart Res 2010; 12(7): 2313-33.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[92]
Enea M, Pereira E, Costa J, et al. Cellular uptake and toxicity of gold nanoparticles on two distinct hepatic cell models. Toxicol In vitro 2021; 70: 105046.
[http://dx.doi.org/10.1016/j.tiv.2020.105046] [PMID: 33147519]
[93]
Pang HH, Huang CY, Chen PY, et al. Bioengineered bacteriophage like nanoparticles as RNAi therapeutics to enhance radiotherapy against glioblastomas. ACS Nano 2023; 17(11): 10407-22.
[http://dx.doi.org/10.1021/acsnano.3c01102] [PMID: 37120837]
[94]
Mo Y, Zhang Y, Zhang Y, Yuan J, Mo L, Zhang Q. Nickel nanoparticle-induced cell transformation: Involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway. J Nanobiotechnology 2021; 19(1): 370.
[http://dx.doi.org/10.1186/s12951-021-01117-7] [PMID: 34789290]
[95]
Capek I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interface Sci 2017; 249: 386-99.
[http://dx.doi.org/10.1016/j.cis.2017.01.007] [PMID: 28259207]
[96]
Schubert J, Chanana M. Coating Matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Curr Med Chem 2018; 25(35): 4553-86.
[http://dx.doi.org/10.2174/0929867325666180601101859] [PMID: 29852857]
[97]
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an important target for anticancer drug development. Front Pharmacol 2021; 12: 736323.
[http://dx.doi.org/10.3389/fphar.2021.736323] [PMID: 34512363]
[98]
Yu AM, Tian Y, Tu MJ, Ho PY, Jilek JL. MicroRNA Pharmacoepigenetics: Posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab Dispos 2016; 44(3): 308-19.
[http://dx.doi.org/10.1124/dmd.115.067470] [PMID: 26566807]
[99]
Pavlíková L, Šereš M, Breier A, Sulová Z. The roles of micrornas in cancer multidrug resistance. Cancers (Basel) 2022; 14(4): 1090.
[http://dx.doi.org/10.3390/cancers14041090] [PMID: 35205839]
[100]
Patel GK, Khan MA, Bhardwaj A, et al. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer 2017; 116(5): 609-19.
[http://dx.doi.org/10.1038/bjc.2017.18] [PMID: 28152544]