Recent Patents on Engineering

Author(s): Alemu Merga, Endalkachew Mosisa Gutema, Mahesh Gopal and Hirpa G. Lemu*

DOI: 10.2174/0118722121310962240605094216

DownloadDownload PDF Flyer Cite As
Numerical Simulation of Temperature Distribution and Residual Stress in Laser Beam Welding AA6061 and Ti-6Al-4V and Optimization of Welding Processes

Article ID: e260624231323 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Since the combination of its rapid processing speed and high energy input, laser beam welding is considered advanced and suitable for welding thin and lightweight metals. The residual stresses deposited in the parts as a result of rapid heating and cooling render laserwelded components susceptible to fractures and deformities.

Objective: In this patent, the modelling of the laser beam welding process during the joining of Ti- 6Al-4V and AA6061 dissimilar metals to analyze the effects of the welding process on residual stress and elastic strain by considering beam radius, beam offset, welding speed, and beam power as input parameters.

Methods: The 3D model of the Ti-6Al-4V and AA6061 was developed using CATIA V5R16 software. The beam radius, beam offset, welding speed and beam power are the input parameters considered, and the output parameters are stress and elastic strain. Design Expert is used to design the experiment. ANOVA was used, and a mathematical model was developed to analyze the performance characteristics of the welding process.

Results: The results revealed that increasing the laser power increases residual stress, whereas it decreases with increasing the other parameters. The maximum average equivalent von Mises stress was 288.79 MPa, which is near the yield strength of AA6061. The optimum welding conditions selected for minimum possible residual stress is 1600.003 W, welding speed 0.05 m/s, beam radius 0.014 m.

Conclusion: Based on the current observation during the simulation of joining dissimilar metals, the flow temperature along the weld line and weldment shows uneven distribution due to the dissimilarity of temperature-dependent properties of materials. The increased laser power leads to an increase in residual stress.

Keywords: AA6061, Ti- 6Al- 4V, Laser Beam Welding (LBW), ANOVA, design of experiments, Response Surface Methodology (RSM).

Graphical Abstract

[1]
W. Liu, J. Ma, F. Kong, S. Liu, and R. Kovacevic, "Numerical modeling and experimental verification of residual stress in autogenous laser welding of high-strength steel", Lasers. Manuf. Mater. Proc., vol. 2, no. 1, pp. 24-42, 2015.
[http://dx.doi.org/10.1007/s40516-015-0005-4]
[2]
G. Casalino, M. Mortello, and P. Peyre, "FEM analysis of fiber laser welding of titanium and aluminum", Procedia CIRP, vol. 41, pp. 992-997, 2016.
[http://dx.doi.org/10.1016/j.procir.2016.01.030]
[3]
W.H. Huang, J.Q. Long, and J.W. Xiang, "Parameter optimization of the laser T-joint Welding of aluminium alloy with low carbon steel using numerical and statistical methods", Lasers Eng., vol. 38, no. 3–6, pp. 167-183, 2017.
[4]
P. Havlík, J. Kouřil, R. Foret, I. Dlouhý, N. Enzinger, and C. Wiednig, "Evaluation of weldability of titanium alloy Ti-6Al-4V and aluminum alloy 6061 produced by electron beam welding", Mater. Sci. Forum, vol. 879, pp. 714-719, 2016.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.879.714]
[5]
C. Kumar, M. Das, C.P. Paul, and B. Singh, "Experimental investigation and metallographic characterization of fiber laser beam welding of Ti-6Al-4V alloy using response surface method", Opt. Lasers Eng., vol. 95, no. March, pp. 52-68, 2017.
[http://dx.doi.org/10.1016/j.optlaseng.2017.03.013]
[6]
T. Bajpei, H. Chelladurai, and M.Z. Ansari, "Experimental investigation and numerical analyses of residual stresses and distortions in GMA welding of thin dissimilar AA5052-AA6061 plates", J. Manuf. Process., vol. 25, pp. 340-350, 2017.
[http://dx.doi.org/10.1016/j.jmapro.2016.12.017]
[7]
S. D’Ostuni, P. Leo, and G. Casalino, "FEM simulation of dissimilar aluminum titanium fiber laser welding using 2D and 3D Gaussian heat sources", Metals (Basel), vol. 7, no. 8, p. 307, 2017.
[http://dx.doi.org/10.3390/met7080307]
[8]
M.P. Prabakaran, and G.R. Kannan, "Optimization of CO2 laser beam welding process parameters to attain maximum weld strength in dissimilar metals", Mater. Today Proc., vol. 5, no. 2, pp. 6607-6616, 2018.
[http://dx.doi.org/10.1016/j.matpr.2017.11.316]
[9]
P. Kumar, and A.N. Sinha, "Studies of temperature distribution for laser welding of dissimilar thin sheets through finite element method", J. Braz. Soc. Mech. Sci. Eng., vol. 40, no. 9, p. 455, 2018.
[http://dx.doi.org/10.1007/s40430-018-1380-5]
[10]
A.S. Ahmad, Y. Wu, H. Gong, and L. Liu, "Numerical simulation of thermal and residual stress field induced by three-pass TIG welding of Al 2219 considering the effect of interpass cooling", Int. J. Precis. Eng. Manuf., vol. 21, no. 8, pp. 1501-1518, 2020.
[http://dx.doi.org/10.1007/s12541-020-00357-1]
[11]
A. Behera, Optimization of process parameters in laser welding of dissimilar materials., 2020.
[http://dx.doi.org/10.1016/j.matpr.2020.07.148]
[12]
A.C.N. Ribeiro, R.H.M. de Siqueira, M.S.F. de Lima, R.A.R. Giorjão, and A.J. Abdalla, "Improvement weldability of dissimilar joints (Ti-6Al-4V/Al6013) for aerospace industry by laser beam welding", Int. J. Adv. Manuf. Technol., vol. 116, no. 3-4, pp. 1053-1070, 2021.
[http://dx.doi.org/10.1007/s00170-021-07506-4]
[13]
X. Chen, M. Jiang, Y. Chen, Z. Lei, S. Zhao, and S. Lin, "Laser welding-brazing under temporal and spatial power modulation for dissimilar materials AA6061 to Ti-6Al-4V joints", Manuf. Lett., vol. 29, pp. 70-73, 2021.
[http://dx.doi.org/10.1016/j.mfglet.2021.07.004]
[14]
S. Chandran, R. Rajesh, and M. Dev Anand, Multi-response optimization of process parameters for laser beam welding of AA6061-Ti-6Al-4V by grey relational analysis., 2021.
[http://dx.doi.org/10.1016/j.matpr.2021.01.172]
[15]
P.S. Ghosh, A. Sen, S. Chattopadhyaya, S. Sharma, J. Singh, S.P. Dwivedi, A. Saxena, A.M. Khan, D.Y. Pimenov, and K. Giasin, "Prediction of transient temperature distributions for laser welding of dissimilar metals", Appl. Sci. (Basel), vol. 11, no. 13, p. 5829, 2021.
[http://dx.doi.org/10.3390/app11135829]
[16]
M.T. Lemi, E.M. Gutema, and M. Gopal, "Modeling and simulation of friction stir welding process for AA6061-T6 aluminum alloy using finite element method", Engineering Solid Mechanics, vol. 10, no. 2, pp. 139-152, 2022.
[http://dx.doi.org/10.5267/j.esm.2022.2.001]
[17]
X. Zhou, X. Cao, F. Zhang, and J. Duan, "Numerical and experimental investigation of thermal stress distribution in laser lap welding of Ti-6Al-4V and 2024 alloy plates", Int. J. Adv. Manuf. Technol., vol. 118, no. 5-6, pp. 1427-1440, 2022.
[http://dx.doi.org/10.1007/s00170-021-08019-w]
[18]
M.S. Tahat, N.A. Emira, and H.T. Mohamad, "Study of the mechanical properties of heat treated 6063 aluminum alloy", Recent Patents Mech. Eng., vol. 3, no. 2, pp. 145-148, 2010.
[http://dx.doi.org/10.2174/2212797611003020145]
[19]
A. Duggirala, U. Dey, S. Paul, B. Acherjee, and S. Mitra, "Optimization of laser welding parameters of aluminium alloy 2024 using particle swarm optimization technique", Manuf. and Process. of Adv. Mat., vol. 1, no. 58, pp. 58-68, 2023.
[http://dx.doi.org/10.2174/9789815136715123010009]
[20]
Y. Sun, and H. Fujii, "Recent patented hybrid techniques for friction stir welding of metallic materials", Recent Pat. Mech. Eng., vol. 3, no. 3, pp. 206-210, 2010.
[http://dx.doi.org/10.2174/2212797611003030206]
[21]
A.C. Ji, W.M. Liu, J.L. Song, and F. Zhou, "Dynamical creation of fractionalized vortices and vortex lattices", Phys. Rev. Lett., vol. 101, no. 1, p. 010402, 2008.
[http://dx.doi.org/10.1103/PhysRevLett.101.010402] [PMID: 18764092]
[22]
S. Bag, "A perspective review on laser assisted microjoining", Recent Pat. Mech. Eng., vol. 4, no. 2, pp. 153-167, 2011.
[http://dx.doi.org/10.2174/2212797611104020153]
[23]
P. Thejasree, N. Manikandan, J.S. Binoj, K.C. Varaprasad, D. Palanisamy, and R. Raju, Numerical simulation and experimental investigation on laser beam welding of Inconel 625., 2020.
[http://dx.doi.org/10.1016/j.matpr.2020.07.042]
[24]
E.M. Gutema, M. Gopal, and H.G. Lemu, "Minimization of surface roughness and temperature during turning of aluminum 6061 using response surface methodology and desirability function analysis", Materials (Basel), vol. 15, no. 21, p. 7638, 2022.
[http://dx.doi.org/10.3390/ma15217638] [PMID: 36363229]
[25]
M. Gopal, E.M. Gutema, and Y. Solomon, "Experimental investigation of machining time and optimization of machining parameters using RSM and Genetic Algorithm (GA) on 2205-duplex stainless steel", Int. J. Eng. Res. Africa, vol. 60, pp. 1-13, 2022.
[http://dx.doi.org/10.4028/p-9933yq]
[26]
H. Ramiarison, N. Barka, and S. Amira, "Optimization of parameters in laser welding of aluminum alloy 5052-H32 using beam oscillation technique for mechanical performance improvement", Int. J. Lightweight Mater. Manuf., vol. 5, no. 4, pp. 470-483, 2022.
[http://dx.doi.org/10.1016/j.ijlmm.2022.05.006]
[27]
Y.H. Chen, H.S. Tao, D.X. Yao, and W.M. Liu, "Kondo metal and ferrimagnetic insulator on the triangular kagome lattice", Phys. Rev. Lett., vol. 108, no. 24, p. 246402, 2012.
[http://dx.doi.org/10.1103/PhysRevLett.108.246402] [PMID: 23004298]
[28]
H. Faisal, "“A review of patented methodologies in instrumented indentation residual stress measurements.” Recent Patents on Mech", Engg., vol. 4, no. 2, pp. 138-152, 2011.
[http://dx.doi.org/10.2174/2212797611104020138]