Antifungal Resistance in Candida Species: A Bit from the Totality

Article ID: e240624231252

  • * (Excluding Mailing and Handling)

Abstract

Resistance to antifungals is one of the natural protection processes developed by fungi to promote their persistence. Exposure of fungi to these agents over long periods due to improper prescription or a contaminated environment increases the resistance problem. Microbiology related to fungal species and clinical settings related to the therapeutic failure of antifungal drugs are two concepts used to define resistance. The minimum inhibitory concentration (MIC) measurement is the common criterion for determining antifungal resistance. Candida spp. is the most common group of fungi that has developed resistance to different antifungal agents. C. albicans has shown resistance to numerous antifungal agents from this genus, followed by non-albicans Candida (NAC). The majority of resistance is to the azole group of antifungal agents through various mechanisms. Resistance to echinocandins is also reported in many species of Candida, while resistance to polyene has been observed in rare cases. The mechanism of resistance action is generally related to a genetic mutation, which changes the mechanisms of diffusion, fungal structure, and drug degradation. Biofilm formation also contributes to antifungal resistance. Current information on the nature and mechanism of antifungal resistance in Candida spp. is briefly presented in this review.

[1]
Ciurea, C.N.; Kosovski, I.B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and candidiasis-opportunism versus pathogenicity: A review of the virulence traits. Microorganisms, 2020, 8(6), 857.
[http://dx.doi.org/10.3390/microorganisms8060857] [PMID: 32517179]
[2]
Hameed, A.R.; Ali, S.M.; Ahmed, L.T. Biological study of Candida species and virulence factor. Int. J. Adv. Res. Eng. Technol., 2018, 1, 8-16.
[3]
Moris, D.V.; Melhem, M.S.C.; Martins, M.A.; Mendes, R.P. Oral Candida spp. colonization in human immunodeficiency virus-infected individuals. J. Venom. Anim. Toxins Incl. Trop. Dis., 2008, 14(2), 224-257.
[http://dx.doi.org/10.1590/S1678-91992008000200004]
[4]
Gow, N.A.R.; van de Veerdonk, F.L.; Brown, A.J.P.; Netea, M.G. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nat. Rev. Microbiol., 2012, 10(2), 112-122.
[http://dx.doi.org/10.1038/nrmicro2711] [PMID: 22158429]
[5]
Molero, G.; Díez-Orejas, R.; Navarro-García, F.; Monteoliva, L.; Pla, J.; Gil, C.; Sánchez-Pérez, M.; Nombela, C. Candida albicans: Genetics, dimorphism and pathogenicity. Int. Microbiol., 1998, 1(2), 95-106.
[PMID: 10943347]
[6]
Dabas, P.S. An approach to etiology, diagnosis and management of different types of candidiasis. J. Yeast Fungal Res., 2013, 4, 63-74.
[7]
Surain, P.; Aggarwal, N.K. Candida, a human pathogen and major types of candidiasis. Int. J. Pharm. Sci. Res., 2020, 11, 41-67.
[8]
Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microb. Pathog., 2018, 117, 128-138.
[http://dx.doi.org/10.1016/j.micpath.2018.02.028] [PMID: 29454824]
[9]
Höfken, T. Candida and candidiasis. In: Current Progress in Medical Mycology; Springer: Cham, 2013.
[10]
Noble, S.M.; Gianetti, B.A.; Witchley, J.N. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat. Rev. Microbiol., 2017, 15(2), 96-108.
[http://dx.doi.org/10.1038/nrmicro.2016.157] [PMID: 27867199]
[11]
Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans-the virulence factors and clinical manifestations of infection. J. Fungi, 2021, 7(2), 79.
[http://dx.doi.org/10.3390/jof7020079] [PMID: 33499276]
[12]
Kadosh, D.; Mundodi, V. A re-evaluation of the relationship between morphology and pathogenicity in Candida species. J. Fungi, 2020, 6(1), 13.
[http://dx.doi.org/10.3390/jof6010013] [PMID: 31940968]
[13]
Deorukhkar, S.C.; Roushani, S. Identification of Candida species: Conventional methods in the era of molecular diagnosis. Ann Microbiol Immunol., 2018, 1(1002), 1-6.
[14]
Fidel, P.L., Jr; Vazquez, J.A.; Sobel, J.D. Candida glabrata: Review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin. Microbiol. Rev., 1999, 12(1), 80-96.
[http://dx.doi.org/10.1128/CMR.12.1.80] [PMID: 9880475]
[15]
Mendling, W.; Brasch, J.; Cornely, O.A.; Effendy, I.; Friese, K.; Ginter-Hanselmayer, G.; Hof, H.; Mayser, P.; Mylonas, I.; Ruhnke, M.; Schaller, M.; Weissenbacher, E.R. Guideline: Vulvovaginal candidosis (AWMF 015/072), S2k (excluding chronic mucocutaneous candidosis). Mycoses, 2015, 58(S1), 1-15.
[http://dx.doi.org/10.1111/myc.12292] [PMID: 25711406]
[16]
Lee, H.; Lee, D.G. Novel approaches for efficient antifungal drug action. J. Microbiol. Biotechnol., 2018, 28(11), 1771-1781.
[http://dx.doi.org/10.4014/jmb.1807.07002] [PMID: 30178649]
[17]
Krishnasamy, L.; Krishnakumar, S.; Kumaramanickavel, G.; Saikumar, C. Molecular mechanisms of antifungal drug resistance in Candida species. J. Clin. Diagn. Res., 2018, 12, DE01-DE06.
[http://dx.doi.org/10.7860/JCDR/2018/36218.11961]
[18]
Sheikh, N.; Jahagirdar, V.; Kothadia, S.; Nagoba, B. Antifungal drug resistance in Candida species. Eur. J. Gen. Med, 2013, 10, 254-258.
[19]
Pfaller, M.A. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am. J. Med., 2012, 125(1)(Suppl.), S3-S13.
[http://dx.doi.org/10.1016/j.amjmed.2011.11.001] [PMID: 22196207]
[20]
Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses, 2015, 58(S2)(Suppl. 2), 2-13.
[http://dx.doi.org/10.1111/myc.12330] [PMID: 26033251]
[21]
Bhattacharya, S; Sae-Tia, S; Fries, BC Candidiasis and mechanisms of antifungal resistance. Antibiotics, 2020, 9(6), 312.
[http://dx.doi.org/10.3390/antibiotics9060312]
[22]
Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond. Chem. Rev., 2021, 121(6), 3390-3411.
[http://dx.doi.org/10.1021/acs.chemrev.0c00199] [PMID: 32441527]
[23]
Chowdhary, A.; Meis, J.F. Antifungal resistance in clinically significant fungi. Fungal Genet. Biol., 2020, 139, 103369.
[http://dx.doi.org/10.1016/j.fgb.2020.103369] [PMID: 32201127]
[24]
Ortiz, C; Torres, R Antifungal resistance and its evolution: An increasing concern. Adv Biotech & Micro, 2018, 10, 003-007.
[25]
Chaabane, F.; Graf, A.; Jequier, L.; Coste, A.T. Review on antifungal resistance mechanisms in the emerging pathogen Candida auris. Front. Microbiol., 2019, 10, 2788.
[http://dx.doi.org/10.3389/fmicb.2019.02788] [PMID: 31849919]
[26]
Sanglard, D. Resistance and tolerance mechanisms to antifungal drugs in fungal pathogens. Mycologist, 2003, 17(2), 74-78.
[http://dx.doi.org/10.1017/S0269915X03002076]
[27]
Arastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.F.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S. Drug-resistant fungi: An emerging challenge threatening our limited antifungal armamentarium. Antibiotics, 2020, 9(12), 877.
[http://dx.doi.org/10.3390/antibiotics9120877] [PMID: 33302565]
[28]
Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis., 2017, 17(12), e383-e392.
[http://dx.doi.org/10.1016/S1473-3099(17)30316-X] [PMID: 28774698]
[29]
Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol., 2020, 18(6), 319-331.
[http://dx.doi.org/10.1038/s41579-019-0322-2] [PMID: 32047294]
[30]
Parente-Rocha, JA; Bailão, AM; Amaral, AC; Taborda, CP; Paccez, JD; Borges, CL; Pereira, M Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: An overview about endemic dimorphic fungi. Mediat Inflamm, 2017, 2017, 9870679.
[http://dx.doi.org/10.1155/2017/9870679]
[31]
Kumar Nigam, P. Antifungal drugs and resistance: Current concepts. Nasza Dermatol. Online, 2015, 6(2), 212-221.
[http://dx.doi.org/10.7241/ourd.20152.58]
[32]
Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360(6390), 739-742.
[http://dx.doi.org/10.1126/science.aap7999] [PMID: 29773744]
[33]
Espinel-Ingroff, A. Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev. Iberoam. Micol., 2008, 25(2), 101-106.
[http://dx.doi.org/10.1016/S1130-1406(08)70027-5] [PMID: 18473504]
[34]
Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J.S. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol., 2013, 62(1), 10-24.
[http://dx.doi.org/10.1099/jmm.0.045054-0] [PMID: 23180477]
[35]
Sudbery, P.E. Growth of Candida albicans hyphae. Nat. Rev. Microbiol., 2011, 9(10), 737-748.
[http://dx.doi.org/10.1038/nrmicro2636] [PMID: 21844880]
[36]
Nadeem, S.G.; Shafiq, A.; Hakim, S.T.; Anjum, Y.; Kazm, S.U. Effect of growth media, pH and temperature on yeast to hyphal transition in Candida albicans. Open J. Med. Microbiol., 2013, 3, 185-192.
[http://dx.doi.org/10.4236/ojmm.2013.33028]
[37]
Esfandiary, M.A.; Farasat, A.; Eostamian, M.; Fattahy, A.; Koolagy, M.H.; Esfandiary, A. Study of morphological characteristics, pathogenicity and drug resistance of Candida glabrata as increasing opportunistic yeast. Eur. J. Exp. Biol., 2012, 2, 948-952.
[38]
Sheth, C.C.; Johnson, E.; Baker, M.E.; Haynes, K.; Mühlschlegel, F.A. Phenotypic identification of Candida albicans by growth on chocolate agar. Med. Mycol., 2005, 43(8), 735-738.
[http://dx.doi.org/10.1080/13693780500265998] [PMID: 16422305]
[39]
Midhat, A.S.; Al-Attraqchi, A.A.F.; Al-din, T.H. Relation of recurrent vulvovaginal candidiasis with beta defensin and IL-4 among different Iraqi women. Ann. Trop. Med. Public Health, 2020, 23(14)
[http://dx.doi.org/10.36295/ASRO.2020.231445]
[40]
Kontoyiannis, D.P.; Lewis, R.E. Antifungal drug resistance of pathogenic fungi. Lancet, 2002, 359(9312), 1135-1144.
[http://dx.doi.org/10.1016/S0140-6736(02)08162-X] [PMID: 11943280]
[41]
Wiederhold, N. Antifungal resistance: Current trends and future strategies to combat. Infect. Drug Resist., 2017, 10, 249-259.
[http://dx.doi.org/10.2147/IDR.S124918] [PMID: 28919789]
[42]
Vazquez, J.A. Combination antifungal therapy against Candida species: The new frontier-are we there yet? Med. Mycol., 2003, 41(5), 355-368.
[http://dx.doi.org/10.1080/13693780310001616528] [PMID: 14653512]
[43]
Titmarsh, S. Tackling the growing problem of antifungal resistance. Prescriber, 2018, 29(11), 24-27.
[http://dx.doi.org/10.1002/psb.1718]
[44]
Vanden Bossche, H.; Marichal, P.; Odds, F.C. Molecular mechanisms of drug resistance in fungi. Trends Microbiol., 1994, 2(10), 393-400.
[http://dx.doi.org/10.1016/0966-842X(94)90618-1] [PMID: 7850208]
[45]
Sobel, J.D.; Faro, S.; Force, R.W.; Foxman, B.; Ledger, W.J.; Nyirjesy, P.R.; Reed, B.D.; Summers, P.R. Vulvovaginal candidiasis: Epidemiologic, diagnostic, and therapeutic considerations. Am. J. Obstet. Gynecol., 1998, 178(2), 203-211.
[http://dx.doi.org/10.1016/S0002-9378(98)80001-X] [PMID: 9500475]
[46]
Ramírez-Lozada, T.; Espinosa-Hernández, V.M.; Frías-De-León, M.G.; Martínez-Herrera, E. Update of vulvovaginal candidiasis in pregnant and non-pregnant patients. Curr. Fungal Infect. Rep., 2019, 13(4), 181-190.
[http://dx.doi.org/10.1007/s12281-019-00357-3]