Structural Properties of Rat Intestinal Fatty Acid-Binding Protein with its Dynamics: Insights into Intrinsic Disorder

Page: [458 - 468] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The rat intestinal fatty acid-binding protein (I-FABP) is expressed in the small intestine and is involved in the absorption and transport of dietary fatty acids. It is used as a marker for intestinal injury and is associated with various gastrointestinal disorders. I-FABP has been studied extensively using conventional experimental and computational techniques. However, the detection of intrinsically disordered regions requires the application of special sampling molecular dynamics simulations along with certain bioinformatics because conventional computational and experimental studies face challenges in identifying the features of intrinsic disorder.

Methods: Replica exchange molecular dynamics simulations were conducted along with bioinformatics studies to gain deeper insights into the structural properties of I-FABP. Specifically, the Cα and Hα chemical shift values werecalculated, and the findings were compared to the experiments. Furthermore, secondary and tertiary structure properties were also calculated, and the protein was clustered using k-means clustering. The end-to-end distance and radius of gyration values were reported for the protein in an aqueous solution medium. In addition, its disorder tendency was studied using various bioinformatics tools.

Results and Conclusion: It was reported that I-FABP is a flexible protein with regions that demonstrate intrinsic disorder characteristics. This flexibility and intrinsic disorder characteristics of IFABP may be related to its nature in ligand binding processes.

Graphical Abstract

[1]
Gajda, A.M.; Storch, J. Enterocyte fatty acid-binding proteins (FABPs): Different functions of liver and intestinal FABPs in the intestine. Prostaglandins Leukot. Essent. Fatty Acids, 2015, 93, 9-16.
[http://dx.doi.org/10.1016/j.plefa.2014.10.001] [PMID: 25458898]
[2]
Storch, J.; Thumser, A.E.A. The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2000, 1486(1), 28-44.
[http://dx.doi.org/10.1016/S1388-1981(00)00046-9]
[3]
Hotamisligil, G.S.; Bernlohr, D.A. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat. Rev. Endocrinol., 2015, 11(10), 592-605.
[http://dx.doi.org/10.1038/nrendo.2015.122] [PMID: 26260145]
[4]
de Carvalho, C.; Caramujo, M. The various roles of fatty acids. Molecules, 2018, 23(10), 2583.
[http://dx.doi.org/10.3390/molecules23102583] [PMID: 30304860]
[5]
Storch, J.; Corsico, B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu. Rev. Nutr., 2008, 28(1), 73-95.
[http://dx.doi.org/10.1146/annurev.nutr.27.061406.093710] [PMID: 18435590]
[6]
Storch, J.; Thumser, A.E. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem., 2010, 285(43), 32679-32683.
[http://dx.doi.org/10.1074/jbc.R110.135210] [PMID: 20716527]
[7]
Glatz, J.F.C.; van Nieuwenhoven, F.A.; Luiken, J.J.F.P.; Schaap, F.G.; van der Vusse, G.J. Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolism. Prostaglandins Leukot. Essent. Fatty Acids, 1997, 57(4-5), 373-378.
[http://dx.doi.org/10.1016/S0952-3278(97)90413-0] [PMID: 9430381]
[8]
Jin, R.; Hao, J.; Yi, Y.; Sauter, E.; Li, B. Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(8), 158964.
[http://dx.doi.org/10.1016/j.bbalip.2021.158964] [PMID: 33984518]
[9]
Furuhashi, M; Saitoh, S; Shimamoto, K; Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol., 2014, 8(Suppl 3), 23-33.
[10]
Ogawa, E.; Owada, Y.; Ikawa, S.; Adachi, Y.; Egawa, T.; Nemoto, K.; Suzuki, K.; Hishinuma, T.; Kawashima, H.; Kondo, H.; Muto, M.; Aiba, S.; Okuyama, R. Epidermal FABP (FABP5) regulates keratinocyte differentiation by 13(S)-HODE-mediated activation of the NF-κB signaling pathway. J. Invest. Dermatol., 2011, 131(3), 604-612.
[http://dx.doi.org/10.1038/jid.2010.342] [PMID: 21068754]
[11]
Rezar, R.; Jirak, P.; Gschwandtner, M.; Derler, R.; Felder, T.K.; Haslinger, M.; Kopp, K.; Seelmaier, C.; Granitz, C.; Hoppe, U.C.; Lichtenauer, M. Heart-type fatty acid-binding protein (H-FABP) and its role as a biomarker in heart failure: What do we know so far? J. Clin. Med., 2020, 9(1), 164.
[http://dx.doi.org/10.3390/jcm9010164] [PMID: 31936148]
[12]
Wang, G.; Bonkovsky, H.L.; de Lemos, A.; Burczynski, F.J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res., 2015, 56(12), 2238-2247.
[http://dx.doi.org/10.1194/jlr.R056705] [PMID: 26443794]
[13]
Nowowiejska, J.; Baran, A.; Hermanowicz, J.M.; Sieklucka, B.; Krahel, J.A.; Kiluk, P.; Pawlak, D.; Flisiak, I. Fatty acid-binding protein 7 (FABP-7), glutamic acid and neurofilament light chain (NFL) as potential markers of neurodegenerative disorders in psoriatic patients—a pilot study. J. Clin. Med., 2022, 11(9), 2430.
[http://dx.doi.org/10.3390/jcm11092430] [PMID: 35566558]
[14]
Huang, X.; Zhou, Y.; Sun, Y.; Wang, Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog. Lipid Res., 2022, 87, 101178.
[http://dx.doi.org/10.1016/j.plipres.2022.101178] [PMID: 35780915]
[15]
Haunerland, N.H.; Spener, F. Properties and physiological significance of fatty acid binding proteins.Adv. Mol. Cell Biol; Elsevier, 2003, pp. 99-122.
[16]
Praslickova, D.; Torchia, E.C.; Sugiyama, M.G.; Magrane, E.J.; Zwicker, B.L.; Kolodzieyski, L.; Agellon, L.B. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine. PLoS One, 2012, 7(12), e50810.
[http://dx.doi.org/10.1371/journal.pone.0050810] [PMID: 23251388]
[17]
Agellon, L.B. Importance of fatty acid binding proteins in cellular function and organismal metabolism. J. Cell. Mol. Med., 2024, 28(5), e17703.
[http://dx.doi.org/10.1111/jcmm.17703] [PMID: 36876733]
[18]
Allison, T.C.; Coskuner, O.; Gonzalez, C.A. Metallic Systems: A Quantum Chemist’s Perspective; CRC Press, 2011.
[19]
Coskuner, O.; Wise-Scira, O. Arginine and disordered amyloid-β peptide structures: Molecular level insights into the toxicity in Alzheimer’s disease. ACS Chem. Neurosci., 2013, 4(12), 1549-1558.
[http://dx.doi.org/10.1021/cn4001389] [PMID: 24041422]
[20]
Coskuner, O.; Uversky, V.N. Tyrosine regulates β-sheet structure formation in amyloid-β42: A new clustering algorithm for disordered proteins. J. Chem. Inf. Model., 2017, 57(6), 1342-1358.
[http://dx.doi.org/10.1021/acs.jcim.6b00761] [PMID: 28474890]
[21]
Akbayrak, I.Y.; Caglayan, S.I.; Durdagi, S.; Kurgan, L.; Uversky, V.N.; Ulver, B.; Dervisoğlu, H.; Haklidir, M.; Hasekioglu, O.; Coskuner-Weber, O. Structures of MERS-CoV macro domain in aqueous solution with dynamics: Impacts of parallel tempering simulation techniques and CHARMM36m and AMBER99SB force field parameters. Proteins, 2021, 89(10), 1289-1299.
[http://dx.doi.org/10.1002/prot.26150] [PMID: 34008220]
[22]
Akbayrak, I.Y.; Caglayan, S.I.; Kurgan, L.; Uversky, V.N.; Coskuner-Weber, O. Insights into the structural properties of SARS-CoV-2 main protease. Curr. Res. Struct. Biol., 2022, 4, 349-355.
[http://dx.doi.org/10.1016/j.crstbi.2022.11.001] [PMID: 36466947]
[23]
Fatafta, H.; Samantray, S.; Sayyed-Ahmad, A.; Coskuner-Weber, O.; Strodel, B. Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions. Progress in Molecular Biology and Translational Science; Elsevier, 2021, pp. 135-185.
[24]
Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett., 1999, 314(1-2), 141-151.
[http://dx.doi.org/10.1016/S0009-2614(99)01123-9]
[25]
Scapin, G.; Gordon, J.I.; Sacchettini, J.C. Refinement of the structure of recombinant rat intestinal fatty acid-binding apoprotein at 1.2-A resolution. J. Biol. Chem., 1992, 267(6), 4253-4269.
[http://dx.doi.org/10.1016/S0021-9258(19)50654-8] [PMID: 1740465]
[26]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[27]
Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73.
[http://dx.doi.org/10.1038/nmeth.4067] [PMID: 27819658]
[28]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[29]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[30]
Alici, H.; Uversky, V.N.; Kang, D.E.; Woo, J.A.; Coskuner-Weber, O. Structures of the wild-type and S59L mutant CHCHD10 proteins important in amyotrophic lateral sclerosis–frontotemporal dementia. ACS Chem. Neurosci., 2022, 13(8), 1273-1280.
[http://dx.doi.org/10.1021/acschemneuro.2c00011] [PMID: 35349255]
[31]
Evans, D.J.; Holian, B.L. The nose–hoover thermostat. J. Chem. Phys., 1985, 83(8), 4069-4074.
[http://dx.doi.org/10.1063/1.449071]
[32]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190.
[http://dx.doi.org/10.1063/1.328693]
[33]
Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput., 2008, 4(1), 116-122.
[http://dx.doi.org/10.1021/ct700200b] [PMID: 26619985]
[34]
Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983, 22(12), 2577-2637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[35]
Caliskan, M.; Mandaci, S.Y.; Uversky, V.N.; Coskuner-Weber, O. Secondary structure dependence of amyloid-β(1–40) on simulation techniques and force field parameters. Chem. Biol. Drug Des., 2021, 97(5), 1100-1108.
[http://dx.doi.org/10.1111/cbdd.13830] [PMID: 33580600]
[36]
Mandaci, SY; Caliskan, M; Sariaslan, MF; Uversky, VN; Coskuner-Weber, O Epitope region identification challenges of intrinsically disordered proteins in neurodegenerative diseases: Secondary structure dependence of α-synuclein on simulation techniques and force field parameters. Chem. Biol. Drug Des., 2020, 13662.
[37]
Coskuner-Weber, O.; Caglayan, S.I. Secondary structure dependence on simulation techniques and force field parameters: From disordered to ordered proteins. Biophys Rev., 2021, 13(6), 1173-1178.
[http://dx.doi.org/10.1007/s12551-021-00850-5]
[38]
Dayhoff, G.W., II; Uversky, V.N. Rapid prediction and analysis of protein intrinsic disorder. Protein Sci., 2022, 31(12), e4496.
[http://dx.doi.org/10.1002/pro.4496] [PMID: 36334049]
[39]
Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Dunker, A.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 2005, 61(S7)(Suppl. 7), 176-182.
[http://dx.doi.org/10.1002/prot.20735] [PMID: 16187360]
[40]
Peng, K.; Radivojac, P.; Vucetic, S.; Dunker, A.K.; Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 2006, 7(1), 208.
[http://dx.doi.org/10.1186/1471-2105-7-208] [PMID: 16618368]
[41]
Peng, K.; Vucetic, S.; Radivojac, P.; Brown, C.J.; Dunker, A.K.; Obradovic, Z. Optimizing long intrinsic disorder predictors with protein evolutionary information. J. Bioinform. Comput. Biol., 2005, 3(1), 35-60.
[http://dx.doi.org/10.1142/S0219720005000886] [PMID: 15751111]
[42]
Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence complexity of disordered protein. Proteins, 2001, 42(1), 38-48.
[http://dx.doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3] [PMID: 11093259]
[43]
Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(4), 996-1010.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.011] [PMID: 20100603]
[44]
Mészáros, B; Erdos, G; Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res, 2018, 46(W1), W329-W337.
[45]
Djulbegovic, M.; Taylor Gonzalez, D.J.; Antonietti, M.; Uversky, V.N.; Shields, C.L.; Karp, C.L. Intrinsic disorder may drive the interaction of PROS1 and MERTK in uveal melanoma. Int. J. Biol. Macromol., 2023, 250, 126027.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126027] [PMID: 37506796]
[46]
Oates, M.E.; Romero, P.; Ishida, T.; Ghalwash, M.; Mizianty, M.J.; Xue, B.; Dosztányi, Z.; Uversky, V.N.; Obradovic, Z.; Kurgan, L.; Dunker, A.K.; Gough, J. D²P²: Database of disordered protein predictions. Nucleic Acids Res., 2013, 41(Database issue), D508-D516.
[PMID: 23203878]
[47]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[48]
Zimmerman, A.W.; Veerkamp, J.H. New insights into the structure and function of fatty acid-binding proteins. Cell. Mol. Life Sci., 2002, 59(7), 1096-1116.
[http://dx.doi.org/10.1007/s00018-002-8490-y] [PMID: 12222958]
[49]
Zhang, F.; Lücke, C.; Baier, L.J.; Sacchettini, J.C.; Hamilton, J.A. Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. J. Biomol. NMR, 1997, 9(3), 213-228.
[http://dx.doi.org/10.1023/A:1018666522787] [PMID: 9204553]
[50]
Bakowies, D.; Van Gunsteren, W.F. Simulations of apo and holo-fatty acid binding protein: Structure and dynamics of protein, ligand and internal water 1 1Edited by B. Honig. J. Mol. Biol., 2002, 315(4), 713-736.