Letters in Organic Chemistry

Author(s): Xin-Yu Lin, Guo-Jun Chen, Su-Zhe Wu, Ke-Xuan Xu, Xiao-Tian Zhang and Qi Feng*

DOI: 10.2174/0115701786302455240603070018

DownloadDownload PDF Flyer Cite As
Synthesis of 4-hydroxyquinoline-2(1H)-ones Based on Ag(I)-catalyzed Carbon Dioxide Fixation on 2-alknylanilines

Page: [56 - 60] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

4-Hydroxyquinoline-2(1H)-ones exhibit multiple biological activities, and studying their synthetic methods is of great significance. In the presence of tetramethylguanidine and silver nitrate, 4-hydroxyquinoline-2(1H)-ones were efficiently synthesized from 2-ethynylanilines and carbon dioxide under atmospheric pressure. The reaction conditions, such as types of silver catalysts and reaction solvents, were optimized, and the applicability of the substrate was preliminarily investigated. This method provides an alternative pathway for the synthesis of 4-hydroxyquinoline-2(1H)-ones and the conversion and utilization of carbon dioxide.

Keywords: 4-Hydroxyquinoline-2(1H)–ones, 2-ethynylanilines, carbon dioxide, tetramethylguanidine, silver-catalyzed, atmospheric pressure.

Graphical Abstract

[1]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Med. Res. Rev., 2018, 38(3), 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[2]
Arya, K.; Agarwal, M. Bioorg. Med. Chem. Lett., 2007, 17(1), 86-93.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.082] [PMID: 17046250]
[3]
de Macedo, M.B.; Kimmel, R.; Urankar, D.; Gazvoda, M.; Peixoto, A.; Cools, F.; Torfs, E.; Verschaeve, L.; Lima, E.S.; Lyčka, A.; Milićević, D.; Klásek, A.; Cos, P.; Kafka, S.; Košmrlj, J.; Cappoen, D. Eur. J. Med. Chem., 2017, 138, 491-500.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.061] [PMID: 28689097]
[4]
Chen, Y.F.; Lin, Y.C.; Morris-Natschke, S.L.; Wei, C.F.; Shen, T.C.; Lin, H.Y.; Hsu, M.H.; Chou, L.C.; Zhao, Y.; Kuo, S.C.; Lee, K.H.; Huang, L.J. Br. J. Pharmacol., 2015, 172(5), 1195-1221.
[http://dx.doi.org/10.1111/bph.12992] [PMID: 25363404]
[5]
Zhang, S.L.; Huang, Z.S.; Li, Y.M.; Chan, A.S.C.; Gu, L.Q. Tetrahedron, 2008, 64(19), 4403-4407.
[http://dx.doi.org/10.1016/j.tet.2008.02.052]
[6]
Jampilek, J.; Musiol, R.; Pesko, M.; Kralova, K.; Vejsova, M.; Carroll, J.; Coffey, A.; Finster, J.; Tabak, D.; Niedbala, H.; Kozik, V.; Polanski, J.; Csollei, J.; Dohnal, J. Molecules, 2009, 14(3), 1145-1159.
[http://dx.doi.org/10.3390/molecules14031145] [PMID: 19305366]
[7]
Hamama, W.S.; Hassanien, A.E.D.E.; Zoorob, H.H. Synth. Commun., 2014, 44(13), 1833-1858.
[http://dx.doi.org/10.1080/00397911.2013.867352]
[8]
Atalay, S.S.; Assad, M.Y.; Amagata, T.; Wu, W. Tetrahedron Lett., 2020, 61(16), 151778.
[http://dx.doi.org/10.1016/j.tetlet.2020.151778]
[9]
Tedesco, R.; Chai, D.; Darcy, M.G.; Dhanak, D.; Fitch, D.M.; Gates, A.; Johnston, V.K.; Keenan, R.M.; Lin-Goerke, J.; Sarisky, R.T.; Shaw, A.N.; Valko, K.L.; Wiggall, K.J.; Zimmerman, M.N.; Duffy, K.J. Bioorg. Med. Chem. Lett., 2009, 19(15), 4354-4358.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.080] [PMID: 19505821]
[10]
Sekine, K.; Yamada, T. Chem. Soc. Rev., 2016, 45(16), 4524-4532.
[http://dx.doi.org/10.1039/C5CS00895F] [PMID: 26888406]
[11]
Song, Q.W.; Zhou, Z.H.; He, L.N. Green Chem., 2017, 19(16), 3707-3728.
[http://dx.doi.org/10.1039/C7GC00199A]
[12]
Zhang, W.; Zhang, N.; Guo, C.; Lü, X. Youji Huaxue, 2017, 37(6), 1309-1321.
[http://dx.doi.org/10.6023/cjoc201701031]
[13]
Feng, J.; Zeng, S.; Feng, J.; Dong, H.; Zhang, X. Chin. J. Chem., 2018, 36(10), 961-970.
[http://dx.doi.org/10.1002/cjoc.201800252]
[14]
Xia, S.M.; Chen, K.H.; Fu, H.C.; He, L.N. Front Chem., 2018, 6, 462.
[http://dx.doi.org/10.3389/fchem.2018.00462] [PMID: 30349815]
[15]
Wang, S.; Xi, C. Chem. Soc. Rev., 2019, 48(1), 382-404.
[http://dx.doi.org/10.1039/C8CS00281A] [PMID: 30480679]
[16]
Truong, C.C.; Mishra, D.K. J. CO2 Util, 2020, 41, 101252.
[http://dx.doi.org/10.1016/j.jcou.2020.101252]
[17]
Zhou, C.; Li, M.; Yu, J.; Sun, S.; Cheng, J. Youji Huaxue, 2020, 40(8), 2221-2231.
[http://dx.doi.org/10.6023/cjoc202003039]
[18]
Liao, X.; Wang, Z.; Tang, W.; Lin, J. Youji Huaxue, 2023, 43(8), 2699-2710.
[http://dx.doi.org/10.6023/cjoc202212026]
[19]
Ishida, T.; Kikuchi, S.; Yamada, T. Org. Lett., 2013, 15(14), 3710-3713.
[http://dx.doi.org/10.1021/ol401571r] [PMID: 23819443]
[20]
Politanskaya, L.; Tretyakov, E.; Xi, C. J. Fluor. Chem., 2021, 242, 109720.
[http://dx.doi.org/10.1016/j.jfluchem.2020.109720]
[21]
Feng, Q.; Yuan, K.; Zhu, M.; You, J.; Wang, C. Heterocycles, 2022, 104(8), 1486-1496.
[http://dx.doi.org/10.3987/COM-22-14682]
[22]
Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X. Liu. Z. Angew. Chem. Int. Ed., 2014, 53(23), 5922-5925.
[http://dx.doi.org/10.1002/anie.201400521] [PMID: 24788820]
[23]
Lang, X.D.; Yu, Y.C.; Li, Z.M.; He, L.N. J. CO2 Util, 2016, 15, 115-122.
[http://dx.doi.org/10.1016/j.jcou.2016.03.002]
[24]
Shi, G.; Chen, K.; Wang, Y.; Li, H.; Wang, C. ACS Sustain. Chem. Eng., 2018, 6(5), 5760-5765.
[http://dx.doi.org/10.1021/acssuschemeng.8b01109]
[25]
Liu, F.; Ping, R.; Gu, Y.; Zhao, P.; Liu, B.; Gao, J.; Liu, M. ACS Sustain. Chem.& Eng., 2020, 8(7), 2910-2918.
[http://dx.doi.org/10.1021/acssuschemeng.9b07242]
[26]
Feng, X.; Wang, G.; Zheng, T.; Zuo, C.; Zhang, X.; Fyffe, P.; Chen, X. Phys. Chem. Chem. Phys., 2021, 23(37), 21130-21138.
[http://dx.doi.org/10.1039/D1CP03747A] [PMID: 34528038]
[27]
Wang, Z.; Li, D.; Chen, S.; Hu, J.; Gong, Y.; Guo, Y.; Deng, T. New J. Chem., 2021, 45(10), 4611-4616.
[http://dx.doi.org/10.1039/D0NJ04631K]
[28]
Li, L.L.; Jin, J.Y.; Hu, W.Y.; Huang, J.Y.; Feng, Q. Heterocycles, 2023, 106(10), 1711-1722.
[http://dx.doi.org/10.3987/COM-23-14892]