Design, Synthesis, and Evaluation of Lipoyl Ester Conjugated Star PLGA for Sustained Drug Delivery Systems

Page: [33 - 45] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Poly(lactic-co-glycolic acid) (PLGA), an FDA-approved copolymer, is widely recognized for its biocompatibility, biodegradability, and versatility in drug delivery systems. Despite its advantages, challenges, such as poor drug loading and burst release, motivate the exploration of innovative modifications. The current research aimed to modify the linear PLGA to lipoyl ester terminated star PLGA polymer to minimize initial burst release by increasing the molecular weight and fabricate risperidone-loaded microspheres.

Methods: In this study, we have presented a novel approach involving the synthesis of star PLGA through the direct melt polycondensation of PLGA with pentaerythritol, followed by conjugation with lipoic acid to form lipoyl ester terminated star PLGA. Structural confirmation was done by Fourier Transform Infrared spectroscopy (FT-IR), proton Nuclear Magnetic Resonance (1H-NMR), and Gel Permeation Chromatography (GPC). Microspheres were fabricated from lipoyl ester terminated star PLGA and characterized for their particle size and surface morphology by Scanning Electron Microscopy (SEM) and in vitro drug release by dialysis bag method.

Results: The results of the study have indicated successful conjugation of lipoic acid to star PLGA forming lipoyl ester terminated star PLGA, as confirmed by FT-IR, 1H-NMR, and GPC analyses. Microspheres developed from the synthesized polymer exhibited particle sizes ranging from 4.64 μm to 11.7 μm and demonstrated sustained drug delivery, with 99.8% release over 45 d, in contrast to the plain drug that achieved complete dissolution within 3 h.

Conclusion: The resulting material has demonstrated unique bioresponsive and multifunctional properties, with evidence of successful synthesis provided through comprehensive characterization techniques, and suitability for the fabrication of microspheres for sustained drug delivery systems.

Graphical Abstract

[1]
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[2]
Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv 2015; 6(1): 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[3]
Mir M, Ahmed N, Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 2017; 159: 217-31.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[4]
Perinelli DR, Cespi M, Bonacucina G, Palmieri GF. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J Pharm Investig 2019; 49(4): 443-58.
[http://dx.doi.org/10.1007/s40005-019-00442-2]
[5]
Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 2006; 17(3): 247-89.
[http://dx.doi.org/10.1163/156856206775997322] [PMID: 16689015]
[6]
Müller M, Vörös J, Csúcs G, et al. Surface modification of PLGA microspheres. J Biomed Mater Res A 2003; 66A(1): 55-61.
[http://dx.doi.org/10.1002/jbm.a.10502] [PMID: 12833431]
[7]
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000; 21(23): 2475-90.
[http://dx.doi.org/10.1016/S0142-9612(00)00115-0] [PMID: 11055295]
[8]
Martins C, Sousa F, Araújo F, Sarmento B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater 2018; 7(1): 1701035.
[http://dx.doi.org/10.1002/adhm.201701035] [PMID: 29171928]
[9]
Bala I, Hariharan S, Kumar MR. PLGA nanoparticles in drug delivery: The state of the art. Crit Rev Ther Drug Carrier Syst 2004; 21(5): 387-422.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20]
[10]
Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Analyt Chem 2016; 80: 30-40.
[http://dx.doi.org/10.1016/j.trac.2015.06.014]
[11]
El-Hammadi MM, Arias JL. Recent advances in the surface functionalization of PLGA-based nanomedicines. Nanomaterials 2022; 12(3): 354.
[http://dx.doi.org/10.3390/nano12030354] [PMID: 35159698]
[12]
Tang Z, He C, Tian H, et al. Polymeric nanostructured materials for biomedical applications. Prog Polym Sci 2016; 60: 86-128.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[13]
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev 2016; 116(4): 2602-63.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[14]
Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: The past and the future. Adv Drug Deliv Rev 2013; 65(1): 104-20.
[http://dx.doi.org/10.1016/j.addr.2012.10.003] [PMID: 23088863]
[15]
Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 2013; 38(10-11): 1487-503.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.06.001]
[16]
Pagels RF, Prud’homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release 2015; 219: 519-35.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.001] [PMID: 26359125]
[17]
Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 2012; 4(128): 128ra39.
[http://dx.doi.org/10.1126/scitranslmed.3003651] [PMID: 22491949]
[18]
Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol 2018; 9: 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[19]
Chatterjee M, Chanda N. Formulation of PLGA nano-carriers: specialized modification for cancer therapeutic applications. Mat Adv 2022; 3(2): 837-58.
[http://dx.doi.org/10.1039/D1MA00600B]
[20]
Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 2016; 22(13): 3157-63.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2548] [PMID: 26847057]
[21]
Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997; 28(1): 5-24.
[http://dx.doi.org/10.1016/S0169-409X(97)00048-3] [PMID: 10837562]
[22]
Park K. Isolated lung model for assessing drug absorption from PLGA microparticles. J Control Release 2016; 226: 268.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.003] [PMID: 26987271]
[23]
Doppalapudi S, Jain A, Domb AJ, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin Drug Deliv 2016; 13(6): 891-909.
[http://dx.doi.org/10.1517/17425247.2016.1156671] [PMID: 26983898]
[24]
Liu J, Li M, Luo Z, Dai L, Guo X, Cai K. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today 2017; 15: 56-90.
[http://dx.doi.org/10.1016/j.nantod.2017.06.010]
[25]
Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 2014; 43(18): 6570-97.
[http://dx.doi.org/10.1039/C4CS00014E] [PMID: 24792930]
[26]
Ratzinger G, Fillafer C, Kerleta V, Wirth M, Gabor F. The role of surface functionalization in the design of PLGA micro-and nanoparticles. Crit Rev Ther Drug Carrier Syst 2010; 1: 10.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i1.10]
[27]
Gao W, Zhang L. Engineering red‐blood‐cell‐membrane–coated nanoparticles for broad biomedical applications. AIChE J 2015; 61(3): 738-46.
[http://dx.doi.org/10.1002/aic.14735]
[28]
Fang RH, Hu CMJ, Luk BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 2014; 14(4): 2181-8.
[http://dx.doi.org/10.1021/nl500618u] [PMID: 24673373]
[29]
Wu J, Zhang J, Deng C, Meng F, Zhong Z. Vitamin E-Oligo (methyl diglycol l-glutamate) as a biocompatible and functional surfactant for facile preparation of active tumor-targeting PLGA nanoparticles. Biomacromolecules 2016; 17(7): 2367-74.
[http://dx.doi.org/10.1021/acs.biomac.6b00380] [PMID: 27305935]
[30]
Liu L, Cao F, Liu X, et al. Hyaluronic acid-modified cationic lipid–PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses. ACS Appl Mater Interfaces 2016; 8(19): 11969-79.
[http://dx.doi.org/10.1021/acsami.6b01135] [PMID: 27088457]
[31]
Wang H, Agarwal P, Zhao S, et al. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials 2015; 72: 74-89.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048] [PMID: 26344365]
[32]
Wafa EI, Geary SM, Ross KA, Goodman JT, Narasimhan B, Salem AK. Pentaerythritol-based lipid A bolsters the antitumor efficacy of a polyanhydride particle-based cancer vaccine. Nanomedicine 2019; 21: 102055.
[http://dx.doi.org/10.1016/j.nano.2019.102055] [PMID: 31319179]
[33]
Beig A, Feng L, Walker J, et al. Physical–chemical characterization of octreotide encapsulated in commercial glucose-star PLGA microspheres. Mol Pharm 2020; 17(11): 4141-51.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00619] [PMID: 32876463]
[34]
Zhang J, Tao W, Chen Y, et al. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J Mater Sci Mater Med 2015; 26(4): 165.
[http://dx.doi.org/10.1007/s10856-015-5498-z] [PMID: 25791459]
[35]
Tao W, Zeng X, Liu T, et al. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomater 2013; 9(11): 8910-20.
[http://dx.doi.org/10.1016/j.actbio.2013.06.034] [PMID: 23816645]
[36]
Zeng X, Tao W, Mei L, Huang L, Tan C, Feng SS. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 2013; 34(25): 6058-67.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.052] [PMID: 23694904]
[37]
Wu Y, Wang Z, Liu G, et al. Novel simvastatin-loaded nanoparticles based on cholic acid-core star-shaped PLGA for breast cancer treatment. J Biomed Nanotechnol 2015; 11(7): 1247-60.
[http://dx.doi.org/10.1166/jbn.2015.2068] [PMID: 26307847]
[38]
Davaran S, Omidi Y, Anzabi M, et al. Preparation and in vitro evaluation of linear and star-branched PLGA nanoparticles for insulin delivery. J Bioact Compat Polym 2008; 23(2): 115-31.
[http://dx.doi.org/10.1177/0883911507088276]
[39]
Park K, Skidmore S, Hadar J, et al. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J Control Release 2019; 304: 125-34.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.003] [PMID: 31071374]
[40]
Wu B, Liang Y, Tan Y, et al. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for the treatment of liver cancer. Mater Sci Eng C 2016; 59: 792-800.
[http://dx.doi.org/10.1016/j.msec.2015.10.087] [PMID: 26652434]
[41]
Beig A, Ackermann R, Wang Y, Schutzman R, Schwendeman SP. Minimizing the initial burst of octreotide acetate from glucose star PLGA microspheres prepared by the solvent evaporation method. Int J Pharm 2022; 624: 121842.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121842] [PMID: 35609832]
[42]
Snejdrova E, Podzimek S, Martiska J, Holas O, Dittrich M. Branched PLGA derivatives with tailored drug delivery properties. Acta Pharm 2020; 70(1): 63-75.
[http://dx.doi.org/10.2478/acph-2020-0011] [PMID: 31677370]
[43]
Ouyang C, Liu Q, Zhao S, Ma G, Zhang Z, Song C. Synthesis and characterization of star-shaped poly (lactide-co-glycolide) and its drug-loaded microspheres. Polym Bull 2012; 68(1): 27-36.
[http://dx.doi.org/10.1007/s00289-011-0516-x]
[44]
Lee SJ, Park CW, Kim SC. Temperature-sensitive sol-gel transition behavior of biodegradable four-arm star-shaped PEG-PLGA block copolymer aqueous solution. Polym J 2009; 41(5): 425-31.
[http://dx.doi.org/10.1295/polymj.PJ2008164]
[45]
Chong YK, Zainol I, Ng CH, Ooi IH. Miktoarm star polymers nanocarrier: Synthesis, characterization, and in-vitro drug release study. J Polym Res 2019; 26(3): 79.
[http://dx.doi.org/10.1007/s10965-019-1726-4]
[46]
Teng L, Nie W, Zhou Y, Song L, Chen P. Synthesis and characterization of star‐shaped PLLA with sorbitol as core and its microspheres application in controlled drug release. J Appl Polym Sci 2015; 132(27): app.42213.
[http://dx.doi.org/10.1002/app.42213]
[47]
Koufaki M, Detsi A, Kiziridi C. Multifunctional lipoic acid conjugates. Curr Med Chem 2009; 16(35): 4728-42.
[http://dx.doi.org/10.2174/092986709789878274] [PMID: 19903137]
[48]
Hajibabazadeh S, Ghaleh H, Abbasi F, Foroutani K. Design of thermo-responsive cell culture dishes using poly(N-isopropylacrylamide)-block-polystyrene copolymers for cell sheet technology. Eur Polym J 2023; 195: 112231.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112231]
[49]
Gupta C, Singh P, Vaidya S, Ambre P, Coutinho E. A novel thermoresponsive nano carrier matrix of hyaluronic acid, methotrexate and chitosan to target the cluster of differentiation 44 receptors in tumors. Int J Biol Macromol 2023; 243: 125238.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125238] [PMID: 37290545]
[50]
Gupta C, Naik I, Menon M, Ambre P, Coutinho E. A review on exploring the opportunities of polymer drug conjugated systems for targeted cancer treatment. Curr Drug Deliv 2022; 20(1): 8-30.
[PMID: 35400344]
[51]
Gupta C, Uthale A, Teni T, Ambre P, Coutinho E. Emerging polymer-based nanomaterials for cancer therapeutics. Nanotechnology in the Life Sciences 2021; 1: 189-229.
[http://dx.doi.org/10.1007/978-3-030-74330-7_7]
[52]
Chu D, Tian J, Liu W, Li Z, Li Y. Poly(lactic-co-glycolic acid) microspheres for the controlled release of huperzine A: in vitro and in vivo studies and the application in the treatment of the impaired memory of mice. Chem Pharm Bull 2007; 55(4): 625-8.
[http://dx.doi.org/10.1248/cpb.55.625] [PMID: 17409558]
[53]
Su Z, Sun F, Shi Y, et al. Effects of formulation parameters on encapsulation efficiency and release behavior of risperidone poly(D,L-lactide-co-glycolide) microsphere. Chem Pharm Bull 2009; 57(11): 1251-6.
[http://dx.doi.org/10.1248/cpb.57.1251] [PMID: 19881277]
[54]
Al-Kassas R. Design and in vitro evaluation of gentamicin–eudragit microspheres intended for intra-ocular administration. J Microencapsul 2004; 21(1): 71-81.
[http://dx.doi.org/10.1080/02652040310001619992] [PMID: 14718187]
[55]
Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 2008; 10(5): 845-62.
[http://dx.doi.org/10.1007/s11051-008-9357-4]
[56]
Liu WH, Song JL, Liu K, Chu DF, Li YX. Preparation and in vitro and in vivo release studies of huperzine a loaded microspheres for the treatment of Alzheimer’s disease. J Control Release 2005; 107(3): 417-27.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.025] [PMID: 16154224]
[57]
Berkland C, Kipper MJ, Narasimhan B, Kim KK, Pack DW. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release 2004; 94(1): 129-41.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.011] [PMID: 14684277]
[58]
Kohno M, Andhariya JV, Wan B, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm 2020; 582: 119339.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119339] [PMID: 32305366]
[59]
D’Souza S, Faraj JA, Giovagnoli S, DeLuca PP. Development of risperidone PLGA microspheres. J Drug Deliv 2014; 2014: 620464.
[http://dx.doi.org/10.1155/2014/620464]
[60]
Mohammadpour F, Kamali H, Hadizadeh F, et al. The PLGA microspheres synthesized by a thermosensitive hydrogel emulsifier for sustained release of risperidone. J Pharm Innov 2021; 17(5): 1-3.
[61]
Hu X, Zhang J, Tang X, et al. An accelerated release method of risperidone loaded PLGA microspheres with good IVIVC. Curr Drug Deliv 2018; 15(1): 87-96.
[PMID: 28521697]
[62]
Aukunuru J, Yerragunta B, Jogala S, Chinnala KM. Development of a novel 3-month drug releasing risperidone microspheres. J Pharm Bioallied Sci 2015; 7(1): 37-44.
[http://dx.doi.org/10.4103/0975-7406.148777] [PMID: 25709335]
[63]
Zhao J, Wang L, Fan C, et al. Development of near zero-order release PLGA-based microspheres of a novel antipsychotic. Int J Pharm 2017; 516(1-2): 32-8.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.007] [PMID: 27825865]
[64]
Jafarifar E, Hajialyani M, Akbari M, Rahimi M, Shokoohinia Y, Fattahi A. Preparation of a reproducible long-acting formulation of risperidone-loaded PLGA microspheres using microfluidic method. Pharm Dev Technol 2017; 22(6): 836-43.
[http://dx.doi.org/10.1080/10837450.2016.1221426] [PMID: 27494230]
[65]
Hu Z, Liu Y, Yuan W, Wu F, Su J, Jin T. Effect of bases with different solubility on the release behavior of risperidone loaded PLGA microspheres. Colloids Surf B Biointerfaces 2011; 86(1): 206-11.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.043] [PMID: 21524893]
[66]
Huang Z, Chen X, Fu H, et al. Formation mechanism and in vitro evaluation of risperidone-containing PLGA microspheres fabricated by ultrafine particle processing system. J Pharm Sci 2017; 106(11): 3363-71.
[http://dx.doi.org/10.1016/j.xphs.2017.07.010] [PMID: 28736289]
[67]
Wang X, Cheng R, Cheng L, Zhong Z. Lipoyl ester terminated star PLGA as a simple and smart material for controlled drug delivery application. Biomacromolecules 2018; 19(4): 1368-73.
[http://dx.doi.org/10.1021/acs.biomac.8b00130] [PMID: 29553255]
[68]
Khoee S, Rahmatolahzadeh R. Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: A comprehensive kinetic study. Eur J Med Chem 2012; 50: 416-27.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.027] [PMID: 22397922]