[2]
Patel, D.; Panchal, D.; Patel, K.; Dalwadi, M.; Upadhyay, U. A review on UV visible spectroscopy. Ijcrt., 2022, 10(10), b399-b411.
[3]
Karuna, D.B.; Manasa, S.; Naraparaju, S.; Soujanya, Ch.; Kumar, P.A.D. Spectrophotometric determination of dabigatran etexilate mesylate using 1, 2-napthoquinone-4-sulfonate (NQS) reagent in bulk and capsules. IJPRA, 2023, 8(3), 1275-1284.
[5]
Kumar, V.V.; Bala, R.; Pullabhotla, R. Derivatizing agents for spectrophotometric and spectrofluorimetric determination of pharmaceuticals: A review. J. Taibah Univ. Sci., 2023, 17(1), 1-24.
[6]
Ravisankar, P.; Sulthana, S.; Babu, P.S.; Afzal, B.S.; Aswini, R.; Swathi, V.; Mahamuda, S.; Lakshmi, M.; Navyasri, N.; Thanuja, I.M. Comprehensive review of important analytical reagents used in spectrophotometry. IAJPR, 2017, 7(05), 8716-8735.
[9]
Emmanuel, A.; Cyril, U.O.; Edidiong, O.N.; Ekaete, U.D. Novel spectrophotometric determination of artesunate using vanillin/sulphuric acid reagent. JOCPR, 2015, 7(7), 1050-1058.
[10]
Baraka, M.M.; Elsadek, M.E.; Ibrahim, S.M.; El-didamoony, M.A. Spectrophotometric determination of irbesartan, losartan, atenolol and hydrochlorothiazide in bulk and dosage forms. AJPAMC, 2016, 4(2), 88-106.
[13]
Baraka, M.M.; Elsadek, M.E.; Ibrahim, A.M. Spectrophotometric determination of albendazole in pure form and tablet form. AJPAMC, 2014, 2(4), 276-294.
[15]
Rahman, N.; Khalaf, O.F. Spectrophotometric determination of cefixime through schiff’s base system using vanillin reagents in pharmaceutical preparations (NJC). Irq. Nat. J. Chem., 2013, 49, 38-46.
[16]
Vijayalakshmi, R.; Naga, Y.; Ramya, S.; Mani, A.D.; Dhanaraju, M.D. Spectrophotometric determination of darunavir ethanolate by condensation technique. Int. J. Pharm. Tech. Res., 2016, 9(6), 301-306.
[18]
Abdullah, E.H.; Rashid, Q.N. Spectrophotometric determination of esomepreazol in pure form and in its pharmaceutical preparations. Int. J. Drug Deliv. Technol., 2021, 11(1), 42-46.
[20]
Hassouna, M.E. Spectrophotometric determination of furosemide drug in different formulations using schiff ’s bases. Forensic Res. Criminol. Int. J., 2016, 1(6), 214-221.
[21]
Taghreed, A.; Mohammeda, M.A. Spectrophotometric determination of certain antiepileptic’s in tablets using vanillin reagent. JAC, 2015, 11(2), 3540-3553.
[23]
Pani, A.; Satyakala, N.; Sowndarya, R.; Rajeshwari, G.; Radhagayathri, A.; Sunitha, G. Quantification of linagliptin by chemical derivatization with appliance of chromogenic reagents. J. Appl. Commun. Res., 2017, 11(2), 39-50.
[25]
Luma, I.I.; Qabas, N.R. Spectrophotometric determination of nystatin in its pharmaceutical preparations. AIP Conf. Proc., 2022, 2450(1)
[26]
Mannan, A.; Jamal, K.A.; Khan, M.; Abbas, G. Validated spectrophotometric method for determination of polymaxin-b sulfate in pharmaceutical formulations. J. Pharm. Pharm. Sci., 2017, 5(4), 33-38.
[27]
Saleh, H.M.; Henawee, M.M.; Ragab, G.H.; Mohamed, O.F. Spectrophotometric and spectrofluorimetric determination of pregabalin via condensation reactions in pure form and in capsules. IJPCBS, 2014, 4(3), 738-747.
[32]
Alhemiary, N.A.F.; Saleh, M.H.A. Spectrophotometric determination of tinidazole using promethazine and ethyl vanillin reagents in pharmaceutical Preparations. Pharma Chem., 2012, 4(6), 2152-2160.
[33]
Prashanth, K.N.; Basavaiah, K.; Raghu, M.S. Spectrophotometric determination of zolmitriptan in bulk drug and pharmaceuticals using vanillin as a reagent. Anal. Chem., 2013, 1-7.
[34]
Etim, E.; Udobre, A.; Johnson, E. Development and validation of UV spectrophotometric method for the determination of artesunate and dihydroartemisinin by coupling. J. Pharm. Innov., 2016, 5(8), 4-7.
[36]
Adegoke, O.A.; Osoye, A.O. Derivatization of artesunate and dihydroartemisinin for colorimetric analysis using p-dimethylaminobenzaldehyde. Eurasian J Anal Chem., 2011, 6(2), 104-113.
[37]
Attih, E.E.; Usifoh, C.O.; Oladimeji, H.O. Sensitive uv-spectrophotometric determination of dihydroartemisinin and artesunate in pharmaceuticals using ferric-hydroxamate complex formation. Bull. Env. Pharmacol. Life Sci., 2015, 4(8), 90-99.
[38]
Lawal, A.; Abubakar, M.G.; Wali, U. FTIR and UV-Visible Spectrophotometeric analyses of artemisinin and its derivatives. J. Pharm. Biomed. Sci., 2012, 24(24), 6-14.
[39]
Attih, E.E.; Johnson, E.C.; Etim, E.I.; Oladimeji, H.O.; Eseyin, O.A. Validated spectrophotometric determination of artesunate and dihydroartemisinin using anisaldehyde/sulphuric acid reagent. Nig. J. Pharm. Appl. Sci. Res., 2021, 10(1), 43-49.
[40]
Zhuk, Y.N.; Vasyuk, S.O. Quantitative determination of Atenolol in tablets. IJAPBC, 2016, 5(3), 350-355.
[42]
Mhemeed, A.H. Spectrophotometric determination of metoprolol and atenolol by iron (iii) and ferricyanide. Syst. Rev. Pharm., 2021, 12(1), 34-39.
[44]
Kudige, N. Simple, sensitive and selective spectrophotometric methods, for the determination of atenolol in pharmaceuticals through charge transfer complex formation reaction. Acta Poloniae Pharmaceutica ñ. Drug Res., 2012, 69(2), 213-223.
[46]
Majeed, S.Y.; Salih, O.A.; Saleem, B.A.A. A new spectrophotometric method to estimate atenolol, amlodipine, and furosemide in pharmaceutical dosages. Eur. Chem. Commun., 2022, 4(12), 1285-1294.
[47]
Sharma, D.K.; Raj, P. Simple and rapid spectrophotometric determination of atenolol and esmolol β-blockers in pharmaceutical formulations and spiked water samples. Int. J. Pharm. Sci. Res., 2017, 8(12), 5168-5177.
[51]
Bashir, N.; Shah, S.W.; Bangesh, M. A novel spectrophotometric determination of atenolol using sodium nitroprusside. JSIR, 2011, 70, 51-54.
[53]
Vinny, T.M.; Prakash, N.K.S.; Supraja, S.; Saibabu, S.; Veera, A.S. Novel colorimetric approach for amikacin estimation in pure powder and its pharmaceutical formulations. WJBPHS, 2023, 14(1), 270-279.
[54]
Adam, M.E.; Adam, M.E.; Shantier, S.W.; Hussien, M.A.; Garalnabi, A.E.; Gadkariem, E.A. Development of spectrophotometric method for the determination of amikacin sulphate in its pure and pharmaceutical formulations using ascorbic acid. EJPMR, 2017, 4(2), 235-239.
[55]
Sabha, N. Spectrophotometric determination of amikacin sulphate via charge transfer complex formation reaction using tetracyanoethy’lene and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone reagents. Arab. J. Sci. Eng., 2010, 35, 27-40.
[57]
Omar, M.A.; Nagy, D.M.; Hammad, M.A.; Aly, A.A. Validated spectrophotometric methods for determination of certain aminoglycosides in pharmaceutical formulations. J. Appl. Pharm. Sci., 2013, 3(3), 151-161.
[64]
Mohsen, K.Z.A.; Khaleel, A.; Rashid, Q.N. Spectrophotometric methods for estimation of amlodipine besylate in pure form and in it’s pharmaceutical formulations. Int. J. Health Sci., 2022, 27, 7726-7741.
[65]
Singhvi, I.; Chaturvedi, S.C. Visible spectrophotometric methods for estimation of amlodipine besylate form tablets. Indian J. Pharm. Sci., 1998, 309-310.
[66]
Badran, R.; Al-Khateeb, M.J. A spectrophotometric determination of amlodipine besylate (AMB) in pharmaceutical preparations using gresol red (GR) reagent. Int. J. Chemtech Res., 2015, 8(11), 229-236.
[70]
Basavaiah, K.; Ramakrishna, V.; Somashekar, B.C.; Anil, U.R. Sensitive titrimetric and spectrophotometric methods for the assay of albendazole in pharmaceuticals using sodium periodate. ACAIJ, 2006, 2(5-6), 159-166.
[73]
Basavaiah, K.; Nagegowda, P. Three new methods for the assay of albendazole using N-chlorosuccinimide. JSIR, 2004, 63, 835-841.
[74]
Swamy, N.; Basavaiah, K. Use of two sulfonphthalein dyes for the sensitive and selective extraction-free spectrophotometric assay of albendazole in bulk drug and in tablets. Anal. Chem., 2013, 1-11.
[80]
Bassam, N.; Saif, I.N. A new kinetic spectrophotometric method for determination of cefixime in pharmaceutical preparations using saffron extract as natural reagent. IJPRBS, 2013, 2(5), 328-349.
[82]
Vijayalakshmi, R.; Anjani, D.; Dhanaraju, M.D. Analytical method development for the estimation of darunavir by ion-pair complex using visible spectrophotometry. IJPPR, 2018, 12(2), 182-192.
[83]
Reddy, M.P.; Rami, R.N. Spectrophotometric estimation of darunavir in bulk and pharmaceutical formulations. Int. J. Chem. Sci., 2013, 11(1), 614-618.
[84]
Acharyulu, M.L.N.; Rao, P.V.S.R.; Rama, K.S. Spectrophotometric determination of Darunavir using NQS and Brucine meta periodate. Pharma Chem., 2020, 12(7), 36-42.
[85]
Rao, K.P. Validation of visible spectrophotometric methods of darunavir in pure and dosage forms. Pharma Chem., 2016, 8(17), 54-61.
[86]
Enizzi, M.S.; Sheej, A.O.A.; Sabha, T.N. Spectrophotometric determination of dapsone using charge transfer complex formation reaction. Egypt. J. Chem., 2020, 63(8), 3167-3177.
[90]
Safaa, M.A.A. Colorimetric and kinetic method for determination of dapsone in bulk and pharmaceutical preparations. IJRPB, 2015, 3(1), 15-21.
[91]
Ahmad, W.S.; Abdulaziz, M.S. Spectrophotometric determination of dapsone in pharmaceutical formulation by schiff҆s base with p-dimethyl amino benzaldehyde. Int. J. Drug Deliv. Technol., 2021, 11(1), 141-146.
[92]
Daood, L.T. Spectrophotometric determination of dapsone using phloroglucinol azo coupling reagent. Raf Jour. Sci., 2008, 19(3), 24-37.
[94]
Rasheed, S.; Dev, S.; Jacob, J.; Rani, S. Determination of esomeprazole by complexation method. Pharma Chem., 2017, 9(22), 101-105.
[95]
Mandil, H.; Alhaj, A.; Allabban, A.A. A new sensitive spectrophotometric method for determination of esomeprazole magnesium trihydrate in dosage forms. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 747-751.
[98]
Purushotham, R. Simple Spectrophotometric Determination of Esomeprazole Magnesium in Pharmaceutical Formulations. Asian J Pharm Health Sci., 2011, 1(3), 135-136.
[99]
Sharma, M.C.; Sharma, S. Spectrophotometric methods for the estimation of esomeprazole magnesium trihydrate in pharmaceutical formulations using indigo carmine reagent. Int. J. Pharm. Tech. Res., 2011, 3(2), 1186-1190.
[100]
Yoganandaswamy, M.M.; Reddy, A.J.P. New spectrophotometric determination of esomeprazole in bulk and pharmaceutical dosage form using tropaeoline-oo. J. Appl. Chem., 2018, 11(6), 59-62.
[103]
Mohammed, G.F.; Omar, F.K. Spectrophotometric estimation of esomeprazole using diazotization reaction with meta- amino phenol reagent and application in pharmaceutical preparations. Int. J. Health Sci., 2022, 6(S5), 10354-10366.
[104]
Alhfidh, H.A.; Othman, N.S. Application of the Cloud Point Extraction Method in Spectrophotometric Estimation of Esomeprazole using Diazotised p-Nitroanline and Triton X -114. Egypt. J. Chem., 2021, 64(11), 6242-6249.
[105]
Kumar, P. Spectrophotometric determination of eflornithine hydrochloride as active pharmaceutical ingredient using sodium 1,2-naphthoquinone-4-sulfonate as the derivative chromogenic reagent. Anal. Chem.: Indian J., 2008, 7(11), 812-817.
[106]
Kumar, A.; Singh, V.; Kumar, P. Spectrophotometric determination of Eflornithine hydrochloride through schiff’s base system using pdab reagent in pharmaceutical preparation. IJPS, 2015, 1(1), 1-5.
[110]
Mahmoud, H.A. Spectrophotometric determination of furosemide using pyrogallol reagent in pharmaceutical preparations. J. Med. Chem., 2023, 6(6), 1254-1264.
[112]
Abdul, M.K.A.; Zahraa, T.W.A. Estimation of furosemide spectrophotometrically in pharmaceutical preparations by oxidative coupling reaction. Tikrit J. Pure Sci., 2022, 27(4), 39-46.
[113]
Tharpa, K.; Basavaiah, K.; Vinay, K.B. Spectrophotometric determination of furosemide in pharmaceuticals using permanganate. Jordan J Chem., 2009, 4(4), 387-397.
[115]
Ahmed, S.F.; Sher, N.; Shafi, N.; Shamshad, H.; Zubair, A. Kinetic and thermodynamic spectrophotometric technique to estimate gabapentin in pharmaceutical formulations using ninhydrin. J. Anal. Sci. Technol., 2013, 4(17), 1-8.
[117]
Sampada, D.D.; Pramod, H.S.; Pramod, L.I. Development and validation of UV-spectrophotometric method for gabapentin in bulk drug and formulation. Asian J. Res. Chem, 2011, 4(10), 1526-1528.
[121]
Satish, P.; Natavarlal, P. Visible spectrophotometric methods for determination of gabapentin in pharmaceutical tablet and capsule dosage forms. Asian J Pharm Life Sci, 2011, 3.
[122]
Mohammed. Spectrophotometric method for determination of gabapentin in pharmaceutical formulation by derivatization with 4-chloro-7-nitrobenzo- 2-oxa-1,3-diazole (nbd-cl). Int J Drug Dev & Res., 2015, 7(4), 1-4.
[123]
Andayani, R.; Elita, D.; Armin, F. The development and validation of spectrophotometric assay for determination of gabapentin in capsules using ninhydrin and ascorbic acid. J Pharm Biol Sci., 2023, 18(23), 14-20.
[126]
Tulja, R.; Gowri, S.; Satyanarayana, B. Extractive visible spectrophotometric method for determination of telmisatan and irbesartan in bulk and pharmaceutical formulations. Asian J. Pharm. Clin. Res., 2012, 5(1), 41-45.
[127]
Thamir, Z.M.; Oma, F.K. Development of spectrophotometric method to assay irbesartan in pure and in pharmaceutical dosage form using diazotization reaction. Int. J. Health Sci., 2022, 6(S4), 5622-5634.
[128]
Ashour, S.; Fawaz, C.M.; Bayram, R. A new spectrophotometric method applied to the simple determination of irbesartan in tablets.R. J. Aleppo Univ. Basic Sciences Series, 2006, 49
[130]
Ramakrishna, V.; Anupama, B. Assay of irbesartan by extractive spectrophotometry. IJPCBS, 2012, 2(4), 529-531.
[131]
Safwan, A.; Roula, B. Novel extractive visible spectrophotometric method for determination of antihypertensive drug irbesartan with sulfonaphthalein acid dyes in tablets. Arch Pharm Pharma Sci, 2022, 6(1), 6-12.
[132]
Mohammed, T.Z.; Khalaf, O.F. Indirect spectrophotometric method for estimation of irbesartan in pure and in pharmaceutical dosage form using oxidation and reduction reaction. J. Glob. Sci. Res., 2022, 7(10), 2713-2722.
[134]
Naga, N.V.V.M.; Pulla, R.S.; Vardhan, S.V.M.; Rambabu, C. Extractive visible spectrophotometric determination of lamotrigine in pure and pharmaceutical formulations. Chem. Sci. Trans., 2013, 2(3), 1016-1020.
[135]
Vinay, K.B.; Revanasiddappa, H.D.; Rajendraprasad, N. Development and validation of spectrophotometric methods for the sensitive and selective determination of lamotrigine in pharmaceuticals using bromocresol purple. Yao Wu Shi Pin Fen Xi, 2009, 17(6), 424-433.
[136]
Rajendraprasad, N.; Basavaiah, K.; Vinay, K.B. Sensitive spectrophotometric determination of lamotrigine in bulk drug and pharmaceutical formulations using bromocresol green. Ecl. Quím., São Paulo., 2010, 35(1), 55-66.
[137]
Jha, C.P.; Imam, S.W.; Thakur, B.G. Spectrophotometrical determination of lamotrigine drug in its branded tablets. Acta Cienc. Indica, 2015, 49(3), 119-127.
[138]
Sharafeldin, M; Aboul, K. A; Saleh, H; Henawee, M. M; Sharf, M. N. Spectrophotometric estimation of lamotrigine and minoxidil in bulk and dosage forms. R. J Pharm Tech, 2012, 5(5), 697-708.
[139]
Abu, S.H.H.M.; Attia, K.A.M.; Salama, F.; Amin, M.A.A.; Said, R.A.M. Stability-indicating spectrophotometric methods for determination of lamotrigine in pure form and pharmaceutical preparations. J. Pharm. Sci., 2014, 50, 67-83.
[141]
Jayanna, B.K.; Devaraj, T.D.; Roopa, K.P.; Nagendrappa, G.; Gowda, N. Spectrophotometric estimation of lamotrigine in tablets. Indian J. Pharm. Sci., 2016, 78(5), 657-662.
[142]
Gurupadayya, B.M.; Chandan, R.S. Spectrophotometric determination of lamotrigine using Gibb’s and MBTH reagent in pharmaceutical dosage form. J. Pharm. Res., 2011, 4(6), 1813-1815.
[143]
Vinay, K.B.; Rajendraprasad, H.O.N.; Basavaiah, K. Sensitive, selective and extraction-free spectrophotometric Sensitive, selective and extraction-free spectrophotometric determination of lamotrigine in pharmaceuticals using two determination of lamotrigine in pharmaceuticals using two sulphonthalein dyes sulphonthalein dyes. TJPS, 2011, 35, 65-76.
[147]
Rambabu, C.; Kishore, M.S. Spectrophotometric determination of losartan potassium through ion association reaction. Pharma Chem., 2014, 6(5), 171-177.
[149]
Shakeel, A.S.; Karajgi, S.R.; Sonawane, S. Visible spectrophotometric methods for the estimation of losartan potassium and omeprazole in single component pharmaceutical formulations. Int. J. Pharm. Tech. Res., 2009, 1(4), 1247-1250.
[150]
Siva, K.; Kiran, M.; Ramu, K.; Rambabu, C. Visible spectrophotometric determination of losartan potassium in pure and dosage forms by ion-ion association reactions using bcp and bpb reagents. Pharm. Lett., 2015, 7(1), 75-80.
[151]
Begum, M.; Koki, I.B.; Rizwan, M.; Syed, A.A. Sensitive and selective spectrophotometric methods for the determination of cisaprid, metoclopramide hydrochloride, sulphadoxine and sulphamethoxazole. IJCMER, 2016, 3(4), 84-90.
[154]
Omran, A.A.; Ahmed, H.; Mohammed, K.; Khalaf, M.; Alsaraf, M.; Oudah, K. Highly development and validation of a spectrophotometric method for mogadon drug in pharmaceutical tablets by diazotization reaction. Eurasian Chem Commun., 2023, 5, 1013-1022.
[159]
Deepa, K.H.N.; Revana, H.D. A Sensitive spectrophotometric estimation of nimodipine in tablets and injection using phloroglucinol. Spectroscopy, 2013, 1-7.
[160]
Ahmed, H.H.; Mohammed, S.A. Spectrophotometric approach for estimating nimodipine by oxidative-coupling reaction with 4-aminoantipyrine in its tablet and biological fluids. Med Clin Res., 2023, 8(9), 1-10.
[161]
Ravichandran, V.; Sulthana, M.T.; Shameem, A.; Balakumar, M.; Raghuram, S.; Sankar, V. Spectrophotometric method for determination of nimodipine in pharmaceutical dosage forms. IJPS, 2001, 6, 425-427.
[162]
Azar, M.H.W.; Hamsa, M.Y. Developing and validating a spectrophotometric method for estimating anti-fungal (Nystatin) in its pure form pharmaceutical formulation using tetrachloro-1,4-benzoquinone. Hist. Med., 2023, 9(2), 372-381.
[164]
Muralikrishna, C.R. Spectrophotometric determination of oxcarbazepine in bulk and pharmaceutical formulations. Asian J. Res. Chem, 2013, 6(9), 808-810.
[165]
Venkateswarlu, D.; Sreedevi, G.; Chakravarthy, I.E.; Rami, R.N.; Prabhavathi, K. A Simple spectrophotometric method for the estimation of oxcarbazipine in pharmaceutical formulation. IJPPR, 2020, 17(3), 1-9.
[167]
Reddy, A.J.P. New spectrophotometric determination of pregabalin bulk and pharmaceutical dosage. JDDT, 2013, 1(6), 56-58.
[169]
Walash, M.I.; El-Enany, N.; Askar, H. Validated spectrophotometric and spectrofluorimetric methods for the determination of pregabalin in its pure and dosage forms using eosin. Int. J. Pharm., 2016, 6(1), 28-40.
[170]
Sowjanya, K.; Thejaswini, J.C.; Gurupadayya, B.M.; Indupriya, M. Spectrophotometric determination of pregabalin using gibb’s and mbth reagent in pharmaceutical dosage form. Pharma Chem., 2011, 3(1), 112-122.
[171]
Ravichandran, V.; Shankar, V.; Sivaanad, V.; Velraajan, G.; Raghuraman, S. Spectrophotometric determination of secnidazole in tablets. IJPS, 2002, 64(5), 396-398.
[172]
Khier, A.A.; Elhenawee, M.M.; Elmasry, M.S. Spectrophotometric method for the determination of some drugs using fast red b salt. J. Chem., 2008, 5(S2), 1087-1097.
[173]
Kumar, S.; Senthil, K.K.; Manasa, B.; Nagamani, E.; Manoj, V.G.; Mahesh, E. Spectrophotometric determination of secnidazole using folin ciocalteu’s & sodium carbonate. IJRPC, 2012, 2(3), 809-815.
[175]
Youssef, A.K.; Saleh, M.M.S.; Abdel, K.D.A.; Hashem, E.Y. Facile spectrophotometric determination of metronidazole and secnidazole in pharmaceutical preparations based on the formation of dyes. Int. J. Pharm. Sci. Res., 2015, 6(1), 103-108.
[176]
Nassem, M.; Hamdany, A.; Abdulkader, N. Spectrophotometric determination of sulfamethoxazole in pure and in pharmaceutical preparations by diazotization and coupling reaction. Raf. J. Sci., 2019, 28(3), 15-62.
[179]
Salman, A.; Alrassol, K. Spectrophotometric method for the determination of sulfa drug in pharmaceuticals based on charge transfer reaction. J. Chem. Pharm. Res., 2017, (2), 244-251.
[180]
Alaa, A. A novel spectrophotometric determination and kinetic study of sulfamethoxazole in pure and tablet formulation using 9-chloroacridine reagent. Int. Res. J. Pure Appl. Chem., 2021, 22(10), 1-13.
[181]
Bora, G. Vanillin-more than a flavouring agent: A review on its bioactive properties. J. Pharm. Negat. Results, 2023, 14(1), 616-622.
[189]
Kumar, R.; Niren, E.K. Synthesis, characterization and anti-inflammatory activity of hydrazones bearing 5-nitro-furan moiety and 5-iodo-vanillin hybrid. World J. Pharm. Res., 2017, 6(11), 982-993.
[190]
Kadium, R.T.; Hanan, A.; Basim, J.H. Design, synthesis and characterization of some novel thiazolidine-2,4-dione derivatives as antidiabetic agents. Acta Pol Pharm Drug Res., 2022, 78, 773-779.
[191]
Olatunde, A.; Mohammed, A.; Ibrahim, M.A.; Tajuddeen, N.; Shuaibu, M.N. Vanillin: A food additive with multiple biological activities. EJMCR, 2022, 5, 100055.