Exploring the Therapeutic Potential of Triptonide in Salivary Adenoid Cystic Carcinoma: A Comprehensive Approach Involving Network Pharmacology and Experimental Validation

Page: [2276 - 2289] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Salivary Adenoid Cystic Carcinoma (ACC) is characterized by a highly invasive and slow-growing pattern, and its etiology remains unidentified. Triptonide (TN) has demonstrated efficacy as a pharmacotherapeutic agent against ACC. Nonetheless, the specific targets and mechanism of molecular action underlying the effectiveness of TN in treating ACC have not been elucidated.

Objectives: By integrating network pharmacology within laboratory experiments, this research delves into the prospective targets and molecular mechanisms associated with the application of TN in treating ACC.

Methods: Initially, pertinent targets associated with TN against ACC were acquired from public databases. Subsequently, a combination of network pharmacology and bioinformatics analysis was utilized to screen the top 10 hub targets and key signal pathways of TN-treating ACC. Finally, in vitro experiments involving various molecular assays were conducted to evaluate the biological phenotypes of cells following TN treatment, encompassing assessments of apoptosis levels, plate migration, and other parameters, thereby validating pivotal genes and pathways.

Results: A total of 23 pertinent targets for TN in relation to ACC were identified, with the top 10 hub genes being MAPK8, PTGS2, RELA, MAPK14, NR3C1, HDAC1, PPARG, NFKBIA, AR, and PGR. There was a significant correlation between the TNF signaling pathway and the treatment of ACC with TN. In vitro experiments demonstrated that TN treatment elevated RELA phosphorylation while concurrently reducing MAPK14 phosphorylation and inducing G2/M arrest. TN exhibited the ability to enhance the apoptosis rate through increased caspase-3 activity, elevated levels of Reactive Oxygen Species (ROS), mitochondrial dysfunction, and inhibition of cell migration.

Conclusion: There is a potential therapeutic role for TN in the treatment of ACC through the activation of the TNF signaling pathway. Among the identified candidates, MAPK8, HDAC1, PTGS2, RELA, NR3C1, PPARG, NFKBIA, AR, and PGR emerge as the most pertinent therapeutic targets for TN in the context of ACC treatment.

[1]
de Sousa LG, Jovanovic K, Ferrarotto R. Metastatic adenoid cystic carcinoma: Genomic landscape and emerging treatments. Curr Treat Options Oncol 2022; 23(8): 1135-50.
[http://dx.doi.org/10.1007/s11864-022-01001-y] [PMID: 35854180]
[2]
Hu W, Hu J, Huang Q, et al. Particle beam radiation therapy for adenoid cystic carcinoma of the nasal cavity and paranasal sinuses. Front Oncol 2020; 10: 572493.
[http://dx.doi.org/10.3389/fonc.2020.572493] [PMID: 33102230]
[3]
Fang Y, Peng Z, Wang Y, et al. Current opinions on diagnosis and treatment of adenoid cystic carcinoma. Oral Oncol 2022; 130: 105945.
[http://dx.doi.org/10.1016/j.oraloncology.2022.105945] [PMID: 35662026]
[4]
Hanna GJ, Ahn MJ, Muzaffar J, et al. A phase II trial of rivoceranib, an oral vascular endothelial growth factor receptor 2 inhibitor, for recurrent or metastatic adenoid cystic carcinoma. Clin Cancer Res 2023; 29(22): 4555-63.
[http://dx.doi.org/10.1158/1078-0432.CCR-23-1030] [PMID: 37643133]
[5]
Adeberg S, Akbaba S, Lang K, et al. The phase 1/2 ACCEPT trial: Concurrent cetuximab and intensity modulated radiation therapy with carbon ion boost for adenoid cystic carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2020; 106(1): 167-73.
[http://dx.doi.org/10.1016/j.ijrobp.2019.09.036] [PMID: 31586664]
[6]
Ferrarotto R, Sousa LG, Feng L, et al. Phase II clinical trial of axitinib and avelumab in patients with recurrent/metastatic adenoid cystic carcinoma. J Clin Oncol 2023; 41(15): 2843-51.
[http://dx.doi.org/10.1200/JCO.22.02221] [PMID: 36898078]
[7]
Dong F, Yang P, Wang R, et al. Triptonide acts as a novel antiprostate cancer agent mainly through inhibition of mTOR signaling pathway. Prostate 2019; 79(11): 1284-93.
[http://dx.doi.org/10.1002/pros.23834] [PMID: 31212374]
[8]
Han H, Du L, Cao Z, Zhang B, Zhou Q. Triptonide potently suppresses pancreatic cancer cell-mediated vasculogenic mimicry by inhibiting expression of VE-cadherin and chemokine ligand 2 genes. Eur J Pharmacol 2018; 818: 593-603.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.019] [PMID: 29162433]
[9]
Zhang B, Meng M, Xiang S, et al. Selective activation of tumor- suppressive MAPKP signaling pathway by triptonide effectively inhibits pancreatic cancer cell tumorigenicity and tumor growth. Biochem Pharmacol 2019; 166: 70-81.
[http://dx.doi.org/10.1016/j.bcp.2019.05.010] [PMID: 31075266]
[10]
Xiang S, Zhao Z, Zhang T, et al. Triptonide effectively suppresses gastric tumor growth and metastasis through inhibition of the oncogenic Notch1 and NF-κB signaling pathways. Toxicol Appl Pharmacol 2020; 388: 114870.
[http://dx.doi.org/10.1016/j.taap.2019.114870] [PMID: 31866380]
[11]
Zhang H, Mao Y, Zou X, et al. Triptonide inhibits growth and metastasis in HCC by suppressing EGFR/PI3K/AKT signaling. Neoplasma 2023; 70(1): 94-102.
[http://dx.doi.org/10.4149/neo_2022_221118N1112] [PMID: 36637084]
[12]
Wong KF, Chan JK, Chan KL, et al. Immunochemical characterization of the functional constituents of Tripterygium wilfordii contributing to its anti-inflammatory property. Clin Exp Pharmacol Physiol 2008; 35(1): 55-9.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04740.x] [PMID: 18047628]
[13]
Chang Z, Qin W, Zheng H, et al. Triptonide is a reversible non-hormonal male contraceptive agent in mice and non-human primates. Nat Commun 2021; 12(1): 1253.
[http://dx.doi.org/10.1038/s41467-021-21517-5] [PMID: 33623031]
[14]
Li J, Tao Q, Xie Y, et al. Exploring the targets and molecular mechanisms of thalidomide in the treatment of ulcerative colitis: Network pharmacology and experimental validation. Curr Pharm Des 2023; 29(34): 2721-37.
[http://dx.doi.org/10.2174/0113816128272502231101114727] [PMID: 37961863]
[15]
Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021; 49(D1): D1388-95.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[16]
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014; 42(W1): W32-8.
[http://dx.doi.org/10.1093/nar/gku293] [PMID: 24792161]
[17]
Wang X, Shen Y, Wang S, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017; 45(W1): W356-60.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[18]
Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: The human gene integrator. Database 2010; 2010(0): baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[19]
Bauer-Mehren A, Rautschka M, Sanz F, Furlong LI. DisGeNET: A Cytoscape plugin to visualize, integrate, search and analyze gene–disease networks. Bioinformatics 2010; 26(22): 2924-6.
[http://dx.doi.org/10.1093/bioinformatics/btq538] [PMID: 20861032]
[20]
Wang M, Zhong B, Li M, Wang Y, Yang H, Du K. Identification of potential core genes and pathways predicting pathogenesis in head and neck squamous cell carcinoma. Biosci Rep 2021; 41(5): BSR20204148.
[http://dx.doi.org/10.1042/BSR20204148] [PMID: 33982750]
[21]
Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51(D1): D638-46.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[22]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[23]
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8(S4) (Suppl. 4): S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[24]
Gene Ontology Consortium: Going forward. Nucleic Acids Res 2015; 43(Database issue): D1049-56.
[PMID: 25428369]
[25]
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[26]
Zhang S, Qin F, Yang L, et al. Nucleophosmin mutations induce chemosensitivity in THP-1 leukemia cells by suppressing NF-κB activity and regulating Bax/Bcl-2 expression. J Cancer 2016; 7(15): 2270-9.
[http://dx.doi.org/10.7150/jca.16010] [PMID: 27994664]
[27]
Ju R, Huang Y, Guo Z, et al. The circular RNAs differential expression profiles in the metastasis of salivary adenoid cystic carcinoma cells. Mol Cell Biochem 2021; 476(2): 1269-82.
[http://dx.doi.org/10.1007/s11010-020-03989-z] [PMID: 33237453]
[28]
Liu S, Qin Z, Mao Y, et al. Pharmacological inhibition of MYC to mitigate chemoresistance in preclinical models of squamous cell carcinoma. Theranostics 2024; 14(2): 622-39.
[http://dx.doi.org/10.7150/thno.88759] [PMID: 38169606]
[29]
Teng Z, Sun X, Guo Y, Zhang M, Liu Y, Xu M. Curcumae longae Rhizoma (Jianghuang) extract reverses the 5-Fluoruracil resistance in colorectal cancer cells via TLR4/PI3K/Akt/mTOR pathway. Clin Res Hepatol Gastroenterol 2022; 46(9): 101976.
[http://dx.doi.org/10.1016/j.clinre.2022.101976] [PMID: 35710041]
[30]
Liu Z, Zhang H, Ding S, et al. βKlotho inhibits androgen/androgen receptor-associated epithelial-mesenchymal transition in prostate cancer through inactivation of ERK1/2 signaling. Oncol Rep 2018; 40(1): 217-25.
[http://dx.doi.org/10.3892/or.2018.6399] [PMID: 29749458]
[31]
Cao X, Yang Y, Zhou W, et al. Aprepitant inhibits the development and metastasis of gallbladder cancer via ROS and MAPK activation. BMC Cancer 2023; 23(1): 471.
[http://dx.doi.org/10.1186/s12885-023-10954-8] [PMID: 37221457]
[32]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res 2013; 41(Database issue): D991-5.
[PMID: 23193258]
[33]
Liu HB, Huang GJ, Luo MS. Transcriptome analyses identify hub genes and potential mechanisms in adenoid cystic carcinoma. Medicine 2020; 99(2): e18676.
[http://dx.doi.org/10.1097/MD.0000000000018676] [PMID: 31914060]
[34]
Lin W, Chen L, Zhang H, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun 2023; 14(1): 265.
[http://dx.doi.org/10.1038/s41467-022-35710-7] [PMID: 36650153]
[35]
Ebner DK, Malouff TD, Frank SJ, Koto M. The role of particle therapy in adenoid cystic carcinoma and mucosal melanoma of the head and neck. Int J Part Ther 2021; 8(1): 273-84.
[http://dx.doi.org/10.14338/IJPT-D-20-00076] [PMID: 34285953]
[36]
Saleh E, Ukwas A. Adenoid cystic carcinoma of salivary glands: A ten-year review and an assessment of the current management, surgery, radiotherapy, and chemotherapy. Int J Otolaryngol 2023; 2023: 1-16.
[http://dx.doi.org/10.1155/2023/7401458] [PMID: 37159817]
[37]
Tchekmedyian V, Sherman EJ, Dunn L, et al. Phase II study of lenvatinib in patients with progressive, recurrent or metastatic adenoid cystic carcinoma. J Clin Oncol 2019; 37(18): 1529-37.
[http://dx.doi.org/10.1200/JCO.18.01859] [PMID: 30939095]
[38]
Jaber MA, Hassan M, Ingafou M, Elameen AM. Adenoid cystic carcinoma of the minor salivary glands: A systematic review and meta-analysis of clinical characteristics and management strategies. J Clin Med 2024; 13(1): 267.
[http://dx.doi.org/10.3390/jcm13010267] [PMID: 38202273]
[39]
Song J, He GN, Dai L. A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed Pharmacother 2023; 162: 114705.
[http://dx.doi.org/10.1016/j.biopha.2023.114705] [PMID: 37062220]
[40]
Morgan MJ, Liu Z. Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells 2010; 30(1): 1-12.
[http://dx.doi.org/10.1007/s10059-010-0105-0] [PMID: 20652490]
[41]
Qian Q, Chen W, Cao Y, et al. Targeting reactive oxygen species in cancer via chinese herbal medicine. Oxid Med Cell Longev 2019; 2019: 1-23.
[http://dx.doi.org/10.1155/2019/9240426] [PMID: 31583051]
[42]
Xu B, Guo X, Mathew S, et al. Triptolide simultaneously induces reactive oxygen species, inhibits NF-κB activity and sensitizes 5-fluorouracil in colorectal cancer cell lines. Cancer Lett 2010; 291(2): 200-8.
[http://dx.doi.org/10.1016/j.canlet.2009.10.013] [PMID: 19903580]
[43]
Khan H, Ullah H, Castilho PCMF, et al. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit Rev Food Sci Nutr 2020; 60(16): 2790-800.
[http://dx.doi.org/10.1080/10408398.2019.1661827] [PMID: 31512490]
[44]
Park SW, Kim Y. Triptolide induces apoptosis of PMA-treated THP-1 cells through activation of caspases, inhibition of NF-κB and activation of MAPKs. Int J Oncol 2013; 43(4): 1169-75.
[http://dx.doi.org/10.3892/ijo.2013.2033] [PMID: 23900299]
[45]
Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999; 6(2): 99-104.
[http://dx.doi.org/10.1038/sj.cdd.4400476] [PMID: 10200555]
[46]
Guan J, Zhao Q, Lv J, Zhang Z, Sun S, Mao W. Triptolide induces DNA breaks, activates caspase-3-dependent apoptosis and sensitizes B-cell lymphoma to poly(ADP-ribose) polymerase 1 and phosphoinositide 3-kinase inhibitors. Oncol Lett 2017; 14(4): 4965-70.
[http://dx.doi.org/10.3892/ol.2017.6771] [PMID: 29085508]
[47]
Wang X, Liu Q, Wu S, Xu N, Li H, Feng A. Identifying the effect of celastrol against ovarian cancer with network pharmacology and in vitro experiments. Front Pharmacol 2022; 13: 739478.
[http://dx.doi.org/10.3389/fphar.2022.739478] [PMID: 35370699]
[48]
Shang D, Han T, Xu X, Liu Y. Decitabine induces G2/M cell cycle arrest by suppressing p38/NF-κB signaling in human renal clear cell carcinoma. Int J Clin Exp Pathol 2015; 8(9): 11140-8.
[PMID: 26617834]
[49]
Sadrkhanloo M, Entezari M, Orouei S, et al. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182: 106311.
[http://dx.doi.org/10.1016/j.phrs.2022.106311] [PMID: 35716914]
[50]
Shen M, Xu Z, Xu W, et al. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J Exp Clin Cancer Res 2019; 38(1): 149.
[http://dx.doi.org/10.1186/s13046-019-1161-8] [PMID: 30961670]
[51]
Guo H, Hu Z, Yang X, et al. STAT3 inhibition enhances gemcitabine sensitivity in pancreatic cancer by suppressing EMT, immune escape and inducing oxidative stress damage. Int Immunopharmacol 2023; 123: 110709.
[http://dx.doi.org/10.1016/j.intimp.2023.110709] [PMID: 37515849]
[52]
Salama E, Eldeen GN, Abdel Rasheed M, et al. Differentially expressed genes: OCT-4, SOX 2, STAT 3, CDH 1 and CDH 2, in cultured mesenchymal stem cells challenged with serum of women with endometriosis. J Genet Eng Biotechnol 2018; 16(1): 63-9.
[http://dx.doi.org/10.1016/j.jgeb.2017.10.006] [PMID: 30647706]
[53]
Sharma G, Mo JS, Lamichhane S, Chae SC. MicroRNA 133A regulates cell proliferation, cell migration, and apoptosis in colorectal cancer by suppressing CDH3 expression. J Cancer 2023; 14(6): 881-94.
[http://dx.doi.org/10.7150/jca.82916] [PMID: 37151391]
[54]
Shan Y, Zhao J, Wei K, et al. A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions. Front Pharmacol 2023; 14: 1282610.
[http://dx.doi.org/10.3389/fphar.2023.1282610] [PMID: 38027004]
[55]
Chinison J, Aguilar JS, Avalos A, et al. Triptonide effectively inhibits Wnt/β-catenin signaling via C-terminal transactivation domain of β-catenin. Sci Rep 2016; 6(1): 32779.
[http://dx.doi.org/10.1038/srep32779] [PMID: 27596363]