Mini-Reviews in Medicinal Chemistry

Author(s): Anjali, Payal Kamboj and Mohammad Amir*

DOI: 10.2174/0113895575307480240610055622

DownloadDownload PDF Flyer Cite As
Synthetic Methods of Quinoxaline Derivatives and their Potential Anti-inflammatory Properties

Page: [138 - 162] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Quinoxaline molecule has gathered great attention in medicinal chemistry due to its vide spectrum of biological activities and has emerged as a versatile pharmacophore in drug discovery and development. Its structure comprises a bicyclic ring of benzopyrazine and displays a range of pharmacological properties, including antibacterial, antifungal, antiviral, anticancer, and antiinflammatory. This study aims to summarize the different strategies for the synthesis of quinoxalines and their anti-inflammatory properties acting through different mechanisms. Structure-activity relationships have also been discussed in order to determine the effect of structural modifications on anti-inflammatory potential. These analyses illuminate critical structural features required for optimal activity, driving the design and synthesis of new quinoxaline analogues with better antiinflammatory activities. The anti-inflammatory properties of quinoxalines are attributed to their inhibitory action on the expression of several inflammatory modulators such as cyclooxygenase, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and p38α Mitogen Activated Protein Kinase (p38α MAPK). Activators of nuclear factor erythroid 2–related factor 2 (NRF2) and agonistic effect on opioid receptors have also been discussed. Hence, this study may provide a future template for the design and development of novel quinoxaline derivatives acting through different molecular targets as potential anti-inflammatory agents with better efficacy and safety profiles.

Keywords: Quinoxaline, synthetic methods, anti-inflammatory, structure activity relationship, COX, p38α MAPK, cytokines inhibitors.

Graphical Abstract

[1]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[2]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[3]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[4]
Zhou, Y.; Hong, Y.; Huang, H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press. Res., 2016, 41(6), 901-910.
[http://dx.doi.org/10.1159/000452591] [PMID: 27871079]
[5]
Varela, M.L.; Mogildea, M.; Moreno, I.; Lopes, A. Acute inflammation and metabolism. Inflammation, 2018, 41(4), 1115-1127.
[http://dx.doi.org/10.1007/s10753-018-0739-1] [PMID: 29404872]
[6]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[7]
Barcelos, I.P.; Troxell, R.M.; Graves, J.S. Mitochondrial dysfunction and multiple sclerosis. Biology (Basel), 2019, 8(2), 37.
[http://dx.doi.org/10.3390/biology8020037] [PMID: 31083577]
[8]
Tsai, D.H.; Riediker, M.; Berchet, A.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. Int., 2019, 26(19), 19697-19704.
[http://dx.doi.org/10.1007/s11356-019-05194-y] [PMID: 31079306]
[9]
Deepak, P.; Axelrad, J.E.; Ananthakrishnan, A.N. The role of the radiologist in determining disease severity in inflammatory bowel diseases. Gastrointest. Endosc. Clin. N. Am., 2019, 29(3), 447-470.
[http://dx.doi.org/10.1016/j.giec.2019.02.006] [PMID: 31078247]
[10]
Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 1971, 231(25), 232-235.
[http://dx.doi.org/10.1038/newbio231232a0] [PMID: 5284360]
[11]
Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol., 2010, 24(2), 121-132.
[http://dx.doi.org/10.1016/j.bpg.2009.11.005] [PMID: 20227026]
[12]
Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci., 2014, 16(5), 821-847.
[http://dx.doi.org/10.18433/J3VW2F] [PMID: 24393558]
[13]
Yuan, G.; Wahlqvist, M.L.; He, G.; Yang, M.; Li, D. Natural products and anti-inflammatory activity. Asia Pac. J. Clin. Nutr., 2006, 15(2), 143-152.
[PMID: 16672197]
[14]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[15]
Ju, Y.; Kumar, D.; Varma, R.S. Revisiting nucleophilic substitution reactions: Microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium. J. Org. Chem., 2006, 71(17), 6697-6700.
[http://dx.doi.org/10.1021/jo061114h] [PMID: 16901176]
[16]
Lokhande, P.D.; Sakate, S.S. Regioselective one-pot synthesis of 3,5-diarylpyrazoles. Indian J. Chem., 2005, 44B, 2238-2242.
[17]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[18]
García-Valverde, M.; Torroba, T. Sulfur-nitrogen heterocycles. Molecules, 2005, 10(2), 318-320.
[http://dx.doi.org/10.3390/10020318]
[19]
Kumar Patidar, A.; Jeyakandan, M.; Mobiya, A.K.; Selvam, G. Exploring potential of quinoxaline moiety. Int. J. Pharm. Tech. Res., 2011, 3(1), 386-392.
[20]
Watanabe, K.; Oguri, H.; Oikawa, H. Diversification of echinomycin molecular structure by way of chemoenzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway. Curr. Opin. Chem. Biol., 2009, 13(2), 189-196.
[http://dx.doi.org/10.1016/j.cbpa.2009.02.012] [PMID: 19278894]
[21]
El Adnani, Z.; Mcharfi, M.; Sfaira, M.; Benzakour, M.; Benjelloun, A.T.; Touhami, M.E.; Hammouti, B.; Taleb, M. DFT Study of 7-R-3methylquinoxalin-2(1H)-ones (R=H; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Int. J. Electrochem. Sci., 2012, 7(8), 6738-6751.
[http://dx.doi.org/10.1016/S1452-3981(23)15743-9]
[22]
Obot, I.B.; Obi-Egbedi, N.O. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation. Corros. Sci., 2010, 52(1), 198-204.
[http://dx.doi.org/10.1016/j.corsci.2009.09.002]
[23]
Kabanda, M.M.; Murulana, L.C.; Ozcan, M.; Karadag, F.; Dehri, I.; Obot, I.B.; Ebenso, E.E. Quantum chemical studies on the corrosion inhibition of mild steel by some triazoles and benzimidazole derivatives in acidic medium. Int. J. Electrochem. Sci., 2012, 7(6), 5035-5056.
[http://dx.doi.org/10.1016/S1452-3981(23)19602-7]
[24]
Justin Thomas, K.R.; Lin, J.T.; Tao, Y.T.; Ko, C.W. Light-emitting carbazole derivatives: Potential electroluminescent materials. J. Am. Chem. Soc., 2001, 123(38), 9404-9411.
[http://dx.doi.org/10.1021/ja010819s] [PMID: 11562223]
[25]
Ragab, A.; Elsisi, D.M.; Abu Ali, O.A.; Abusaif, M.S.; Askar, A.A.; Farag, A.A.; Ammar, Y.A. Design, synthesis of new novel quinoxalin-2(1H)-one derivatives incorporating hydrazone, hydrazine, and pyrazole moieties as antimicrobial potential with in-silico ADME and molecular docking simulation. Arab. J. Chem., 2022, 15(1), 103497.
[http://dx.doi.org/10.1016/j.arabjc.2021.103497]
[26]
Tang, X.; Zhou, Q.; Zhan, W.; Hu, D.; Zhou, R.; Sun, N.; Chen, S.; Wu, W.; Xue, W. Synthesis of novel antibacterial and antifungal quinoxaline derivatives. RSC Advances, 2022, 12(4), 2399-2407.
[http://dx.doi.org/10.1039/D1RA07559D] [PMID: 35425241]
[27]
El-Zahabi, H.S.A. Synthesis, characterization, and biological evaluation of some novel quinoxaline derivatives as antiviral agents. Arch. Pharm. (Weinheim), 2017, 350(5), 1700028.
[http://dx.doi.org/10.1002/ardp.201700028] [PMID: 28407276]
[28]
Zhang, G.R.; Ren, Y.; Yin, X.M.; Quan, Z.S. Synthesis and evaluation of the anticonvulsant activities of new 5-substitued-[1,2,4]triazolo[4,3-a]quinoxalin-4(5h)-one derivatives. Lett. Drug Des. Discov., 2018, 15(4), 406-413.
[http://dx.doi.org/10.2174/1570180814666170619094408]
[29]
Alanazi, M.M.; Elkady, H.; Alsaif, N.A.; Obaidullah, A.J.; Alanazi, W.A.; Al-Hossaini, A.M.; Alharbi, M.A.; Eissa, I.H.; Dahab, M.A. Discovery of new quinoxaline-based derivatives as anticancer agents and potent VEGFR-2 inhibitors: Design, synthesis, and in silico study. J. Mol. Struct., 2022, 1253, 132220.
[http://dx.doi.org/10.1016/j.molstruc.2021.132220]
[30]
Guirado, A.; López Sánchez, J.I.; Ruiz-Alcaraz, A.J.; Bautista, D.; Gálvez, J. Synthesis and biological evaluation of 4-alkoxy-6,9-dichloro[1,2,4]triazolo[4,3-a]quinoxalines as inhibitors of TNF-α and IL-6. Eur. J. Med. Chem., 2012, 54, 87-94.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.035] [PMID: 22621841]
[31]
Doğan, I.S.; Kahveci, B.; Sari, S.; Kolci, K.; Reis, R.; Sipahi, H. Synthesis, molecular modelling and in vitro anti‐inflammatory activity of novel 1,2,4‐triazolo[4,3‐a]quinoxaline derivatives. ChemistrySelect, 2022, 7(26), e202200935.
[http://dx.doi.org/10.1002/slct.202200935]
[32]
Knapp, R.J.; Goldenberg, R.; Shuck, C.; Cecil, A.; Watkins, J.; Miller, C.; Crites, G.; Malatynska, E. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur. J. Pharmacol., 2002, 440(1), 27-35.
[http://dx.doi.org/10.1016/S0014-2999(02)01338-9] [PMID: 11959085]
[33]
O’Neill, M.; Witkin, J. AMPA receptor potentiators: Application for depression and Parkinson’s disease. Curr. Drug Targets, 2007, 8(5), 603-620.
[http://dx.doi.org/10.2174/138945007780618517] [PMID: 17504104]
[34]
Cantor, L.B. The evolving pharmacotherapeutic profile of brimonidine, an 2-adrenergic agonist, after four years of continuous use. Expert Opin. Pharmacother., 2000, 1(4), 815-834.
[http://dx.doi.org/10.1517/14656566.1.4.815] [PMID: 11249518]
[35]
Galanopoulos, A.; Goldberg, I. Clinical efficacy and neuroprotective effects of brimonidine in the management of glaucoma and ocular hypertension. Clin. Ophthalmol., 2009, 3, 117-122.
[PMID: 19668554]
[36]
Greenfield, D.S.; Liebmann, J.M.; Ritch, R.; Ritch, R. Brimonidine. J. Glaucoma, 1997, 6(4), 250-258.
[http://dx.doi.org/10.1097/00061198-199708000-00010] [PMID: 9264305]
[37]
Kong, D.; Park, E.J.; Stephen, A.G.; Calvani, M.; Cardellina, J.H.; Monks, A.; Fisher, R.J.; Shoemaker, R.H.; Melillo, G. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res., 2005, 65(19), 9047-9055.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1235] [PMID: 16204079]
[38]
Zhao, N.; Wang, L.; Lu, X.; Jia, H.; Fang, B.; Zeng, Z.; Ding, H. Pharmacokinetics of cyadox and its major metabolites in swine after intravenous and oral administration. J. Integr. Agric., 2013, 12(3), 495-501.
[http://dx.doi.org/10.1016/S2095-3119(13)60250-6]
[39]
Wedemeyer, H.; Erren, P.; Naumann, U.; Rieke, A.; Stoehr, A.; Zimmermann, T.; Lohmann, K.; König, B.; Mauss, S. Glecaprevir/pibrentasvir is safe and effective in hepatitis C patients with cirrhosis: Real‐world data from the German Hepatitis C‐Registry. Liver Int., 2021, 41(5), 949-955.
[http://dx.doi.org/10.1111/liv.14829] [PMID: 33592123]
[40]
Llaneras, J.; Riveiro-Barciela, M.; Lens, S.; Diago, M.; Cachero, A.; García-Samaniego, J.; Conde, I.; Arencibia, A.; Arenas, J.; Gea, F.; Torras, X.; Luis Calleja, J.; Antonio Carrión, J.; Fernández, I.; María Morillas, R.; Rosales, J.M.; Carmona, I.; Fernández-Rodríguez, C.; Hernández-Guerra, M.; Llerena, S.; Bernal, V.; Turnes, J.; González-Santiago, J.M.; Montoliu, S.; Figueruela, B.; Badia, E.; Delgado, M.; Fernández-Bermejo, M.; Iñarrairaegui, M.; Pascasio, J.M.; Esteban, R.; Mariño, Z.; Buti, M. Effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in patients with chronic hepatitis C previously treated with DAAs. J. Hepatol., 2019, 71(4), 666-672.
[http://dx.doi.org/10.1016/j.jhep.2019.06.002] [PMID: 31203153]
[41]
Li, L.Y. Tyrphostin AG1296, a platelet-derived growth factor receptor inhibitor, induces apoptosis, and reduces viability and migration of PLX4032-resistant melanoma cells. OncoTargets Ther., 2015, (May), 1043.
[http://dx.doi.org/10.2147/OTT.S70691]
[42]
Salvi, R.; Lobarinas, E.; Sun, W. Pharmacological treatments for tinnitus: New and old. Drugs Future, 2009, 34(5), 381-400.
[http://dx.doi.org/10.1358/dof.2009.34.5.1362442] [PMID: 21765586]
[43]
Roubal, K.; Myint, Z.W.; Kolesar, J.M. Erdafitinib: A novel therapy for FGFR-mutated urothelial cancer. Am. J. Health Syst. Pharm., 2020, 77(5), 346-351.
[http://dx.doi.org/10.1093/ajhp/zxz329] [PMID: 32073123]
[44]
Datta, A.; Halder, S. Dowex 50W: Mild efficient reusable heterogeneous catalyst for synthesis of quinoxaline derivatives in aqueous medium. Orient. J. Chem., 2020, 36(6), 1218-1224.
[http://dx.doi.org/10.13005/ojc/360629]
[45]
Dânoun, K.; Essamlali, Y.; Amadine, O.; Mahi, H.; Zahouily, M. Eco-friendly approach to access of quinoxaline derivatives using nanostructured pyrophosphate Na2PdP2O7 as a new, efficient and reusable heterogeneous catalyst. BMC Chem., 2020, 14(1), 6.
[http://dx.doi.org/10.1186/s13065-020-0662-z] [PMID: 32025664]
[46]
Malek, B.; Bahammou, İ.; Zimou, O.; El Hallaoui, A.; Ghailane, R.; Boukhri̇s, S.; Souizi, A. Eco-friendly synthesis of quinoxaline derivatives using mineral fertilizers as heterogeneous catalysts. J. Turkish Chem. Soc. Sec. A: Chem., 2020, 7(2), 427-440.
[http://dx.doi.org/10.18596/jotcsa.577101]
[47]
Bashirzadeh, M.; Behbahani, F.K. Green synthesis of quinoxaline derivatives at room temperature in ethylene glycol with H2SO4/SiO2 catalyst. Eur. Chem. Bull., 2020, 9(1), 33-37.
[http://dx.doi.org/10.17628/ecb.2020.9.33-37]
[48]
Chatterjee, R.; Mahato, S.; Mukherjee, A.; Zyryanov, G.V.; Majee, A. Synthesis of quinoxaline derivatives catalyzed by Brønsted acidic ionic liquid under solvent-free conditions. AIP Conf. Proc., 2020, 2280(1), 050012.
[http://dx.doi.org/10.1063/5.0018532]
[49]
Shee, S.; Panja, D.; Kundu, S. Nickel-catalyzed direct synthesis of quinoxalines from 2-nitroanilines and vicinal diols: Identifying nature of the active catalyst. J. Org. Chem., 2020, 85(4), 2775-2784.
[http://dx.doi.org/10.1021/acs.joc.9b03104] [PMID: 31903762]
[50]
Xie, F.; Li, Y.; Chen, X.; Chen, L.; Zhu, Z.; Li, B.; Huang, Y.; Zhang, K.; Zhang, M. Direct synthesis of novel quinoxaline derivatives via palladium-catalyzed reductive annulation of catechols and nitroarylamines. Chem. Commun. (Camb.), 2020, 56(44), 5997-6000.
[http://dx.doi.org/10.1039/C9CC09649C] [PMID: 32347834]
[51]
Li, F.; Tang, X.; Xu, Y.; Wang, C.; Wang, Z.; Li, Z.; Wang, L. A dual-protein cascade reaction for the regioselective synthesis of quinoxalines. Org. Lett., 2020, 22(10), 3900-3904.
[http://dx.doi.org/10.1021/acs.orglett.0c01186] [PMID: 32337998]
[52]
Ahmadi Sabegh, M.; Khalafy, J. The regioselective catalyst-free synthesis of bis-quinoxalines and bis-pyrido[2,3- b]pyrazines by double condensation of 1,4-phenylene-bis-glyoxal with 1,2-diamines. Heterocycl. Commun., 2018, 24(4), 193-196.
[http://dx.doi.org/10.1515/hc-2018-0039]
[53]
Shee, S.; Ganguli, K.; Jana, K.; Kundu, S. Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives. Chem. Commun. (Camb.), 2018, 54(50), 6883-6886.
[http://dx.doi.org/10.1039/C8CC02366B] [PMID: 29790492]
[54]
Pardeshi, S.D.; Sathe, P.A.; Vadagaonkar, K.S.; Chaskar, A.C. One‐pot protocol for the synthesis of imidazoles and quinoxalines using N ‐Bromosuccinimide. Adv. Synth. Catal., 2017, 359(23), 4217-4226.
[http://dx.doi.org/10.1002/adsc.201700900]
[55]
Hazarika, D.; Phukan, P. Metal free synthesis of quinoxalines from alkynes via a cascade process using TsNBr2. Tetrahedron, 2017, 73(10), 1374-1379.
[http://dx.doi.org/10.1016/j.tet.2017.01.056]
[56]
Indalkar, K.S.; Khatri, C.K.; Chaturbhuj, G.U. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst. J. Chem. Sci., 2017, 129(2), 141-148.
[http://dx.doi.org/10.1007/s12039-017-1235-0]
[57]
Shamsi-Sani, M.; Shirini, F.; Abedini, M.; Seddighi, M. Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst. Res. Chem. Intermed., 2016, 42(2), 1091-1099.
[http://dx.doi.org/10.1007/s11164-015-2075-5]
[58]
Tejeswararao, D. Recyclable acidic brønsted ionic liquid catalyzed synthesis of quinoxaline. J. Chil. Chem. Soc., 2016, 61(1), 2843-2845.
[http://dx.doi.org/10.4067/S0717-97072016000100018]
[59]
Baghbanian, S.M. Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives. Chin. Chem. Lett., 2015, 26(9), 1113-1116.
[http://dx.doi.org/10.1016/j.cclet.2015.04.037]
[60]
Khorramabadi-Zad, A.; Azadmanesh, M.; Mohammadi, S. One-pot, facile synthesis of quinoxaline derivatives from bis-aryl a-hydroxyketones and o-arenediamines using KMnO4/CuSO4. S. Afr. J. Chem., 2013, (Aug), 66.
[61]
Wadavrao, S.B.; Ghogare, R.S.; Narsaiah, A.V. A simple and efficient protocol for the synthesis of quinoxalines catalyzed by pyridine. Org Commun., 2013, 6(1), 23-30.
[62]
Tang, X-Y.; Gong, Y.; Huo, H. Metal-free synthesis of pyrrolo[1,2-a]quinoxalines mediated by TEMPO oxoammonium salts. Synthesis, 2018, 50(14), 2727-2740.
[http://dx.doi.org/10.1055/s-0037-1610131]
[63]
Gao, J.; Ren, Z.G.; Lang, J.P. One-pot aqueous-phase synthesis of quinoxalines through oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines catalyzed by a zwtterionic Cu(II)/calix[4]arene complex. Chin. Chem. Lett., 2017, 28(5), 1087-1092.
[http://dx.doi.org/10.1016/j.cclet.2016.12.035]
[64]
Liu, X. Synthesis of dihydropyridines and quinoxaline derivatives using 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride as a new, reusable and efficient Brønsted acidic ionic liquid catalyst. Iran J. Chem. Chem. Eng., 2017, 36(6), 77-84.
[65]
Sajjadifar, S.; Mohammadi-Aghdam, S. Synthesis of dihydropyridines and quinoxaline derivatives using 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride as a new, reusable and efficient Brønsted acidic ionic liquid catalyst Asian J. Green Chem., 2017, 1, 1-15.
[http://dx.doi.org/10.22631/ajgc.2017.46496]
[66]
Tarpada, U.P.; Thummar, B.B.; Raval, D.K. A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid. Arab. J. Chem., 2017, 10, S2902-S2907.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.021]
[67]
Badali, M.; Khalafy, J.; Aghazadeh, M.; Prager, R.H. Synthesis of bis-quinoxaline derivatives using Tonsil clay as a catalyst. Bull. Chem. Soc. Ethiop., 2016, 30(1), 129-136.
[68]
Kathrotiya, H.G.; Naliapara, Y.T. Synthesis of some new quinoxalines bearing pyridinyl thiazole moiety. Int. Lett. Chem. Phys. Astron., 2015, 52, 74-83.
[69]
Kumar, K.; Mudshinge, S.R.; Goyal, S.; Gangar, M.; Nair, V.A. A catalyst free, one pot approach for the synthesis of quinoxaline derivatives via oxidative cyclisation of 1,2-diamines and phenacyl bromides. Tetrahedron Lett., 2015, 56(10), 1266-1271.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.138]
[70]
Xie, F.; Zhang, M.; Jiang, H.; Chen, M.; Lv, W.; Zheng, A.; Jian, X. Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via a ruthenium-catalyzed hydrogen transfer strategy. Green Chem., 2015, 17(1), 279-284.
[http://dx.doi.org/10.1039/C4GC01316F]
[71]
Zhang, H. A green synthesis of indolo[2,3-b]quinoxaline derivatives. J. Chem. Res., 2014, 38(12), 705-709.
[http://dx.doi.org/10.3184/174751914X14146737095013]
[72]
Piltan, M. One-pot synthesis of pyrrolo[1,2-a]quinoxaline and pyrrolo[1,2-a]pyrazine derivatives via the three-component reaction of 1,2-diamines, ethyl pyruvate and α-bromo ketones. Chin. Chem. Lett., 2014, 25(11), 1507-1510.
[http://dx.doi.org/10.1016/j.cclet.2014.06.013]
[73]
Mahadik, P.; Jagwani, D.; Joshi, R. A greener chemistry approach for synthesis of 2,3-diphenyl quinoxaline. Int. J. Innov. Sci. Eng. Technol, 2014, 1, 79.
[74]
Viswanadham, K.K.D.R.; Prathap Reddy, M.; Sathyanarayana, P.; Ravi, O.; Kant, R.; Bathula, S.R. Iodine-mediated oxidative annulation for one-pot synthesis of pyrazines and quinoxalines using a multipathway coupled domino strategy. Chem. Commun. (Camb.), 2014, 50(88), 13517-13520.
[http://dx.doi.org/10.1039/C4CC05844E] [PMID: 25238170]
[75]
Mulik, A.; Chandam, D.; Patil, P.; Patil, D.; Jagdale, S.; Deshmukh, M. Proficient synthesis of quinoxaline and phthalazinetrione derivatives using [C8dabco]Br ionic liquid as catalyst in aqueous media. J. Mol. Liq., 2013, 179, 104-109.
[http://dx.doi.org/10.1016/j.molliq.2012.12.006]
[76]
El-Atawy, M.A.; Hamed, E.A.; Alhadi, M.; Omar, A.Z. Synthesis and antimicrobial activity of some new substituted quinoxalines. Molecules, 2019, 24(22), 4198.
[http://dx.doi.org/10.3390/molecules24224198] [PMID: 31752396]
[77]
Dhanaraj, C.J.; Johnson, J. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies. J. Photochem. Photobiol. B, 2016, 161, 108-121.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.033] [PMID: 27236046]
[78]
Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int. J. Mol. Sci., 2019, 20(18), 4367.
[http://dx.doi.org/10.3390/ijms20184367] [PMID: 31491986]
[79]
Ahmed, E.A.; Mohamed, M.F.A.; Omran, O.A. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: Synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents. RSC Advances, 2022, 12(39), 25204-25216.
[http://dx.doi.org/10.1039/D2RA04498F] [PMID: 36199335]
[80]
Dewangan, D.; Nakhate, K.T.; Verma, V.S.; Nagori, K.; Badwaik, H.; Nair, N.; Tripathi, D.K.; Mishra, A. Synthesis and molecular docking study of novel hybrids of 1,3,4‐oxadiazoles and quinoxaline as a potential analgesic and anti‐inflammatory agents. J. Heterocycl. Chem., 2018, 55(12), 2901-2910.
[http://dx.doi.org/10.1002/jhet.3363]
[81]
Ruiz-Alcaraz, A.J.; Tristán-Manzano, M.; Guirado, A.; Gálvez, J.; Martínez-Esparza, M.; García-Peñarrubia, P. Intracellular signaling modifications involved in the anti-inflammatory effect of 4-alkoxy-6,9-dichloro[1,2,4]triazolo[4,3-a]quinoxalines on macrophages. Eur. J. Pharm. Sci., 2017, 99, 292-298.
[http://dx.doi.org/10.1016/j.ejps.2016.12.037] [PMID: 28057547]
[82]
Shen, Q.K.; Gong, G.H.; Li, G.; Jin, M.; Cao, L.H.; Quan, Z.S. Discovery and evaluation of novel synthetic 5-alkyl-4-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoxaline-1-carbox-amide derivatives as anti-inflammatory agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 85-95.
[http://dx.doi.org/10.1080/14756366.2019.1680658] [PMID: 31707866]
[83]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[84]
de Gaetano, M.; Tighe, C.; Gahan, K.; Zanetti, A.; Chen, J.; Newson, J.; Cacace, A.; Marai, M.; Gaffney, A.; Brennan, E.; Kantharidis, P.; Cooper, M.E.; Leroy, X.; Perretti, M.; Gilroy, D.; Godson, C.; Guiry, P.J. Asymmetric synthesis and biological screening of quinoxaline-containing synthetic lipoxin A 4 mimetics (QNX-sLXms). J. Med. Chem., 2021, 64(13), 9193-9216.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00403] [PMID: 34138563]
[85]
Bachstetter, A.D.; Van Eldik, L.J. The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. Aging Dis., 2010, 1(3), 199-211.
[PMID: 22720195]
[86]
Anjali, K.P.; Kamboj, P.; Alam, O.; Patel, H.; Ahmad, I.; Ahmad, S.S.; Amir, M. Design, synthesis, biological evaluation, and in silico studies of quinoxaline derivatives as potent p38α MAPK inhibitors. Arch. Pharm. (Weinheim), 2024, 357(1), 2300301.
[http://dx.doi.org/10.1002/ardp.202300301] [PMID: 37847883]
[87]
Tariq, S.; Alam, O.; Amir, M. Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety. Bioorg. Chem., 2018, 76, 343-358.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.003] [PMID: 29227918]
[88]
Wang, L.; He, C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front. Immunol., 2022, 13, 967193.
[http://dx.doi.org/10.3389/fimmu.2022.967193] [PMID: 36032081]
[89]
Kandasamy, M.; Mak, K.K.; Devadoss, T.; Thanikachalam, P.V.; Sakirolla, R.; Choudhury, H.; Pichika, M.R. Construction of a novel quinoxaline as a new class of Nrf2 activator. BMC Chem., 2019, 13(1), 117.
[http://dx.doi.org/10.1186/s13065-019-0633-4] [PMID: 31572984]
[90]
Al-Hasani, R.; Bruchas, M.R.; Johnson, A.B. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 2011, 115(6), 1363-1381.
[http://dx.doi.org/10.1097/ALN.0b013e318238bba6] [PMID: 22020140]
[91]
Tangherlini, G.; Börgel, F.; Schepmann, D.; Slocum, S.; Che, T.; Wagner, S.; Schwegmann, K.; Hermann, S.; Mykicki, N.; Loser, K.; Wünsch, B. Synthesis and pharmacological evaluation of fluorinated quinoxaline‐based κ‐Opioid Receptor (KOR) agonists designed for PET studies. ChemMedChem, 2020, 15(19), 1834-1853.
[http://dx.doi.org/10.1002/cmdc.202000502] [PMID: 33448685]