Emerging Role of Sorting Nexin 17 in Human Health and Disease

Page: [814 - 825] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

The distortion of the cellular membrane transport pathway has a profound impact on cell dynamics and can drive serious physiological consequences during the process of cell sorting. SNX17 is a member of the Sorting Nexin (SNX) family and plays a crucial role in protein sorting and transport in the endocytic pathway. SNX17, SNX27, and SNX31 belong to the SNX-FERM subfamily and possess the FERM domain, which can assist in endocytic transport and lysosomal degradation. The binding partners of SNX27 have been discovered to number over 100, and SNX27 has been linked to the development of Alzheimer's disease progression, tumorigenesis, cancer progression, and metastasis. However, the role and potential mechanisms of SNX17 in human health and disease remain poorly understood, and the function of SNX17 has not been fully elucidated. In this review, we summarize the structure and basic functions of SNX protein, focusing on providing current evidence of the role and possible mechanism of SNX17 in human neurodegenerative diseases and cardiovascular diseases.

[1]
Heo, A.J.; Ji, C.H.; Kwon, Y.T. The Cys/N-degron pathway in the ubiquitin–proteasome system and autophagy. Trends Cell Biol., 2023, 33(3), 247-259.
[http://dx.doi.org/10.1016/j.tcb.2022.07.005] [PMID: 35945077]
[2]
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem., 2009, 78(1), 477-513.
[http://dx.doi.org/10.1146/annurev.biochem.78.081507.101607] [PMID: 19489727]
[3]
Wang, Y.; Le, W.D. Autophagy and ubiquitin-proteasome system. Adv. Exp. Med. Biol., 2019, 1206, 527-550.
[http://dx.doi.org/10.1007/978-981-15-0602-4_25] [PMID: 31777002]
[4]
Zhang, Y.; Chen, X.; Zhao, Y.; Ponnusamy, M.; Liu, Y. The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease. Rev. Neurosci., 2017, 28(8), 861-868.
[http://dx.doi.org/10.1515/revneuro-2017-0013] [PMID: 28704199]
[5]
Jovic, M.; Sharma, M.; Rahajeng, J.; Caplan, S. The early endosome: A busy sorting station for proteins at the crossroads. Histol. Histopathol., 2010, 25(1), 99-112.
[PMID: 19924646]
[6]
Tanno, H.; Komada, M. The ubiquitin code and its decoding machinery in the endocytic pathway. J. Biochem., 2013, 153(6), 497-504.
[http://dx.doi.org/10.1093/jb/mvt028] [PMID: 23564907]
[7]
Jaillais, Y.; Fobis-Loisy, I.; Miège, C.; Gaude, T. Evidence for a sorting endosome in Arabidopsis root cells. Plant J., 2008, 53(2), 237-247.
[http://dx.doi.org/10.1111/j.1365-313X.2007.03338.x] [PMID: 17999644]
[8]
Cullen, P.J.; Steinberg, F. To degrade or not to degrade: Mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol., 2018, 19(11), 679-696.
[http://dx.doi.org/10.1038/s41580-018-0053-7] [PMID: 30194414]
[9]
McNally, K.E.; Cullen, P.J. Endosomal retrieval of cargo: Retromer is not alone. Trends Cell Biol., 2018, 28(10), 807-822.
[http://dx.doi.org/10.1016/j.tcb.2018.06.005] [PMID: 30072228]
[10]
Chen, K.E.; Healy, M.D.; Collins, B.M. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic, 2019, 20(7), 465-478.
[http://dx.doi.org/10.1111/tra.12649] [PMID: 30993794]
[11]
Wang, J.; Fedoseienko, A.; Chen, B.; Burstein, E.; Jia, D.; Billadeau, D.D. Endosomal receptor trafficking: Retromer and beyond. Traffic, 2018, 19(8), 578-590.
[http://dx.doi.org/10.1111/tra.12574] [PMID: 29667289]
[12]
McNally, K.E.; Faulkner, R.; Steinberg, F.; Gallon, M.; Ghai, R.; Pim, D.; Langton, P.; Pearson, N.; Danson, C.M.; Nägele, H.; Morris, L.L.; Singla, A.; Overlee, B.L.; Heesom, K.J.; Sessions, R.; Banks, L.; Collins, B.M.; Berger, I.; Billadeau, D.D.; Burstein, E.; Cullen, P.J. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat. Cell Biol., 2017, 19(10), 1214-1225.
[http://dx.doi.org/10.1038/ncb3610] [PMID: 28892079]
[13]
Mallam, A.L.; Marcotte, E.M. Systems-wide studies uncover commander, a multiprotein complex essential to human development. Cell Syst., 2017, 4(5), 483-494.
[http://dx.doi.org/10.1016/j.cels.2017.04.006] [PMID: 28544880]
[14]
Schmid, S.L. A nostalgic look back 40 years after the discovery of receptor-mediated endocytosis. Mol. Biol. Cell, 2019, 30(1), 1-3.
[http://dx.doi.org/10.1091/mbc.E18-06-0409] [PMID: 30598058]
[15]
Xu, S.; Zhang, L.; Brodin, L. Overexpression of SNX7 reduces Aβ production by enhancing lysosomal degradation of APP. Biochem. Biophys. Res. Commun., 2018, 495(1), 12-19.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.127] [PMID: 29080748]
[16]
Zhan, X.Y.; Zhang, Y.; Zhai, E.; Zhu, Q.Y.; He, Y. Sorting nexin-1 is a candidate tumor suppressor and potential prognostic marker in gastric cancer. PeerJ, 2018, 6, e4829.
[http://dx.doi.org/10.7717/peerj.4829] [PMID: 29868263]
[17]
Tan, J.Z.A.; Gleeson, P.A. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease. Biochim. Biophys. Acta Biomembr., 2019, 1861(4), 697-712.
[http://dx.doi.org/10.1016/j.bbamem.2018.11.013] [PMID: 30639513]
[18]
Yang, S.; Tang, D.; Zhao, Y.C.; Liu, H.; Luo, S.; Stinchcombe, T.E.; Glass, C.; Su, L.; Shen, S.; Christiani, D.C.; Wang, Q.; Wei, Q. Novel genetic variants in KIF16B and NEDD4L in the endosome-related genes are associated with nonsmall cell lung cancer survival. Int. J. Cancer, 2020, 147(2), 392-403.
[http://dx.doi.org/10.1002/ijc.32739] [PMID: 31618441]
[19]
Yang, B.; Jia, Y.; Meng, Y.; Xue, Y.; Liu, K.; Li, Y.; Liu, S.; Li, X.; Cui, K.; Shang, L.; Cheng, T.; Zhang, Z.; Hou, Y.; Yang, X.; Yan, H.; Duan, L.; Tong, Z.; Wu, C.; Liu, Z.; Gao, S.; Zhuo, S.; Huang, W.; Gao, G.F.; Qi, J.; Shang, G. SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry. Proc. Natl. Acad. Sci. USA, 2022, 119(4), e2117576119.
[http://dx.doi.org/10.1073/pnas.2117576119] [PMID: 35022217]
[20]
Sharmin, T.; Takuma, T.; Morshed, S.; Ushimaru, T. Sorting nexin Mdm1/SNX14 regulates nucleolar dynamics at the NVJ after TORC1 inactivation. Biochem. Biophys. Res. Commun., 2021, 552, 1-8.
[http://dx.doi.org/10.1016/j.bbrc.2021.03.033] [PMID: 33740659]
[21]
Hanley, S.E.; Cooper, K.F. Sorting nexins in protein homeostasis. Cells, 2020, 10(1), 17.
[http://dx.doi.org/10.3390/cells10010017] [PMID: 33374212]
[22]
Yong, X.; Zhao, L.; Hu, W.; Sun, Q.; Ham, H.; Liu, Z.; Ren, J.; Zhang, Z.; Zhou, Y.; Yang, Q.; Mo, X.; Hu, J.; Billadeau, D.D.; Jia, D. SNX27-FERM-SNX1 complex structure rationalizes divergent trafficking pathways by SNX17 and SNX27. Proc. Natl. Acad. Sci. USA, 2021, 118(36), e2105510118.
[http://dx.doi.org/10.1073/pnas.2105510118] [PMID: 34462354]
[23]
Ghai, R.; Mobli, M.; Norwood, S.J.; Bugarcic, A.; Teasdale, R.D.; King, G.F.; Collins, B.M. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc. Natl. Acad. Sci. USA, 2011, 108(19), 7763-7768.
[http://dx.doi.org/10.1073/pnas.1017110108] [PMID: 21512128]
[24]
Ghai, R.; Bugarcic, A.; Liu, H.; Norwood, S.J.; Skeldal, S.; Coulson, E.J.; Li, S.S.C.; Teasdale, R.D.; Collins, B.M. Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins. Proc. Natl. Acad. Sci. USA, 2013, 110(8), E643-E652.
[http://dx.doi.org/10.1073/pnas.1216229110] [PMID: 23382219]
[25]
He, X.; Zhou, S.; Ji, Y.; Zhang, Y.; Lv, J.; Quan, S.; Zhang, J.; Zhao, X.; Cui, W.; Li, W.; Liu, P.; Zhang, L.; Shen, T.; Fang, H.; Yang, J.; Zhang, Y.; Cui, X.; Zhang, Q.; Gao, F. Sorting nexin 17 increases low-density lipoprotein receptor-related protein 4 membrane expression: A novel mechanism of acetylcholine receptor aggregation in myasthenia gravis. Front. Immunol., 2022, 13, 916098.
[http://dx.doi.org/10.3389/fimmu.2022.916098] [PMID: 36311763]
[26]
Zhang, Y.; Ni, L.; Lin, B.; Hu, L.; Lin, Z.; Yang, J.; Wang, J.; Ma, H.; Liu, Y.; Yang, J.; Lin, J.; Xu, L.; Wu, L.; Shi, D. SNX17 protects the heart from doxorubicin-induced cardiotoxicity by modulating LMOD2 degradation. Pharmacol. Res., 2021, 169, 105642.
[http://dx.doi.org/10.1016/j.phrs.2021.105642] [PMID: 33933636]
[27]
Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; Xia, R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant, 2023, 16(11), 1733-1742.
[http://dx.doi.org/10.1016/j.molp.2023.09.010] [PMID: 37740491]
[28]
Cullen, P.J. Endosomal sorting and signalling: An emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol., 2008, 9(7), 574-582.
[http://dx.doi.org/10.1038/nrm2427] [PMID: 18523436]
[29]
Teasdale, R.D.; Collins, B.M. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: Structures, functions and roles in disease. Biochem. J., 2012, 441(1), 39-59.
[http://dx.doi.org/10.1042/BJ20111226] [PMID: 22168438]
[30]
Shortill, S.P.; Frier, M.S.; Conibear, E. You can go your own way: SNX-BAR coat complexes direct traffic at late endosomes. Curr. Opin. Cell Biol., 2022, 76, 102087.
[http://dx.doi.org/10.1016/j.ceb.2022.102087] [PMID: 35569261]
[31]
Lauffer, B.E.L.; Melero, C.; Temkin, P.; Lei, C.; Hong, W.; Kortemme, T.; von Zastrow, M. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J. Cell Biol., 2010, 190(4), 565-574.
[http://dx.doi.org/10.1083/jcb.201004060] [PMID: 20733053]
[32]
Amatya, B.; Lee, H.; Asico, L.D.; Konkalmatt, P.; Armando, I.; Felder, R.A.; Jose, P.A. SNX-PXA-RGS-PXC subfamily of SNXs in the regulation of receptor-mediated signaling and membrane trafficking. Int. J. Mol. Sci., 2021, 22(5), 2319.
[http://dx.doi.org/10.3390/ijms22052319] [PMID: 33652569]
[33]
Rabouille, C. Retriever fetches integrins from endosomes. Nat. Cell Biol., 2017, 19(10), 1144-1146.
[http://dx.doi.org/10.1038/ncb3612] [PMID: 28960203]
[34]
Gopaldass, N.; De Leo, M.G.; Courtellemont, T.; Mercier, V.; Bissig, C.; Roux, A.; Mayer, A. Retromer oligomerization drives SNX-BAR coat assembly and membrane constriction. EMBO J., 2023, 42(2), e112287.
[http://dx.doi.org/10.15252/embj.2022112287] [PMID: 36644906]
[35]
Seaman, M.N.J.; Michael McCaffery, J.; Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol., 1998, 142(3), 665-681.
[http://dx.doi.org/10.1083/jcb.142.3.665] [PMID: 9700157]
[36]
Yong, X.; Mao, L.; Seaman, M.N.J.; Jia, D. An evolving understanding of sorting signals for endosomal retrieval. iScience, 2022, 25(5), 104254.
[http://dx.doi.org/10.1016/j.isci.2022.104254] [PMID: 35434543]
[37]
McGough, I.J.; Steinberg, F.; Gallon, M.; Yatsu, A.; Ohbayashi, N.; Heesom, K.J.; Fukuda, M.; Cullen, P.J. Identification of molecular heterogeneity in SNX27-retromer-mediated endosome-to-plasma membrane recycling. J. Cell Sci., 2014, 127(Pt 22), jcs.156299.
[http://dx.doi.org/10.1242/jcs.156299] [PMID: 25278552]
[38]
van Weering, J.R.T.; Verkade, P.; Cullen, P.J. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic, 2012, 13(1), 94-107.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01297.x] [PMID: 21973056]
[39]
Simonetti, B.; Danson, C.M.; Heesom, K.J.; Cullen, P.J. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J. Cell Biol., 2017, 216(11), 3695-3712.
[http://dx.doi.org/10.1083/jcb.201703015] [PMID: 28935633]
[40]
Simonetti, B.; Paul, B.; Chaudhari, K.; Weeratunga, S.; Steinberg, F.; Gorla, M.; Heesom, K.J.; Bashaw, G.J.; Collins, B.M.; Cullen, P.J. Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat. Cell Biol., 2019, 21(10), 1219-1233.
[http://dx.doi.org/10.1038/s41556-019-0393-3] [PMID: 31576058]
[41]
Yong, X.; Zhao, L.; Deng, W.; Sun, H.; Zhou, X.; Mao, L.; Hu, W.; Shen, X.; Sun, Q.; Billadeau, D.D.; Xue, Y.; Jia, D. Mechanism of cargo recognition by retromer-linked SNX-BAR proteins. PLoS Biol., 2020, 18(3), e3000631.
[http://dx.doi.org/10.1371/journal.pbio.3000631] [PMID: 32150533]
[42]
Lucas, M.; Gershlick, D.C.; Vidaurrazaga, A.; Rojas, A.L.; Bonifacino, J.S.; Hierro, A. Structural mechanism for cargo recognition by the retromer complex. Cell, 2016, 167(6), 1623-1635.e14.
[http://dx.doi.org/10.1016/j.cell.2016.10.056] [PMID: 27889239]
[43]
Han, J.; Goldstein, L.A.; Hou, W.; Watkins, S.C.; Rabinowich, H. Involvement of CASP9 (caspase 9) in IGF2R/CI-MPR endosomal transport. Autophagy, 2021, 17(6), 1393-1409.
[http://dx.doi.org/10.1080/15548627.2020.1761742] [PMID: 32397873]
[44]
Steinberg, F.; Gallon, M.; Winfield, M.; Thomas, E.C.; Bell, A.J.; Heesom, K.J.; Tavaré, J.M.; Cullen, P.J. A global analysis of SNX27–retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol., 2013, 15(5), 461-471.
[http://dx.doi.org/10.1038/ncb2721] [PMID: 23563491]
[45]
McGarvey, J.C.; Xiao, K.; Bowman, S.L.; Mamonova, T.; Zhang, Q.; Bisello, A.; Sneddon, W.B.; Ardura, J.A.; Jean-Alphonse, F.; Vilardaga, J.P.; Puthenveedu, M.A.; Friedman, P.A. Actin-sorting nexin 27 (SNX27)-retromer complex mediates rapid parathyroid hormone receptor recycling. J. Biol. Chem., 2016, 291(21), 10986-11002.
[http://dx.doi.org/10.1074/jbc.M115.697045] [PMID: 27008860]
[46]
Henkel, V.; Schürmanns, L.; Brunner, M.; Hamann, A.; Osiewacz, H.D. Role of sorting nexin PaATG24 in autophagy, aging and development of Podospora anserina. Mech. Ageing Dev., 2020, 186, 111211.
[http://dx.doi.org/10.1016/j.mad.2020.111211] [PMID: 32007577]
[47]
Todkar, K.; Chikhi, L.; Desjardins, V.; El-Mortada, F.; Pépin, G.; Germain, M. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun., 2021, 12(1), 1971.
[http://dx.doi.org/10.1038/s41467-021-21984-w] [PMID: 33785738]
[48]
Saric, A.; Freeman, S.A.; Williamson, C.D.; Jarnik, M.; Guardia, C.M.; Fernandopulle, M.S.; Gershlick, D.C.; Bonifacino, J.S. SNX19 restricts endolysosome motility through contacts with the endoplasmic reticulum. Nat. Commun., 2021, 12(1), 4552.
[http://dx.doi.org/10.1038/s41467-021-24709-1] [PMID: 34315878]
[49]
Shi, W.; Jiang, L.; Ye, M.; Wang, B.; Chang, Y.; Shan, Z.; Wang, X.; Hu, Y.; Chen, H.; Li, C. A single amino acid residue R144 of SNX16 affects its ability to inhibit the replication of influenza A virus. Viruses, 2022, 14(4), 825.
[http://dx.doi.org/10.3390/v14040825] [PMID: 35458555]
[50]
Koçmar, T.; Çağlayan, E.; Rayaman, E.; Nagata, K.; Turan, K. Human sorting nexin 2 protein interacts with Influenza A virus PA protein and has a negative regulatory effect on the virus replication. Mol. Biol. Rep., 2022, 49(1), 497-510.
[http://dx.doi.org/10.1007/s11033-021-06906-9] [PMID: 34817777]
[51]
Zhao, Y.; Wang, Y.; Yang, J.; Wang, X.; Zhao, Y.; Zhang, X.; Zhang, Y. Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol. Neurodegener., 2012, 7(1), 30.
[http://dx.doi.org/10.1186/1750-1326-7-30] [PMID: 22709416]
[52]
Takada-Takatori, Y.; Nakagawa, S.; Kimata, R.; Nao, Y.; Mizukawa, Y.; Urushidani, T.; Izumi, Y.; Akaike, A.; Tsuchida, K.; Kume, T. Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons. Sci. Rep., 2019, 9(1), 11922.
[http://dx.doi.org/10.1038/s41598-019-47462-4] [PMID: 31417133]
[53]
Da Graça, J.; Charles, J.; Djebar, M.; Alvarez-Valadez, K.; Botti, J.; Morel, E. A SNX1–SNX2–VAPB partnership regulates endosomal membrane rewiring in response to nutritional stress. Life Sci. Alliance, 2023, 6(3), e202201652.
[http://dx.doi.org/10.26508/lsa.202201652] [PMID: 36585258]
[54]
Shen, Z.; Li, Y.; Fang, Y.; Lin, M.; Feng, X.; Li, Z.; Zhan, Y.; Liu, Y.; Mou, T.; Lan, X.; Wang, Y.; Li, G.; Wang, J.; Deng, H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol. Oncol., 2020, 14(2), 387-406.
[http://dx.doi.org/10.1002/1878-0261.12626] [PMID: 31876369]
[55]
Gimple, R.C.; Zhang, G.; Wang, S.; Huang, T.; Lee, J.; Taori, S.; Lv, D.; Dixit, D.; Halbert, M.E.; Morton, A.R.; Kidwell, R.L.; Dong, Z.; Prager, B.C.; Kim, L.J.Y.; Qiu, Z.; Zhao, L.; Xie, Q.; Wu, Q.; Agnihotri, S.; Rich, J.N. Sorting nexin 10 sustains PDGF receptor signaling in glioblastoma stem cells via endosomal protein sorting. JCI Insight, 2023, 8(6), e158077.
[http://dx.doi.org/10.1172/jci.insight.158077] [PMID: 36795488]
[56]
Hu, Y.; He, W.; Huang, Y.; Xiang, H.; Guo, J.; Che, Y.; Cheng, X.; Hu, F.; Hu, M.; Ma, T.; Yu, J.; Tian, H.; Tian, S.; Ji, Y.X.; Zhang, P.; She, Z.G.; Zhang, X.J.; Huang, Z.; Yang, J.; Li, H. Fatty acid synthase–suppressor screening identifies sorting nexin 8 as a therapeutic target for NAFLD. Hepatology, 2021, 74(5), 2508-2525.
[http://dx.doi.org/10.1002/hep.32045] [PMID: 34231239]
[57]
Zhang, S.; Yang, Z.; Bao, W.; Liu, L.; You, Y.; Wang, X.; Shao, L.; Fu, W.; Kou, X.; Shen, W.; Yuan, C.; Hu, B.; Dang, W.; Nandakumar, K.S.; Jiang, H.; Zheng, M.; Shen, X. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy, 2020, 16(4), 735-749.
[http://dx.doi.org/10.1080/15548627.2019.1632122] [PMID: 31208298]
[58]
Böttcher, R.T.; Stremmel, C.; Meves, A.; Meyer, H.; Widmaier, M.; Tseng, H.Y.; Fässler, R. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat. Cell Biol., 2012, 14(6), 584-592.
[http://dx.doi.org/10.1038/ncb2501] [PMID: 22561348]
[59]
Wang, Y.; Sun, N.; Zhang, Z.; Zhou, Y.; Liu, H.; Zhou, X.; Zhang, Y.; Zhao, Y. Overexpression pattern of miR-301b in osteosarcoma and its relevance with osteosarcoma cellular behaviors via modulating SNX10. Biochem. Genet., 2023, 61(1), 87-100.
[http://dx.doi.org/10.1007/s10528-022-10241-4] [PMID: 35732962]
[60]
Feng, H.; Tan, J.; Wang, Q.; Zhou, T.; Li, L.; Sun, D.; Fan, M.; Cheng, H.; Shen, W. α-hederin regulates glucose metabolism in intestinal epithelial cells by increasing SNX10 expression. Phytomedicine, 2023, 111, 154677.
[http://dx.doi.org/10.1016/j.phymed.2023.154677] [PMID: 36724620]
[61]
Shen, A.W.; Fu, L.L.; Lin, L.; Sun, B.; Song, D.X.; Wang, W.T.; Wang, Y.H.; Yin, P.R.; Yu, S.Q. SNX9 inhibits cell proliferation and cyst development in autosomal dominant polycystic kidney disease via activation of the Hippo-YAP signaling pathway. Front. Cell Dev. Biol., 2020, 8, 811.
[http://dx.doi.org/10.3389/fcell.2020.00811] [PMID: 32974348]
[62]
Xu, L.; Yin, W.; Xia, J.; Peng, M.; Li, S.; Lin, S.; Pei, D.; Shu, X. An antiapoptotic role of sorting nexin 7 is required for liver development in zebrafish. Hepatology, 2012, 55(6), 1985-1993.
[http://dx.doi.org/10.1002/hep.25560] [PMID: 22213104]
[63]
Shi, R.; Shi, X.; Qin, D.; Tang, S.; Vermeulen, M.; Zhang, X. SNX27-driven membrane localisation of OTULIN antagonises linear ubiquitination and NF-κB signalling activation. Cell Biosci., 2021, 11(1), 146.
[http://dx.doi.org/10.1186/s13578-021-00659-5] [PMID: 34315543]
[64]
Tanaka, T.; Okuda, H.; Isonishi, A.; Terada, Y.; Kitabatake, M.; Shinjo, T.; Nishimura, K.; Takemura, S.; Furue, H.; Ito, T.; Tatsumi, K.; Wanaka, A. Dermal macrophages set pain sensitivity by modulating the amount of tissue NGF through an SNX25–Nrf2 pathway. Nat. Immunol., 2023, 24(3), 439-451.
[http://dx.doi.org/10.1038/s41590-022-01418-5] [PMID: 36703006]
[65]
Stangl, A.; Elliott, P.R.; Pinto-Fernandez, A.; Bonham, S.; Harrison, L.; Schaub, A.; Kutzner, K.; Keusekotten, K.; Pfluger, P.T.; El Oualid, F.; Kessler, B.M.; Komander, D.; Krappmann, D. Regulation of the endosomal SNX27-retromer by OTULIN. Nat. Commun., 2019, 10(1), 4320.
[http://dx.doi.org/10.1038/s41467-019-12309-z] [PMID: 31541095]
[66]
Bannert, K.; Berlin, P.; Reiner, J.; Lemcke, H.; David, R.; Engelmann, R.; Lamprecht, G. SNX27 regulates DRA activity and mediates its direct recycling by PDZ-interaction in early endosomes at the apical pole of Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 318(5), G854-G869.
[http://dx.doi.org/10.1152/ajpgi.00374.2019] [PMID: 32116023]
[67]
Huo, Y.; Gao, Y.; Zheng, Q.; Zhao, D.; Guo, T.; Zhang, S.; Zeng, Y.; Cheng, Y.; Gu, H.; Zhang, L.; Zhu, B.; Luo, H.; Zhang, X.; Zhou, Y.; Zhang, Y.; Sun, H.; Xu, H.; Wang, X. Overexpression of human SNX27 enhances learning and memory through modulating synaptic plasticity in mice. Front. Cell Dev. Biol., 2020, 8, 595357.
[http://dx.doi.org/10.3389/fcell.2020.595357] [PMID: 33330482]
[68]
Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; Sanli, K.; von Feilitzen, K.; Oksvold, P.; Lundberg, E.; Hober, S.; Nilsson, P.; Mattsson, J.; Schwenk, J.M.; Brunnström, H.; Glimelius, B.; Sjöblom, T.; Edqvist, P.H.; Djureinovic, D.; Micke, P.; Lindskog, C.; Mardinoglu, A.; Ponten, F. A pathology atlas of the human cancer transcriptome. Science, 2017, 357(6352), eaan2507.
[http://dx.doi.org/10.1126/science.aan2507] [PMID: 28818916]
[69]
Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res., 2020, 48(W1), W509-W514.
[http://dx.doi.org/10.1093/nar/gkaa407] [PMID: 32442275]
[70]
Lowenstein, C.J.; Morrell, C.N.; Yamakuchi, M. Regulation of weibel-palade body exocytosis. Trends Cardiovasc. Med., 2005, 15(8), 302-308.
[http://dx.doi.org/10.1016/j.tcm.2005.09.005] [PMID: 16297768]
[71]
Knauth, P.; Schlüter, T.; Czubayko, M.; Kirsch, C.; Florian, V.; Schreckenberger, S.; Hahn, H.; Bohnensack, R. Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking. J. Mol. Biol., 2005, 347(4), 813-825.
[http://dx.doi.org/10.1016/j.jmb.2005.02.004] [PMID: 15769472]
[72]
Florian, V.; Schlüter, T.; Bohnensack, R. A new member of the sorting nexin family interacts with the C-terminus of P-selectin. Biochem. Biophys. Res. Commun., 2001, 281(4), 1045-1050.
[http://dx.doi.org/10.1006/bbrc.2001.4467] [PMID: 11237770]
[73]
Williams, R.; Schlüter, T.; Roberts, M.S.; Knauth, P.; Bohnensack, R.; Cutler, D.F. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol. Biol. Cell, 2004, 15(7), 3095-3105.
[http://dx.doi.org/10.1091/mbc.e04-02-0143] [PMID: 15121882]
[74]
Lee, J.; Retamal, C.; Cuitiño, L.; Caruano-Yzermans, A.; Shin, J.E.; van Kerkhof, P.; Marzolo, M.P.; Bu, G. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J. Biol. Chem., 2008, 283(17), 11501-11508.
[http://dx.doi.org/10.1074/jbc.M800642200] [PMID: 18276590]
[75]
van Kerkhof, P.; Lee, J.; McCormick, L.; Tetrault, E.; Lu, W.; Schoenfish, M.; Oorschot, V.; Strous, G.J.; Klumperman, J.; Bu, G. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J., 2005, 24(16), 2851-2861.
[http://dx.doi.org/10.1038/sj.emboj.7600756] [PMID: 16052210]
[76]
Healy, M.D.; Collins, B.M. The PDLIM family of actin-associated proteins and their emerging role in membrane trafficking. Biochem. Soc. Trans., 2023, 51(6), 2005-2016.
[http://dx.doi.org/10.1042/BST20220804] [PMID: 38095060]
[77]
Healy, M.D.; Sacharz, J.; McNally, K.E.; McConville, C.; Tillu, V.A.; Hall, R.J.; Chilton, M.; Cullen, P.J.; Mobli, M.; Ghai, R.; Stroud, D.A.; Collins, B.M. Proteomic identification and structural basis for the interaction between sorting nexin SNX17 and PDLIM family proteins. Structure, 2022, 30(12), 1590-1602.e6.
[http://dx.doi.org/10.1016/j.str.2022.10.001] [PMID: 36302387]
[78]
Rivero-Ríos, P.; Tsukahara, T.; Uygun, T.; Chen, A.; Chavis, G.D.; Giridharan, S.S.P.; Iwase, S.; Sutton, M.A.; Weisman, L.S. Recruitment of the SNX17-Retriever recycling pathway regulates synaptic function and plasticity. J. Cell Biol., 2023, 222(7), e202207025.
[http://dx.doi.org/10.1083/jcb.202207025] [PMID: 37141105]
[79]
Hui, T.; Jing, H.; Zhou, T.; Chen, P.; Liu, Z.; Dong, X.; Yan, M.; Ren, D.; Zou, S.; Wang, S.; Fei, E.; Hong, D.; Lai, X. Increasing LRP4 diminishes neuromuscular deficits in a mouse model of Duchenne muscular dystrophy. Hum. Mol. Genet., 2021, 30(17), 1579-1590.
[http://dx.doi.org/10.1093/hmg/ddab135] [PMID: 33987657]
[80]
Morishima-Kawashima, M.; Ihara, Y. Alzheimer’s disease: β-Amyloid protein and tau. J. Neurosci. Res., 2002, 70(3), 392-401.
[http://dx.doi.org/10.1002/jnr.10355] [PMID: 12391602]
[81]
Takahashi, R.H.; Nam, E.E.; Edgar, M.; Gouras, G.K. Alzheimer β-amyloid peptides: Normal and abnormal localization. Histol. Histopathol., 2002, 17(1), 239-246.
[PMID: 11813874]
[82]
Nunan, J.; Williamson, N.A.; Hill, A.F.; Sernee, M.F.; Masters, C.L.; Small, D.H. Proteasome-mediated degradation of the C-terminus of the Alzheimer’s disease β-amyloid protein precursor: Effect of C-terminal truncation on production of β-amyloid protein. J. Neurosci. Res., 2003, 74(3), 378-385.
[http://dx.doi.org/10.1002/jnr.10646] [PMID: 14598314]
[83]
Willnow, T.E.; Christ, A.; Hammes, A. Endocytic receptor-mediated control of morphogen signaling. Development, 2012, 139(23), 4311-4319.
[http://dx.doi.org/10.1242/dev.084467] [PMID: 23132241]
[84]
Dian, Y-T.; Yang, Y.; Zhu, P.; Zhao, M-Y. Lipid droplets and perilipins in cardiovascular diseases. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2022, 44(3), 463-471.
[PMID: 35791945]
[85]
Lillis, A.P.; Mikhailenko, I.; Strickland, D.K. Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J. Thromb. Haemost., 2005, 3(8), 1884-1893.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01371.x] [PMID: 16102056]
[86]
Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3510-3515.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[87]
Davidson, G. LRPs in WNT signalling. Handb. Exp. Pharmacol., 2021, 269, 45-73.
[http://dx.doi.org/10.1007/164_2021_526] [PMID: 34490514]
[88]
Farfán, P.; Lee, J.; Larios, J.; Sotelo, P.; Bu, G.; Marzolo, M.P. A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome. Traffic, 2013, 14(7), 823-838.
[http://dx.doi.org/10.1111/tra.12076] [PMID: 23593972]
[89]
Hou, H.; Habib, A.; Zi, D.; Tian, K.; Tian, J.; Giunta, B.; Sawmiller, D.; Tan, J. Low-density lipoprotein receptor-related protein-1 (LRP1) C4408R mutant promotes amyloid precursor protein (APP) α-cleavage in vitro. Neuromolecular Med., 2017, 19(2-3), 300-308.
[http://dx.doi.org/10.1007/s12017-017-8446-x] [PMID: 28612181]
[90]
von Einem, B.; Schwanzar, D.; Rehn, F.; Beyer, A.S.; Weber, P.; Wagner, M.; Schneckenburger, H.; von Arnim, C.A.F. The role of low-density receptor-related protein 1 (LRP1) as a competitive substrate of the amyloid precursor protein (APP) for BACE1. Exp. Neurol., 2010, 225(1), 85-93.
[http://dx.doi.org/10.1016/j.expneurol.2010.05.017] [PMID: 20685197]
[91]
Rodríguez-Nóvoa, S.; Rodríguez-Jiménez, C.; Alonso, C.; Rodriguez-Laguna, L.; Gordo, G.; Martinez-Glez, V.; García Polo, I. Familial hypercholesterolemia: A single-nucleotide variant (SNV) in mosaic at the low density lipoprotein receptor (LDLR). Atherosclerosis, 2020, 311, 37-43.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.08.002] [PMID: 32937241]
[92]
Abifadel, M.; Rabès, J.P.; Jambart, S.; Halaby, G.; Gannagé- Yared, M.H.; Sarkis, A.; Beaino, G.; Varret, M.; Salem, N.; Corbani, S.; Aydénian, H.; Junien, C.; Munnich, A.; Boileau, C. The molecular basis of familial hypercholesterolemia in Lebanon: Spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Hum. Mutat., 2009, 30(7), E682-E691.
[http://dx.doi.org/10.1002/humu.21002] [PMID: 19319977]
[93]
Burden, J.J.; Sun, X.M.; García, A.B.G.; Soutar, A.K. Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J. Biol. Chem., 2004, 279(16), 16237-16245.
[http://dx.doi.org/10.1074/jbc.M313689200] [PMID: 14739284]
[94]
Tong, H.; Tian, D.; Li, T.; Wang, B.; Jiang, G.; Sun, X. Inhibition of inflammatory injure by polysaccharides from Bupleurum chinense through antagonizing P-selectin. Carbohydr. Polym., 2014, 105, 20-25.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.039] [PMID: 24708947]
[95]
Burns, A.R.; Bowden, R.A.; Abe, Y.; Walker, D.C.; Simon, S.I.; Entman, M.L.; Smith, C.W. P-selectin mediates neutrophil adhesion to endothelial cell borders. J. Leukoc. Biol., 1999, 65(3), 299-306.
[http://dx.doi.org/10.1002/jlb.65.3.299] [PMID: 10080531]
[96]
Zhao, D.; Li, X.; Liang, H.; Zheng, N.; Pan, Z.; Zhou, Y.; Liu, X.; Qian, M.; Xu, B.; Zhang, Y.; Feng, Y.; Qili, M.; Wu, Q.; Yang, B.; Shan, H. SNX17 produces anti-arrhythmic effects by preserving functional SERCA2a protein in myocardial infarction. Int. J. Cardiol., 2018, 272, 298-305.
[http://dx.doi.org/10.1016/j.ijcard.2018.07.025] [PMID: 30025651]
[97]
Geng, L.; Wang, S.; Zhang, F.; Xiong, K.; Huang, J.; Zhao, T.; Shi, D.; Lv, F.; Li, L.; Liang, D.; Cui, Y.; Liu, Y.; Xie, D.; Chen, Y.H. SNX17 (Sorting Nexin 17) mediates atrial fibrillation onset through endocytic trafficking of the Kv1.5 (potassium voltage-gated channel subfamily a member 5) channel. Circ. Arrhythm. Electrophysiol., 2019, 12(4), e007097.
[http://dx.doi.org/10.1161/CIRCEP.118.007097] [PMID: 30939909]
[98]
Conway, M.J.; Meyers, C. Replication and assembly of human papillomaviruses. J. Dent. Res., 2009, 88(4), 307-317.
[http://dx.doi.org/10.1177/0022034509333446] [PMID: 19407149]
[99]
Spurgeon, M.; Lambert, P. Human papillomavirus and the stroma: Bidirectional crosstalk during the virus life cycle and carcinogenesis. Viruses, 2017, 9(8), 219.
[http://dx.doi.org/10.3390/v9080219] [PMID: 28792475]
[100]
Smith, J.S.; Lindsay, L.; Hoots, B.; Keys, J.; Franceschi, S.; Winer, R.; Clifford, G.M. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: A meta- analysis update. Int. J. Cancer, 2007, 121(3), 621-632.
[http://dx.doi.org/10.1002/ijc.22527] [PMID: 17405118]
[101]
Pereira, R.; Hitzeroth, I.I.; Rybicki, E.P. Insights into the role and function of L2, the minor capsid protein of papillomaviruses. Arch. Virol., 2009, 154(2), 187-197.
[http://dx.doi.org/10.1007/s00705-009-0310-3] [PMID: 19169853]
[102]
Wang, J.W.; Roden, R.B.S. L2, the minor capsid protein of papillomavirus. Virology, 2013, 445(1-2), 175-186.
[http://dx.doi.org/10.1016/j.virol.2013.04.017] [PMID: 23689062]
[103]
Holmgren, S.C.; Patterson, N.A.; Ozbun, M.A.; Lambert, P.F. The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J. Virol., 2005, 79(7), 3938-3948.
[http://dx.doi.org/10.1128/JVI.79.7.3938-3948.2005] [PMID: 15767396]
[104]
Bergant Marušič, M.; Ozbun, M.A.; Campos, S.K.; Myers, M.P.; Banks, L. Human papillomavirus L2 facilitates viral escape from late endosomes via sorting nexin 17. Traffic, 2012, 13(3), 455-467.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01320.x] [PMID: 22151726]
[105]
Bergant, M.; Peternel, Š.; Pim, D.; Broniarczyk, J.; Banks, L. Characterizing the spatio-temporal role of sorting nexin 17 in human papillomavirus trafficking. J. Gen. Virol., 2017, 98(4), 715-725.
[http://dx.doi.org/10.1099/jgv.0.000734] [PMID: 28475030]