The Natural Products Journal

Author(s): Vineesh Suresh, Kirankumar S.I, Shahjahan A., Sankar Jamuna*, Kirubakaran Rangasamy, Dannie Macrin and K.N. Aruljothi*

DOI: 10.2174/0122103155308142240602120718

DownloadDownload PDF Flyer Cite As
Systematic Detoxification of Copper-induced Toxicity by Methanolic Extracts of Anacyclus pyrethrum (L) in Zebrafish Model

Article ID: e120624230976 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Anacyclus pyrethrum is used in Ayurveda to treat various ailments, ranging from toothache to female infertility. However, the molecular mechanisms of its medicinal properties are obscure and need exploratory studies.

Method: We aimed to investigate the molecular mechanisms associated with the medicinal properties of A. pyrethrum using zebrafish as an in vivo model. We have employed in silico, in vitro, and in vivo approaches to elucidate the anti-inflammatory, antioxidant, and cytoprotective functions of the methanolic extracts of A. pyrethrum. In silico analyses were carried out using Prediction of Activity Spectra for Substances (PASS), Molecular Inspiration, Swiss Absorption, Distribution, Metabolism, Excretion and Toxicity - ADME (SWISSADME), Absorption, Distribution, Metabolism, Excretion, and Toxicity - Structure-Activity Relationship(ADMETSar) and molecular docking tools to prove the anti-inflammatory effects of the bioactive components of A. pyrethrum.

Results: Our results indicate that the bioactive components of A. pyrethrum have pharmaceutical properties with high intestinal absorption and greater bioavailability. Further, in vitro and in vivo results support the anti-inflammatory, antioxidant, and antitoxic effects of methanolic extract of A. pyrethrum via suppressing the levels of the inflammatory and Reactive oxygen species biomarkers, including Lactate Dehydrogenase, Myeloperoxidase, Nitric Oxide, and Lipid peroxidase respectively.

Conclusion: The results obtained from three different approaches in this study highlight the potential anti-inflammatory, antitoxic, and antioxidant effects of A. pyrethrum.

Keywords: Zebrafish, Anacyclus pyrethrum, copper sulphate, natural products, docking, biological activity.

Graphical Abstract

[1]
Cherrat, A.; Amalich, S.; Regragui, M.; Bouzoubae, A.; Elamrani, M.; Mahjoubi, M.; Bourakhouadar, M.; Zair, T. Polyphenols content and evaluation of antioxidant activity of A. pyrethrum (L.) lag. from timahdite a moroccan middle atlas region. Int. J. Adv. Res., 2017, 5(3), 569-577.
[http://dx.doi.org/10.21474/IJAR01/3546]
[2]
Annalakshmi, R.; Uma, R.; Chandran, G.S.; Muneeswaran, A. A treasure of medicinal herb-A. pyrethrum a review; Indian J Drugs Dis, 2012, pp. 59-67.
[3]
Pandey, S.; Kushwaha, G.R.; Singh, A.; Singh, A. Chemical composition and medicinal uses of A. pyrethrum. Pharma Sci. Monitor, 2018, 20189(1), 551-560.
[4]
Abbas Zaidi, S.M.; Pathan, S.A.; Singh, S.; Jamil, S.; Ahmad, F.J.; Khar, R.K. Anticonvulsant, anxiolytic and neurotoxicity profile of Aqarqarha (A. pyrethrum) DC (Compositae) root ethanolic extract. Pharmacol. Pharm., 2013, 4(7), 535-541.
[http://dx.doi.org/10.4236/pp.2013.47077]
[5]
Elazzouzi, H.; Soro, A.; Elhilali, F.; Bentayeb, A.; El Belghiti, M.A. Zair, T Phytochemical study of A. pyrethrum (L.) of Middle Atlas (Morocco), and in vitro study of antibacterial activity of pyrethrum. Adv. in Nat. Appl. Sci., 2014, 8(8), 131-141.
[6]
Selles, C. Valorization of plant properties and anti-diabetic properties: A. pyrethrum L. Application of corrosion inhibitors H2SO4 0.5 M. 2012.
[7]
Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M.; Imtara, H.; Mechchate, H.; Es-Safi, I.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; Ibenmoussa, S.; Bousta, D.; Bari, A. Anacyclus pyrethrum (L): Chemical composition, analgesic, anti-inflammatory, and wound healing properties. Molecules, 2020, 25(22), 5469.
[http://dx.doi.org/10.3390/molecules25225469] [PMID: 33238392]
[8]
Nakkarach, A.; Foo, H.L.; Song, A.A.L.; Mutalib, N.E.A.; Nitisinprasert, S.; Withayagiat, U. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microb. Cell Fact., 2021, 20(1), 36.
[http://dx.doi.org/10.1186/s12934-020-01477-z] [PMID: 33546705]
[9]
Reece, W.O.; Erickson, H.H.; Goff, J.P.; Uemura, E.E. Dukes’ physiology of domestic animals; John Wiley & Sons, 2015.
[10]
Cassar, S.; Adatto, I.; Freeman, J.L.; Gamse, J.T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R.T.; Van Cruchten, S.; Zon, L.I. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol., 2020, 33(1), 95-118.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00335] [PMID: 31625720]
[11]
Goessling, W.; Sadler, K.C. Zebrafish: An important tool for liver disease research. Gastroenterology, 2015, 149(6), 1361-1377.
[http://dx.doi.org/10.1053/j.gastro.2015.08.034] [PMID: 26319012]
[12]
Katoch, S.; Patial, V. Zebrafish: An emerging model system to study liver diseases and related drug discovery. J. Appl. Toxicol., 2021, 41(1), 33-51.
[http://dx.doi.org/10.1002/jat.4031] [PMID: 32656821]
[13]
Khurana, N.; Ishar, M.P.S.; Gajbhiye, A.; Goel, R.K. PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. Eur. J. Pharmacol., 2011, 662(1-3), 22-30.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.048] [PMID: 21554868]
[14]
Jamkhande, P.G.; Pathan, S.K.; Wadher, S.J. In silico PASS analysis and determination of antimycobacterial, antifungal, and antioxidant efficacies of maslinic acid in an extract rich in pentacyclic triterpenoids. Int. J. Mycobacteriol., 2016, 5(4), 417-425.
[http://dx.doi.org/10.1016/j.ijmyco.2016.06.020] [PMID: 27931683]
[15]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[16]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[17]
Devaraj, S.N.; Jamuna, S.; Rathinavel, A.; Mohammed Sadullah, S.S. In silico approach to study the metabolism and biological activities of oligomeric proanthocyanidin complexes. Indian J. Pharmacol., 2018, 50(5), 242-250.
[http://dx.doi.org/10.4103/ijp.IJP_36_17] [PMID: 30636827]
[18]
Aliyu, A.B.; Ibrahim, M.A.; Musa, A.M.; Musa, A.O.; Kiplimo, J.J.; Oyewale, A.O. Free radical scavenging and total antioxidant capacity of root extracts of Anchomanes difformis Engl. (Araceae). Acta Pol. Pharm., 2013, 70(1), 115-121.
[PMID: 23610966]
[19]
Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. Protoc., 2008, 2008(5)prot4986
[http://dx.doi.org/10.1101/pdb.prot4986]
[20]
Mehata, A.K.; Dehari, D. Bradford assay as a high-throughput bioanalytical screening method for conforming pathophysiological state of the animal. J. Drug Deliv. Ther., 2020, 10(1-s), 105-110.
[http://dx.doi.org/10.22270/jddt.v10i1-s.3921]
[21]
Wang, J.; Sun, P.; Bao, Y.; Dou, B.; Song, D.; Li, Y. Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol. In Vitro, 2012, 26(1), 32-41.
[http://dx.doi.org/10.1016/j.tiv.2011.10.004] [PMID: 22020378]
[22]
Vilcacundo, R.; Barrio, D.; Piñuel, L.; Boeri, P.; Tombari, A.; Pinto, A.; Welbaum, J.; Hernández-Ledesma, B.; Carrillo, W. Inhibition of lipid peroxidation of kiwicha (Amaranthus caudatus) hydrolyzed protein using zebrafish larvae and embryos. Plants, 2018, 7(3), 69.
[http://dx.doi.org/10.3390/plants7030069] [PMID: 30200527]
[23]
Loria, V.; Dato, I.; Graziani, F.; Biasucci, L.M. Myeloperoxidase: A new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators Inflamm., 2008, 2008135625
[http://dx.doi.org/10.1155/2008/135625]
[24]
Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors, 2003, 3(8), 276-284.
[http://dx.doi.org/10.3390/s30800276]
[25]
Srivastava, V.; Yadav, A.; Sarkar, P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV-2. Mater. Today Proc., 2022, 49, 2999-3007.
[http://dx.doi.org/10.1016/j.matpr.2020.10.055] [PMID: 33078096]
[26]
Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol., 2009, 9(Suppl. 1), S3.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S3] [PMID: 19534732]
[27]
Javed, M.; Usmani, N. An overview of the adverse effects of heavy metal contamination on fish health. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2019, 89(2), 389-403.
[http://dx.doi.org/10.1007/s40011-017-0875-7]
[28]
Boran, H.; Capkin, E.; Altinok, I.; Terzi, E. Assessment of acute toxicity and histopathology of the fungicide captan in rainbow trout. Exp. Toxicol. Pathol., 2012, 64(3), 175-179.
[http://dx.doi.org/10.1016/j.etp.2010.08.003] [PMID: 20817491]
[29]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[30]
Manouze, H.; Bouchatta, O.; Gadhi, A.C.; Bennis, M.; Sokar, Z.; Ba-M’hamed, S. Anti-inflammatory, antinociceptive, and antioxidant activities of methanol and aqueous extracts of A. pyrethrum roots. Front. Pharmacol., 2017, 8, 598.
[http://dx.doi.org/10.3389/fphar.2017.00598] [PMID: 28928658]
[31]
Kwok, M.L.; Chan, K.M. Oxidative stress and apoptotic effects of copper and cadmium in the zebrafish liver cell line ZFL. Toxicol. Rep., 2020, 7, 822-835.
[http://dx.doi.org/10.1016/j.toxrep.2020.06.012] [PMID: 32670800]