Nicotine-induced Genetic and Epigenetic Modifications in Primary Human Amniotic Fluid Stem Cells

Page: [1995 - 2006] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Smoking during pregnancy has been linked to adverse health outcomes in offspring, but the underlying mechanisms are not fully understood. To date, the effect of maternal smoking has been tested in primary tissues and animal models, but the scarcity of human tissues limits experimental studies. Evidence regarding smoking-related molecular alteration and gene expression profiles in stem cells is still lacking.

Methods: We developed a cell culture model of human amniotic fluid stem cells (hAFSCs) of nicotine (NIC) exposure to examine the impact of maternal smoking on epigenetic alterations of the fetus.

Results: NIC 0.1 μM (equivalent to “light” smoking, i.e., 5 cigarettes/day) did not significantly affect cell viability; however, significant alterations in DNA methylation and N6-methyladenosine (m6A) RNA methylation in hAFSCs occurred. These epigenetic changes may influence the gene expression and function of hAFSCs. Furthermore, NIC exposure caused time-dependent alterations of the expression of pluripotency genes and cell surface markers, suggesting enhanced cell stemness and impaired differentiation potential. Furthermore, NICtreated cells showed reduced mRNA levels of key adipogenic markers and hypomethylation of the promoter region of the imprinted gene H19 during adipogenic differentiation, potentially suppressing adipo/lipogenesis. Differential expression of 16 miRNAs, with predicted target genes involved in various metabolic pathways and linked to pathological conditions, including cognitive delay and fetal growth retardation, has been detected.

Conclusion: Our findings highlight multi-level effects of NIC on hAFSCs, including epigenetic modifications, altered gene expression, and impaired cellular differentiation, which may contribute to long-term consequences of smoking in pregnancy and its potential impact on offspring health and development.

[1]
Jha P, Ranson MK, Nguyen SN, Yach D. Estimates of global and regional smoking prevalence in 1995, by age and sex. Am J Public Health 2002; 92(6): 1002-6.
[http://dx.doi.org/10.2105/AJPH.92.6.1002] [PMID: 12036796]
[2]
Storr CL, Cheng H, Alonso J, et al. Smoking estimates from around the world: Data from the first 17 participating countries in the World Mental Health Survey Consortium. Tob Control 2010; 19(1): 65-74.
[http://dx.doi.org/10.1136/tc.2009.032474] [PMID: 19965796]
[3]
Drake P, Driscoll AK, Mathews TJ. Cigarette smoking during pregnancy: United States, 2016. NCHS Data Brief 2018; (305): 1-8.
[PMID: 29528282]
[4]
Djordjevic MV, Doran KA. Nicotine content and delivery across tobacco products. Handb Exp Pharmacol 2009; 192(192): 61-82.
[http://dx.doi.org/10.1007/978-3-540-69248-5_3] [PMID: 19184646]
[5]
Goniewicz ML, Kuma T, Gawron M, Knysak J, Kosmider L. Nicotine levels in electronic cigarettes. Nicotine Tob Res 2013; 15(1): 158-66.
[http://dx.doi.org/10.1093/ntr/nts103] [PMID: 22529223]
[6]
Ino T. Maternal smoking during pregnancy and offspring obesity: Meta-analysis. Pediatr Int 2010; 52(1): 94-9.
[http://dx.doi.org/10.1111/j.1442-200X.2009.02883.x] [PMID: 19400912]
[7]
Hackshaw A, Rodeck C, Boniface S. Maternal smoking in pregnancy and birth defects: A systematic review based on 173 687 malformed cases and 11.7 million controls. Hum Reprod Update 2011; 17(5): 589-604.
[http://dx.doi.org/10.1093/humupd/dmr022] [PMID: 21747128]
[8]
Lindblad F, Hjern A. ADHD after fetal exposure to maternal smoking. Nicotine Tob Res 2010; 12(4): 408-15.
[http://dx.doi.org/10.1093/ntr/ntq017] [PMID: 20176681]
[9]
Svanes C, Sunyer J, Plana E, et al. Early life origins of chronic obstructive pulmonary disease. Thorax 2010; 65(1): 14-20.
[http://dx.doi.org/10.1136/thx.2008.112136] [PMID: 19729360]
[10]
Martino D, Prescott S. Epigenetics and prenatal influences on asthma and allergic airways disease. Chest 2011; 139(3): 640-7.
[http://dx.doi.org/10.1378/chest.10-1800] [PMID: 21362650]
[11]
Somm E, Schwitzgebel VM, Vauthay DM, et al. Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology 2008; 149(12): 6289-99.
[http://dx.doi.org/10.1210/en.2008-0361] [PMID: 18687784]
[12]
Knopik VS, Maccani MA, Francazio S, McGeary JE. The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 2012; 24(4): 1377-90.
[http://dx.doi.org/10.1017/S0954579412000776] [PMID: 23062304]
[13]
Joubert BR, Håberg SE, Bell DA, et al. Maternal smoking and DNA methylation in newborns: In utero effect or epigenetic inheritance? Cancer Epidemiol Biomarkers Prev 2014; 23(6): 1007-17.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1256] [PMID: 24740201]
[14]
Joubert BR, Håberg SE, Nilsen RM, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2012; 120(10): 1425-31.
[http://dx.doi.org/10.1289/ehp.1205412] [PMID: 22851337]
[15]
Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010; 5(7): 583-9.
[http://dx.doi.org/10.4161/epi.5.7.12762] [PMID: 20647767]
[16]
Maccani MA, Knopik VS. Cigarette smoke exposure-associated alterations to non-coding RNA. Front Genet 2012; 3: 53.
[http://dx.doi.org/10.3389/fgene.2012.00053] [PMID: 22509180]
[17]
Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 2009; 23(3): 806-12.
[http://dx.doi.org/10.1096/fj.08-121384] [PMID: 18952709]
[18]
Wang CN, Yang GH, Wang ZQ, et al. Role of perivascular adipose tissue in nicotine-induced endothelial cell inflammatory responses. Mol Med Rep 2016; 14(6): 5713-8.
[http://dx.doi.org/10.3892/mmr.2016.5934] [PMID: 27840948]
[19]
Nguyen T, Li GE, Chen H, Cranfield CG, McGrath KC, Gorrie CA. Maternal E-cigarette exposure results in cognitive and epigenetic alterations in offspring in a mouse model. Chem Res Toxicol 2018; 31(7): 601-11.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00084] [PMID: 29863869]
[20]
Kirschneck C, Maurer M, Wolf M, Reicheneder C, Proff P. Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model. Int J Oral Sci 2017; 9(3): 174-84.
[http://dx.doi.org/10.1038/ijos.2017.34] [PMID: 28960194]
[21]
Fan J, Zhang W, Rao Y, et al. Perinatal nicotine exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. Endocrinology 2016; 157(11): 4276-86.
[http://dx.doi.org/10.1210/en.2016-1269] [PMID: 27589084]
[22]
Rupprecht LE, Smith TT, Donny EC, Sved AF. Self-administered nicotine differentially impacts body weight gain in obesity-prone and obesity-resistant rats. Physiol Behav 2017; 176: 71-5.
[http://dx.doi.org/10.1016/j.physbeh.2017.02.007] [PMID: 28189503]
[23]
Zhang W, Li Y, Fan J, et al. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring. Toxicol Lett 2018; 283: 91-9.
[http://dx.doi.org/10.1016/j.toxlet.2017.11.015] [PMID: 29155039]
[24]
Yang X, Qi Y, Avercenc-Leger L, et al. Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton’s jelly mesenchymal stem cells. Biomed Mater Eng 2017; 28(s1): S217-28.
[http://dx.doi.org/10.3233/BME-171644] [PMID: 28372298]
[25]
Qu Q, Zhang F, Zhang X, Yin W. Bidirectional regulation of mouse embryonic stem cell proliferation by nicotine is mediated through Wnt signaling pathway. Dose Response 2017; 15(4): 1559325817739760.
[http://dx.doi.org/10.1177/1559325817739760] [PMID: 29200986]
[26]
Slotkin TA, Skavicus S, Card J, Levin ED, Seidler FJ. Diverse neurotoxicants target the differentiation of embryonic neural stem cells into neuronal and glial phenotypes. Toxicology 2016; 372: 42-51.
[http://dx.doi.org/10.1016/j.tox.2016.10.015] [PMID: 27816694]
[27]
Di Tizio D, Di Serafino A, Upadhyaya P, Sorino L, Stuppia L, Antonucci I. The impact of epigenetic signatures on amniotic fluid stem cell fate. Stem Cells Int 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/4274518] [PMID: 30627172]
[28]
Antonucci I, Pantalone A, Tete S et al. Amniotic fluid stem cells: A promising therapeutic resource for cell-based regenerative therapy. Curr Pharm Des 2012; 18(13): 1846-63.
[http://dx.doi.org/10.2174/138161212799859602] [PMID: 22352751]
[29]
Upadhyaya P, Di Serafino A, Sorino L, et al. Genetic and epigenetic modifications induced by chemotherapeutic drugs: Human amniotic fluid stem cells as an in vitro model. BMC Med Genomics 2019; 12(1): 146.
[http://dx.doi.org/10.1186/s12920-019-0595-3] [PMID: 31660974]
[30]
Antonucci I, Di Pietro R, Alfonsi M, et al. Human second trimester amniotic fluid cells are able to create embryoid body- like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells. Cell Transplant 2014; 23(12): 1501-15.
[http://dx.doi.org/10.3727/096368914X678553] [PMID: 24480362]
[31]
Corsaro A, Paludi D, Villa V, et al. Conformation dependent pro-apoptotic activity of the recombinant human prion protein fragment 90-231. Int J Immunopathol Pharmacol 2006; 19(2): 339-56.
[http://dx.doi.org/10.1177/039463200601900211] [PMID: 16831301]
[32]
Su C, Wang P, Jiang C, et al. Guanosine promotes proliferation of neural stem cells through cAMP-CREB pathway. J Biol Regul Homeost Agents 2013; 27(3): 673-80.
[PMID: 24152836]
[33]
De Simone A, La Pietra V, Betari N, et al. Discovery of the first-in-Class GSK-3β/HDAC dual inhibitor as disease-modifying agent to combat Alzheimer’s disease. ACS Med Chem Lett 2019; 10(4): 469-74.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00507] [PMID: 30996781]
[34]
Milillo C, Falcone L, Di Carlo P, et al. Ozone effect on the inflammatory and proteomic profile of human macrophages and airway epithelial cells. Respir Physiol Neurobiol 2023; 307: 103979.
[http://dx.doi.org/10.1016/j.resp.2022.103979] [PMID: 36243292]
[35]
Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. EMBnet J 2011; 17(1): 10.
[http://dx.doi.org/10.14806/ej.17.1.200]
[36]
Rueda A, Barturen G, Lebrón R, et al. sRNAtoolbox: An integrated collection of small RNA research tools. Nucleic Acids Res 2015; 43(W1): W467-73.
[http://dx.doi.org/10.1093/nar/gkv555] [PMID: 26019179]
[37]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[38]
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139-40.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[39]
Tarazona S, Furió-Tarí P, Turrà D, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 2015; 43(21): gkv711.
[http://dx.doi.org/10.1093/nar/gkv711] [PMID: 26184878]
[40]
Van Vunakis H, Langone JJ, Milunsky A. Nicotine and cotinine in the amniotic fluid of smokers in the second trimester of pregnancy. Am J Obstet Gynecol 1974; 120(1): 64-6.
[http://dx.doi.org/10.1016/0002-9378(74)90180-X] [PMID: 4843750]
[41]
Jacob N, Golmard JL, Berlin I. Fetal exposure to tobacco: Nicotine and cotinine concentration in amniotic fluid and maternal saliva. J Matern Fetal Neonatal Med 2017; 30(2): 233-9.
[http://dx.doi.org/10.3109/14767058.2016.1169523] [PMID: 27001007]
[42]
Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 2021; 6(1): 74.
[http://dx.doi.org/10.1038/s41392-020-00450-x] [PMID: 33611339]
[43]
Xu T, He B, Sun H, et al. Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Mol Ther Nucleic Acids 2022; 27: 824-37.
[http://dx.doi.org/10.1016/j.omtn.2022.01.007] [PMID: 35141044]
[44]
He PC, He C. m 6 A RNA methylation: From mechanisms to therapeutic potential. EMBO J 2021; 40(3): e105977.
[http://dx.doi.org/10.15252/embj.2020105977] [PMID: 33470439]
[45]
Chen L, Daley GQ. Molecular basis of pluripotency. Hum Mol Genet 2008; 17(R1): R23-7.
[http://dx.doi.org/10.1093/hmg/ddn050] [PMID: 18632692]
[46]
Pipino C, Tomo PD, Mandatori D, et al. Calcium sensing receptor activation by calcimimetic R-568 in human amniotic fluid mesenchymal stem cells: Correlation with osteogenic differentiation. Stem Cells Dev 2014; 23(24): 2959-71.
[http://dx.doi.org/10.1089/scd.2013.0627] [PMID: 25036254]
[47]
Morabito C, D’Alimonte I, Pierdomenico L, et al. Calcitonin-induced effects on amniotic fluid-derived mesenchymal stem cells. Cell Physiol Biochem 2015; 36(1): 259-73.
[http://dx.doi.org/10.1159/000374069] [PMID: 25967965]
[48]
Pipino C, Pierdomenico L, Di Tomo P, et al. Molecular and phenotypic characterization of human amniotic fluid-derived cells: A morphological and proteomic approach. Stem Cells Dev 2015; 24(12): 1415-28.
[http://dx.doi.org/10.1089/scd.2014.0453] [PMID: 25608581]
[49]
Ye WC, Huang SF, Hou LJ, et al. Potential therapeutic targeting of lncRNAs in cholesterol homeostasis. Front Cardiovasc Med 2021; 8: 688546.
[http://dx.doi.org/10.3389/fcvm.2021.688546] [PMID: 34179148]
[50]
Bouwland-Both MI, van Mil NH, Tolhoek CP, et al. Prenatal parental tobacco smoking, gene specific DNA methylation, and newborns size: The Generation R study. Clin Epigenetics 2015; 7(1): 83.
[http://dx.doi.org/10.1186/s13148-015-0115-z] [PMID: 26265957]
[51]
Miyaso H, Sakurai K, Takase S, et al. The methylation levels of the H19 differentially methylated region in human umbilical cords reflect newborn parameters and changes by maternal environmental factors during early pregnancy. Environ Res 2017; 157: 1-8.
[http://dx.doi.org/10.1016/j.envres.2017.05.006] [PMID: 28500962]
[52]
Rousseaux S, Seyve E, Chuffart F, et al. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med 2020; 18(1): 306.
[http://dx.doi.org/10.1186/s12916-020-01736-1] [PMID: 33023569]
[53]
Nakamura A, François O, Lepeule J. Epigenetic alterations of maternal tobacco smoking during pregnancy: A narrative review. Int J Environ Res Public Health 2021; 18(10): 5083.
[http://dx.doi.org/10.3390/ijerph18105083] [PMID: 34064931]
[54]
Cosin-Tomas M, Cilleros-Portet A, Aguilar-Lacasaña S, Fernandez-Jimenez N, Bustamante M. Prenatal maternal smoke, DNA methylation, and multi-omics of tissues and child health. Curr Environ Health Rep 2022; 9(3): 502-12.
[http://dx.doi.org/10.1007/s40572-022-00361-9] [PMID: 35670920]
[55]
Wiklund P, Karhunen V, Richmond RC, et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin Epigenetics 2019; 11(1): 97.
[http://dx.doi.org/10.1186/s13148-019-0683-4] [PMID: 31262328]
[56]
Di Baldassarre A, D’Amico MA, Izzicupo P, et al. Cardiomyocytes derived from human cardiopoietic amniotic fluids. Sci Rep 2018; 8(1): 12028.
[http://dx.doi.org/10.1038/s41598-018-30537-z] [PMID: 30104705]
[57]
Rodrigues M, Antonucci I, Elabd S, et al. p53 is active in human amniotic fluid stem cells. Stem Cells Dev 2018; 27(21): 1507-17.
[http://dx.doi.org/10.1089/scd.2017.0254] [PMID: 30044176]
[58]
Tajiri N, Acosta S, Portillo-Gonzales GS, et al. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 2014; 8: 227.
[http://dx.doi.org/10.3389/fncel.2014.00227] [PMID: 25165432]
[59]
Antonucci I, Pantalone A, De Amicis D, et al. Human amniotic fluid stem cells culture onto titanium screws: A new perspective for bone engineering. J Biol Regul Homeost Agents 2009; 23(4): 277-9.
[PMID: 20003768]
[60]
Antonucci I, Iezzi I, Morizio E, et al. Isolation of osteogenic progenitors from human amniotic fluid using a single step culture protocol. BMC Biotechnol 2009; 9(1): 9.
[http://dx.doi.org/10.1186/1472-6750-9-9] [PMID: 19220883]
[61]
Tarasi B, Cornuz J, Clair C, Baud D. Cigarette smoking during pregnancy and adverse perinatal outcomes: A cross-sectional study over 10 years. BMC Public Health 2022; 22(1): 2403.
[http://dx.doi.org/10.1186/s12889-022-14881-4] [PMID: 36544092]
[62]
Li T, Zhang J, Zhang J, et al. Nicotine-enhanced stemness and epithelial-mesenchymal transition of human umbilical cord mesenchymal stem cells promote tumor formation and growth in nude mice. Oncotarget 2018; 9(1): 591-606.
[http://dx.doi.org/10.18632/oncotarget.22712] [PMID: 29416638]
[63]
Wu Y, Zhou C, Yuan Q. Role of DNA and RNA N6-adenine methylation in regulating stem cell fate. Curr Stem Cell Res Ther 2018; 13(1): 31-8.
[PMID: 28637404]
[64]
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16(2): 191-8.
[http://dx.doi.org/10.1038/ncb2902] [PMID: 24394384]
[65]
Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. m6 A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 2015; 347(6225): 1002-6.
[http://dx.doi.org/10.1126/science.1261417] [PMID: 25569111]
[66]
Wang Y, Wang Y, Gu J, Su T, Gu X, Feng Y. The role of RNA m6A methylation in lipid metabolism. Front Endocrinol 2022; 13: 866116.
[http://dx.doi.org/10.3389/fendo.2022.866116] [PMID: 36157445]
[67]
Zhang Y, Chen W, Zheng X, et al. Regulatory role and mechanism of m6 A RNA modification in human metabolic diseases. Mol Ther Oncolytics 2021; 22: 52-63.
[http://dx.doi.org/10.1016/j.omto.2021.05.003] [PMID: 34485686]
[68]
Pesce M, Ballerini P, Paolucci T, Puca I, Farzaei MH, Patruno A. Irisin and autophagy: First update. Int J Mol Sci 2020; 21(20): 7587.
[http://dx.doi.org/10.3390/ijms21207587] [PMID: 33066678]
[69]
Aguilo F, Walsh MJ. The N6-Methyladenosine RNA modification in pluripotency and reprogramming. Curr Opin Genet Dev 2017; 46: 77-82.
[http://dx.doi.org/10.1016/j.gde.2017.06.006] [PMID: 28683341]
[70]
Frye M, Blanco S. Post-transcriptional modifications in development and stem cells. Development 2016; 143(21): 3871-81.
[http://dx.doi.org/10.1242/dev.136556] [PMID: 27803056]
[71]
Heck AM, Wilusz CJ. Small changes, big implications: The impact of m6 A RNA methylation on gene expression in pluripotency and development. Biochim Biophys Acta Gene Regul Mech 2019; 1862(9): 194402.
[http://dx.doi.org/10.1016/j.bbagrm.2019.07.003] [PMID: 31325527]
[72]
Schaal CM, Bora-Singhal N, Kumar DM, Chellappan SP. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer 2018; 17(1): 149.
[http://dx.doi.org/10.1186/s12943-018-0901-2] [PMID: 30322398]
[73]
Liszewski W, Ritner C, Aurigui J, et al. Developmental effects of tobacco smoke exposure during human embryonic stem cell differentiation are mediated through the transforming growth factor-β superfamily member, Nodal. Differentiation 2012; 83(4): 169-78.
[http://dx.doi.org/10.1016/j.diff.2011.12.005] [PMID: 22381624]
[74]
Luetragoon T, Rutqvist LE, Tangvarasittichai O, et al. Interaction among smoking status, single nucleotide polymorphisms and markers of systemic inflammation in healthy individuals. Immunology 2018; 154(1): 98-103.
[http://dx.doi.org/10.1111/imm.12864] [PMID: 29140561]
[75]
Kratzer A, Chu HW, Salys J, et al. Endothelial cell adhesion molecule CD146: Implications for its role in the pathogenesis of COPD. J Pathol 2013; 230(4): 388-98.
[http://dx.doi.org/10.1002/path.4197] [PMID: 23649916]
[76]
Gellner CA, Reynaga DD, Leslie FM. Cigarette smoke extract: A preclinical model of tobacco dependence. Curr Protoc Neurosci 2016; 77: 9.54.1-9.54.10.
[http://dx.doi.org/10.1002/cpns.14]
[77]
Wahl EA, Schenck TL, Machens HG, Egaña JT. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation and paracrine potential. Sci Rep 2016; 6(1): 22957.
[http://dx.doi.org/10.1038/srep22957] [PMID: 26976359]
[78]
Ng TK, Huang L, Cao D, et al. Cigarette smoking hinders human periodontal ligament-derived stem cell proliferation, migration and differentiation potentials. Sci Rep 2015; 5(1): 7828.
[http://dx.doi.org/10.1038/srep07828] [PMID: 25591783]
[79]
Zagoriti Z, El Mubarak MA, Farsalinos K, Topouzis S. Effects of exposure to tobacco cigarette, electronic cigarette and heated tobacco product on adipocyte survival and differentiation in vitro. Toxics 2020; 8(1): 9.
[http://dx.doi.org/10.3390/toxics8010009] [PMID: 32033401]
[80]
Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic regulation of adipogenesis in development of metabolic syndrome. Front Cell Dev Biol 2021; 8: 619888.
[http://dx.doi.org/10.3389/fcell.2020.619888] [PMID: 33511131]
[81]
Gabory A, Ripoche MA, Le Digarcher A, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 2009; 136(20): 3413-21.
[http://dx.doi.org/10.1242/dev.036061] [PMID: 19762426]
[82]
Xu Q, Xie W. Epigenome in early mammalian development: Inheritance, reprogramming and establishment. Trends Cell Biol 2018; 28(3): 237-53.
[http://dx.doi.org/10.1016/j.tcb.2017.10.008] [PMID: 29217127]
[83]
Li K, Wu Y, Yang H, Hong P, Fang X, Hu Y. H19/miR-30a/C8orf4 axis modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. J Cell Physiol 2019; 234(11): 20925-34.
[http://dx.doi.org/10.1002/jcp.28697] [PMID: 31026067]
[84]
Han Y, Ma J, Wang J, Wang L. Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol 2018; 93: 107-14.
[http://dx.doi.org/10.1016/j.molimm.2017.11.017] [PMID: 29172088]
[85]
Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W. Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep 2016; 6(1): 28897.
[http://dx.doi.org/10.1038/srep28897] [PMID: 27349231]
[86]
Daneshmoghadam J, Omidifar A, Akbari Dilmaghani N, Karimi Z, Emamgholipour S, shanaki M. The gene expression of long non-coding RNAs (lncRNAs): MEG3 and H19 in adipose tissues from obese women and its association with insulin resistance and obesity indices. J Clin Lab Anal 2021; 35(5): e23741.
[http://dx.doi.org/10.1002/jcla.23741] [PMID: 33616223]
[87]
Corral A, Alcala M, Carmen Duran-Ruiz M, et al. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206: 115305.
[http://dx.doi.org/10.1016/j.bcp.2022.115305] [PMID: 36272599]
[88]
Zhu Y, Gui W, Lin X, Li H. Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1. Exp Cell Res 2020; 387(2): 111753.
[http://dx.doi.org/10.1016/j.yexcr.2019.111753] [PMID: 31837293]
[89]
Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: Biomarkers of disease. Clin Chim Acta 2021; 516: 46-54.
[http://dx.doi.org/10.1016/j.cca.2021.01.008] [PMID: 33485903]
[90]
Yang M, Yan X, Yuan FZ, et al. MicroRNA-210-3p promotes chondrogenic differentiation and inhibits adipogenic differentiation correlated with HIF-3α signalling in bone marrow mesenchymal stem cells. BioMed Res Int 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/6699910] [PMID: 33937412]
[91]
Shen J, Zhu X, Liu H. MiR-483 induces senescence of human adipose-derived mesenchymal stem cells through IGF1 inhibition. Aging (Albany NY) 2020; 12(15): 15756-70.
[http://dx.doi.org/10.18632/aging.103818] [PMID: 32805717]
[92]
Ciortea R, Malutan AM, Bucuri CE, et al. Amniocentesis-When it is clear that it is not clear. J Clin Med 2023; 12(2): 454.
[http://dx.doi.org/10.3390/jcm12020454] [PMID: 36675383]