Oleogels for the Promotion of Healthy Skin Care Products: Synthesis and Characterization of Allantoin Containing Moringa-based Oleogel

Page: [2326 - 2336] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Oleogelation is an efficient and emerging approach for obtaining biocompatible and biodegradable elastic semisolid crystals to be used in various cosmetic and pharmaceutical formulations. Recently, drug incorporation in oil structuring has been a promising strategy under consideration due to the effectiveness of this method. Plant oils have very beneficial characteristics for skin care and wound healing due to the presence of certain antioxidants.

Methods: In this study, the oleogels of Moringa oleifera seed oil with natural polysaccharides, including pectin, chitosan, and xanthan gum, were prepared using the emulsion template method. Moringa oil was selected because it can hydrate and moisturize the skin and has great antioxidant activity. Also, the natural polysaccharides, i.e., pectin and chitosan, exhibited good gelling properties. Allantoin, which is a wound healer and eucalyptus leaf oil with antioxidant potential, was incorporated into the emulsion-based-oleogels to enhance the antioxidant and antimicrobial activity of the oleogels.

Results: Allantoin and eucalyptus-loaded oleogels exhibited good antibacterial activity against E. coli. The FTIR spectra of moringa-based oleogels in the range between 3226-3422 cm-1 indicate the presence of hydrogen bonding in oleogels.

Conclusion: The antioxidant potential of allantoin and eucalyptus-containing oleogel was maximized, and an IC50 value of 0.9719 μM was found. Maximum release of allantoin from oleogel was observed in the first hour.

[1]
Abrigo, M.; McArthur, S.L.; Kingshott, P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol. Biosci., 2014, 14(6), 772-792.
[http://dx.doi.org/10.1002/mabi.201300561] [PMID: 24678050]
[2]
Ribeiro, A.; Estanqueiro, M.; Oliveira, M.; Lobo, S.J. Main benefits and applicability of plant extracts in skin care products. Cosmetics, 2015, 2(2), 48-65.
[http://dx.doi.org/10.3390/cosmetics2020048]
[3]
Morganti, P. Beauty mask: Market and environment. J. Clin. Cosmet. Dermatol, 2019, 3, 1-10.
[4]
Moshood, T.D. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem, 2022, 5, 100273.
[http://dx.doi.org/10.1016/j.crgsc.2022.100273]
[5]
Pavlou, P.; Siamidi, A.; Varvaresou, A.; Vlachou, M. Skin care formulations and lipid carriers as skin moisturizing agents. Cosmetics, 2021, 8(3), 89.
[http://dx.doi.org/10.3390/cosmetics8030089]
[6]
Pehlivanoğlu, H.; Demirci, M.; Toker, O.S.; Konar, N.; Karasu, S.; Sagdic, O. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1330-1341.
[http://dx.doi.org/10.1080/10408398.2016.1256866] [PMID: 27830932]
[7]
Silva, T.J.; Arellano, B.D.; Ribeiro, A.P.B. Oleogel‐based emulsions: Concepts, structuring agents, and applications in food. J. Food Sci., 2021, 86(7), 2785-2801.
[http://dx.doi.org/10.1111/1750-3841.15788] [PMID: 34160057]
[8]
Chen, Z.; Shi, Z.; Meng, Z. Development and characterization of antioxidant-fortified oleogels by encapsulating hydrophilic tea polyphenols. Food Chem., 2023, 414, 135664.
[http://dx.doi.org/10.1016/j.foodchem.2023.135664] [PMID: 36821915]
[9]
Kartik, A.; Akhil, D.; Lakshmi, D.; Gopinath, P.K.; Arun, J.; Sivaramakrishnan, R.; Pugazhendhi, A. A critical review on production of biopolymers from algae biomass and their applications. Bioresour. Technol., 2021, 329, 124868.
[http://dx.doi.org/10.1016/j.biortech.2021.124868] [PMID: 33707076]
[10]
Anwar, F.; Ashraf, M.; Bhanger, M.I. Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J. Am. Oil Chem. Soc., 2005, 82(1), 45-51.
[http://dx.doi.org/10.1007/s11746-005-1041-1]
[11]
Prajapati, C.; Ankola, M.; Upadhyay, T.K.; Sharangi, A.B.; Alabdallah, N.M.; Al-Saeed, F.A.; Muzammil, K.; Saeed, M. Moringa oleifera: Miracle plant with a plethora of medicinal, therapeutic, and economic importance. Horticulturae, 2022, 8(6), 492.
[http://dx.doi.org/10.3390/horticulturae8060492]
[12]
Almeida, T.; Moreira, P.; Sousa, F.J.; Pereira, C.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Bioactive bacterial nanocellulose membranes enriched with Eucalyptus globulus labill. Leaves aqueous extract for anti-aging skin care applications. Materials, 2022, 15(5), 1982.
[http://dx.doi.org/10.3390/ma15051982] [PMID: 35269213]
[13]
Peng, W.; Li, D.; Dai, K.; Wang, Y.; Song, P.; Li, H.; Tang, P.; Zhang, Z.; Li, Z.; Zhou, Y.; Zhou, C. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int. J. Biol. Macromol., 2022, 208, 400-408.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.002] [PMID: 35248609]
[14]
Ahmed, S.; Ikram, S. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci., 2016, 10(1), 27-37.
[http://dx.doi.org/10.1016/j.als.2016.04.001]
[15]
Noreen, A.; Nazli, Z.H.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol., 2017, 101, 254-272.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.029] [PMID: 28300586]
[16]
Agrawal, P.; Soni, S.; Mittal, G.; Bhatnagar, A. Role of polymeric biomaterials as wound healing agents. Int. J. Low. Extrem. Wounds, 2014, 13(3), 180-190.
[http://dx.doi.org/10.1177/1534734614544523] [PMID: 25056991]
[17]
Robinson, W. Stimulation of healing in non-healing wounds: By allantoin occurring in maggot secretions and of wide biological distribution. JBJS, 1935, 17(2), 267-271.
[18]
Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G., Jr; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Final report of the safety assessment of allantoin and its related complexes. Int. J. Toxicol., 2010, 29(S3), 84S-97S.
[http://dx.doi.org/10.1177/1091581810362805] [PMID: 20448269]
[19]
Tavernier, I.; Patel, A.R.; Van der Meeren, P.; Dewettinck, K. Emulsion-templated liquid oil structuring with soy protein and soy protein: K-carrageenan complexes. Food Hydrocoll., 2017, 65, 107-120.
[http://dx.doi.org/10.1016/j.foodhyd.2016.11.008]
[20]
Yılmaz, E.; Öğütcü, M. Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. J. Am. Oil Chem. Soc., 2014, 91(6), 1007-1017.
[http://dx.doi.org/10.1007/s11746-014-2434-1]
[21]
Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chem., 2018, 246, 137-149.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.154] [PMID: 29291832]
[22]
Sintang, B.M.D.; Rimaux, T.; Van de Walle, D.; Dewettinck, K.; Patel, A.R. Oil structuring properties of monoglycerides and phytosterols mixtures. Eur. J. Lipid Sci. Technol., 2017, 119(3), 1500517.
[http://dx.doi.org/10.1002/ejlt.201500517]
[23]
Valgas, C.; Souza, S.M.; Smânia, E.F.A.; Smânia, A., Jr Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol., 2007, 38(2), 369-380.
[http://dx.doi.org/10.1590/S1517-83822007000200034]
[24]
Mushore, J.; Matuvhunye, M. Antibacterial properties of <i>Mangifera indica</i> on <i>Staphylococcus aureus</i>. Afr. J. Clin. Exp. Microbiol., 2013, 14(2), 62-74.
[http://dx.doi.org/10.4314/ajcem.v14i2.4]
[25]
Arshad, U.; Ahmed, S.; Shafiq, N.; Ahmad, Z.; Hassan, A.; Akhtar, N.; Parveen, S.; Mehmood, T. Structure-based designing, solvent less synthesis of 1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives: A combined in vitro and in silico screening approach. Molecules, 2021, 26(15), 4424.
[http://dx.doi.org/10.3390/molecules26154424] [PMID: 34361577]
[26]
Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods, 2020, 9(9), 1291.
[http://dx.doi.org/10.3390/foods9091291] [PMID: 32937933]
[27]
Inayatullah, S.; Irum, R.; Chaudhary, F.M.; Mirza, B. Biological evaluation of some selected plant species of Pakistan. Pharm. Biol., 2007, 45(5), 397-403.
[http://dx.doi.org/10.1080/13880200701215182]
[28]
Qureshi, D.; Nadikoppula, A.; Mohanty, B.; Anis, A.; Cerqueira, M.; Varshney, M.; Pal, K. Effect of carboxylated carbon nanotubes on physicochemical and drug release properties of oleogels. Colloids Surf. A Physicochem. Eng. Asp., 2021, 610, 125695.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125695]
[29]
Blake, A.I.; Co, E.D.; Marangoni, A.G. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc., 2014, 91(6), 885-903.
[http://dx.doi.org/10.1007/s11746-014-2435-0]
[30]
Satnami, P.; Karthikeyan, B.; Ganesh, P. Antimicrobial activity of essential oils against certain bacterial species. Inter. J. Advanced. Res., 2016, 2, 300-303.
[31]
Gnanasambandam, R.; Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem., 2000, 68(3), 327-332.
[http://dx.doi.org/10.1016/S0308-8146(99)00191-0]
[32]
Sugumar, S.; Mukherjee, A.; Chandrasekaran, N. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. Int. J. Nanomedicine, 2015, 10(S1), 67-75.
[PMID: 26491308]
[33]
Alam, M.J.; Ahmad, S. FTIR, FT-Raman, UV–Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 961-978.
[http://dx.doi.org/10.1016/j.saa.2014.09.119] [PMID: 25459622]
[34]
Sakthiguru, N.; Sithique, M.A. Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. Int. J. Biol. Macromol., 2020, 152, 873-883.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.289] [PMID: 32112839]
[35]
Sun, H.; Xu, J.; Lu, X.; Xu, Y.; Regenstein, J.M.; Zhang, Y.; Wang, F. Development and characterization of monoglyceride oleogels prepared with crude and refined walnut oil. Lebensm. Wiss. Technol., 2022, 154, 112769.
[http://dx.doi.org/10.1016/j.lwt.2021.112769]
[36]
Fan, Y.; Yang, J.; Duan, A.; Li, X. Pectin/sodium alginate/xanthan gum edible composite films as the fresh-cut package. Int. J. Biol. Macromol., 2021, 181, 1003-1009.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.111] [PMID: 33892026]
[37]
Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocoll., 2020, 105, 105855.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105855]
[38]
Menezes, J.E.S.A.; Santos, H.S.; Ferreira, M.K.A.; Magalhães, F.E.A.; da Silva, D.S.; Bandeira, P.N.; Saraiva, G.D.; Pessoa, O.D.L.; Ricardo, N.M.P.S.; Cruz, B.G.; Teixeira, A.M.R. Preparation, structural and spectroscopic characterization of chitosan membranes containing allantoin. J. Mol. Struct., 2020, 1199, 126968.
[http://dx.doi.org/10.1016/j.molstruc.2019.126968]
[39]
Moş, I. Antibiotic sensitivity of the Escherichia coli strains isolated from infected skin wounds. Farmacia, 2010, 58(5), 637-644.
[40]
Adak, T.; Barik, N.; Patil, N.B.; Govindharaj, G-P-P.; Gadratagi, B.G.; Annamalai, M.; Mukherjee, A.K.; Rath, P.C. Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice. Ind. Crops Prod., 2020, 143, 111849.
[http://dx.doi.org/10.1016/j.indcrop.2019.111849]
[41]
Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm. Biol., 2011, 49(9), 893-899.
[http://dx.doi.org/10.3109/13880209.2011.553625] [PMID: 21591991]
[42]
Nokoorani, Y.D.; Shamloo, A.; Bahadoran, M.; Moravvej, H. Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Sci. Rep., 2021, 11(1), 16164.
[http://dx.doi.org/10.1038/s41598-021-95763-4] [PMID: 34373593]
[43]
Selamoglu, Z.; Dusgun, C.; Akgul, H.; Gulhan, M.F. In-vitro antioxidant activities of the ethanolic extracts of some contained-allantoin plants. Iran. J. Pharm. Res., 2017, 16, 92-98.
[PMID: 29844780]
[44]
Singh, H.P.; Kaur, S.; Negi, K.; Kumari, S.; Saini, V.; Batish, D.R.; Kohli, R.K. Assessment of in vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt; Myrtaceae) and its major constituents. Lebensm. Wiss. Technol., 2012, 48(2), 237-241.
[http://dx.doi.org/10.1016/j.lwt.2012.03.019]
[45]
Duan, S.; Zhao, M.; Wu, B.; Wang, S.; Yang, Y.; Xu, Y.; Wang, L. Preparation, characteristics, and antioxidant activities of carboxymethylated polysaccharides from blackcurrant fruits. Int. J. Biol. Macromol., 2020, 155, 1114-1122.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.078] [PMID: 31715234]
[46]
Siramon, P.; Ohtani, Y. Antioxidative and antiradical activities of Eucalyptus camaldulensis leaf oils from Thailand. J. Wood Sci., 2007, 53(6), 498-504.
[http://dx.doi.org/10.1007/s10086-007-0887-7]
[47]
Woo, K.Y.; Sibbald, R.G. The improvement of wound-associated pain and healing trajectory with a comprehensive foot and leg ulcer care model. J. Wound Ostomy Continence Nurs., 2009, 36(2), 184-191.
[http://dx.doi.org/10.1097/01.WON.0000347660.87346.ed] [PMID: 19287267]
[48]
Ciszek, A. Variability of skin PH after the use of different collagen gels. J. Cosmet. Dermatol., 2017, 16(4), 531-536.
[http://dx.doi.org/10.1111/jocd.12303] [PMID: 28155260]
[49]
Yaşayan, G.; Karaca, G.; Akgüner, Z.P.; Öztürk, B.A. Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. Int. J. Polym. Mater., 2021, 70(9), 623-635.
[http://dx.doi.org/10.1080/00914037.2020.1740993]