In Silico ADME And Molecular Docking Studies of New Thiazolyl-bipyrazole, Pyrazolopyridine and Pyrano[2,3-d]pyrazolopyridine Derivatives as Antibacterial Agents

Page: [1460 - 1470] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

In this study, a series of novel pyrazole-based compounds were synthesized starting from the precursor ethyl 3-(4-amino-1-phenyl-3-((4-sulfamoylphenyl)carbamoyl)-1Hpyrazol- 5-yl)-3-oxopropanoate (2). Various synthetic routes were used to obtain pyrazolylpyrazolone 3, tricyclic dipyrazolopyridine 4a-c, thiazolyl-bipyrazoles 5 & 6, pyrazolo[4,3- b]pyridines 7 & 9, and tricyclic pyranopyrazolopyridine 10a–c. These compounds were screened for their antibacterial activity against four bacterial strains. The promising candidates 4a, 4b, 4c, 7, 9, and 10c exhibited minimum inhibitory concentrations ranging from 0.98 to 31.25 μg/mL. The in silico ADME properties for the active compounds exhibited similar physiochemical properties, with compound 9 demonstrating the best likeness and no inhibition effect on the popular drug metabolism enzyme CYP. Molecular docking simulations highlighted compounds 9 and 10c as potent antibacterial agents via DNA-gyrase inhibition

Graphical Abstract

[1]
Shchegolkov, E.V.; Perminova, A.N.; Malkova, N.A.; Kushch, S.O.; Burgart, Y.V.; Triandafilova, G.A.; Solodnikov, S.Y.; Krasnykh, O.P.; Saloutin, V.I. Modifications of 4‐amino‐substituted 5‐phenyl‐3‐(trifluoromethyl)pyrazoles for the development of new analgesics. ChemistrySelect, 2023, 8(47), e202303265.
[http://dx.doi.org/10.1002/slct.202303265]
[2]
Alam, M.J.; Alam, O.; Naim, M.J.; Nawaz, F.; Manaithiya, A.; Imran, M.; Thabet, H.K.; Alshehri, S.; Ghoneim, M.M.; Alam, P.; Shakeel, F. Recent advancement in drug design and discovery of pyrazole biomolecules as cancer and inflammation therapeutics. Molecules, 2022, 27(24), 8708-8782.
[http://dx.doi.org/10.3390/molecules27248708] [PMID: 36557840]
[3]
Uslaner, J.M.; Parmentier-Batteur, S.; Flick, R.B.; Surles, N.O.; Lam, J.S.H.; McNaughton, C.H.; Jacobson, M.A.; Hutson, P.H. Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology, 2009, 57(5-6), 531-538.
[http://dx.doi.org/10.1016/j.neuropharm.2009.07.022] [PMID: 19627999]
[4]
Friedrich, G.; Rose, T.; Rissler, K. Determination of lonazolac and its hydroxy and O-sulfated metabolites by on-line sample preparation liquid chromatography with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 766(2), 295-305.
[http://dx.doi.org/10.1016/S0378-4347(01)00514-X] [PMID: 11824818]
[5]
Hampp, C.; Hartzema, A.G.; Kauf, T.L. Cost-utility analysis of rimonabant in the treatment of obesity. Value Health, 2008, 11(3), 389-399.
[http://dx.doi.org/10.1111/j.1524-4733.2007.00281.x] [PMID: 18179661]
[6]
Spitz, I.M.; Novis, B.H.; Ebert, R.; Trestian, S.; LeRoith, D.; Creutzfeldt, W. Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 1982, 31(4), 380-382.
[http://dx.doi.org/10.1016/0026-0495(82)90114-7] [PMID: 7078422]
[7]
Luttinger, D.; Hlasta, D.J. Antidepressant agents Chapter 3. In: Annu. Rep. Med. Chem; Bailey, D.M., Ed.; Academic Press,, 1987; 22, pp. 21-30.
[8]
Tsutomu, K.; Toshitaka, N. Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole[difenamizole] on a conditioned avoidance response. Neuropharmacology, 1978, 17(4-5), 249-256.
[http://dx.doi.org/10.1016/0028-3908(78)90108-9] [PMID: 652137]
[9]
Gutti, G.; Kumar, D.; Paliwal, P.; Ganeshpurkar, A.; Lahre, K.; Kumar, A.; Krishnamurthy, S.; Singh, S.K. Development of pyrazole and spiropyrazoline analogs as multifunctional agents for treatment of Alzheimer’s disease. Bioorg. Chem., 2019, 90, 103080-103103.
[http://dx.doi.org/10.1016/j.bioorg.2019.103080] [PMID: 31271946]
[10]
Keter, F.K.; Darkwa, J. Perspective: The potential of pyrazole-based compounds in medicine. Biometals, 2012, 25(1), 9-21.
[http://dx.doi.org/10.1007/s10534-011-9496-4] [PMID: 22002344]
[11]
Karati, D.; Mahadik, K.R.; Kumar, D. Pyrazole scaffolds: Centrality in anti-inflammatory and antiviral drug design. Med. Chem., 2022, 18(10), 1060-1072.
[http://dx.doi.org/10.2174/1573406418666220410181827] [PMID: 35410619]
[12]
Becerra, D.; Abonia, R.; Castillo, J.C. Recent applications of the multicomponent synthesis for bioactive pyrazole derivatives. Molecules, 2022, 27(15), 4723-8428.
[http://dx.doi.org/10.3390/molecules27154723] [PMID: 35897899]
[13]
A., Alam M. Antibacterial pyrazoles: Tackling resistant bacteria. Future Med. Chem., 2022, 14(5), 343-362.
[http://dx.doi.org/10.4155/fmc-2021-0275] [PMID: 35050719]
[14]
Rastija, V.; Vrandečić, K.; Ćosić, J.; Kanižai Šarić, G.; Majić, I.; Agić, D.; Šubarić, D.; Karnaš, M.; Bešlo, D.; Brahmbhatt, H.; Komar, M. Antifungal activities of fluorinated pyrazole aldehydes on phytopathogenic fungi, and their effect on entomopathogenic nematodes, and soil-beneficial bacteria. Int. J. Mol. Sci., 2023, 24(11), 9335-9357.
[http://dx.doi.org/10.3390/ijms24119335] [PMID: 37298285]
[15]
Pandey, V.; Tripathi, G.; Kumar, D.; Kumar, A.; Dubey, P.K. Novel 3,4-diarylpyrazole as prospective anti-cancerous agents. Heliyon, 2020, 6(7), e04397.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04397] [PMID: 32695909]
[16]
Zhang, Y.; Wu, C.; Zhang, N.; Fan, R.; Ye, Y.; Xu, J. Recent advances in the development of pyrazole derivatives as anticancer agents. Int. J. Mol. Sci., 2023, 24(16), 12724-12759.
[http://dx.doi.org/10.3390/ijms241612724] [PMID: 37628906]
[17]
Baren, M.H.; Ibrahim, S.A.; Al-Rooqi, M.M.; Ahmed, S.A.; El-Gamil, M.M.; Hekal, H.A. A new class of anticancer activity with computational studies for a novel bioactive aminophosphonates based on pyrazole moiety. Sci. Rep., 2023, 13(1), 14680-14700.
[http://dx.doi.org/10.1038/s41598-023-40265-8] [PMID: 37673913]
[18]
Ahmed, D.M.; Chen, J.M.; Sanders, D.A.R. Pyrazole and triazole derivatives as Mycobacterium tuberculosis UDP-galactopyranose inhibitors. Pharmaceuticals, 2022, 15(2), 197-212.
[http://dx.doi.org/10.3390/ph15020197] [PMID: 35215309]
[19]
Priya, D.; Gopinath, P.; Dhivya, L.S.; Vijaybabu, A.; Haritha, M.; Palaniappan, S.; Kathiravan, M.K. Structural insights into pyrazoles as agents against anti‐inflammatory and related disorders. ChemistrySelect, 2022, 7(5), e202104429.
[http://dx.doi.org/10.1002/slct.202104429]
[20]
Youssef, Y.M.; Azab, M.E.; Elsayed, G.A.; El-Sayed, A.A.; Hassaballah, A.I.; El-Safty, M.M.; Soliman, R.A.; El-Helw, E.A.E. Synthesis and antioxidant, antimicrobial, and antiviral activity of some pyrazole-based heterocycles using a 2(3H)-furanone derivative. J. Indian Chem. Soc., 2023, 20(9), 2203-2216.
[21]
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Review: Biologically active pyrazole derivatives. New J. Chem., 2017, 41(1), 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[22]
Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res., 2018, 27(5), 1309-1344.
[http://dx.doi.org/10.1007/s00044-018-2152-6] [PMID: 32214770]
[23]
Zhao, Y.; Yang, N.; Deng, Y.; Tao, K.; Jin, H.; Hou, T. Mechanism of action of novel pyrazole carboxamide containing a diarylamine scaffold against Rhizoctonia solani. J. Agric. Food Chem., 2020, 68(40), 11068-11076.
[http://dx.doi.org/10.1021/acs.jafc.9b06937] [PMID: 32924467]
[24]
Dong, C.; Gao, W.; Li, X.; Sun, S.; Huo, J.; Wang, Y.; Ren, D.; Zhang, J.; Chen, L. Synthesis of pyrazole-4-carboxamides as potential fungicide candidates. Mol. Divers., 2021, 25(4), 2379-2388.
[http://dx.doi.org/10.1007/s11030-020-10127-w] [PMID: 32734588]
[25]
Govindaraju, S.; Daniel, N.K.; Tabassum, S. Sulfamic acid catalyzed grinding: A facile one-pot approach for the synthesis of polysubstituted pyrazoles under green conditions. Mater. Today Proc., 2022, 62, 5336-5340.
[http://dx.doi.org/10.1016/j.matpr.2022.03.416]
[26]
Tabassum, S.; Devi, K.R.S.; Govindaraju, S. An insight into the superior performance of ZnO@PEG nanocatalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles under ultrasound. Mater. Today Proc., 2021, 45, 3898-3903.
[http://dx.doi.org/10.1016/j.matpr.2020.06.283]
[27]
Govindaraju, S.; Tabassum, S.; Khan, R-R.; Pasha, M.A. Meglumine catalyzed one-pot green synthesis of novel 4,7-dihydro-1 H-pyrazolo[3,4-b]pyridin-6-amines. Chin. Chem. Lett., 2017, 28(2), 437-441.
[http://dx.doi.org/10.1016/j.cclet.2016.09.013]
[28]
Govindaraju, S.; Tabassum, S. Sulphuric acid supported silica gel (H2SO4-SiO2) as an efficient catalyst for one-pot multicomponent synthesis of pyrano[2,3-c]pyrazol-amines under ultrasonication. Mater. Today Proc., 2021, 45, 3762-3768.
[http://dx.doi.org/10.1016/j.matpr.2021.01.273]
[29]
Tabassum, S.; Thangaiyan, P.; Govindaraju, S.; Daniel, N.K.; Thomas, R. Pyrazole derivative containing naphthalene moiety: cytotoxocity (Breast and Cervical Cancer), antibacterial and antifungal studies using experimental and theoretical tools. Polycycl. Aromat. Compd., 2023, 43(9), 8544-8561.
[http://dx.doi.org/10.1080/10406638.2022.2149564]
[30]
Yoon, J.Y.; Lee, S.; Shin, H. Recent advances in the regioselective synthesis of pyrazoles. Curr. Org. Chem., 2011, 15(5), 657-674.
[http://dx.doi.org/10.2174/138527211794519005]
[31]
Zhang, A.; Zhou, J.; Tao, K.; Hou, T.; Jin, H. Design, synthesis and antifungal evaluation of novel pyrazole carboxamides with diarylamines scaffold as potent succinate dehydrogenase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(18), 3042-3045.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.001] [PMID: 30097371]
[32]
Huang, D.; Liu, A.; Liu, W.; Liu, X.; Ren, Y.; Zheng, X.; Pei, H.; Xiang, J.; Huang, M.; Wang, X. Synthesis and insecticidal activities of novel 1 H-pyrazole-5-carboxylic acid derivatives. Heterocycl. Commun., 2017, 23(6), 455-460.
[http://dx.doi.org/10.1515/hc-2017-0110]
[33]
Jeanmart, S.; Edmunds, A.J.F.; Lamberth, C.; Pouliot, M. Synthetic approaches to the 2010-2014 new agrochemicals. Bioorg. Med. Chem., 2016, 24(3), 317-341.
[http://dx.doi.org/10.1016/j.bmc.2015.12.014] [PMID: 26725441]
[34]
Mert, S.; Yağlıoğlu, A.Ş.; Demirtas, I.; Kasımoğulları, R. Synthesis and antiproliferative activities of some pyrazole-sulfonamide derivatives. Med. Chem. Res., 2014, 23(3), 1278-1289.
[http://dx.doi.org/10.1007/s00044-013-0721-2]
[35]
Sun, A.; Chandrakumar, N.; Yoon, J.J.; Plemper, R.K.; Snyder, J.P. Non-nucleoside inhibitors of the measles virus RNA-dependent RNA polymerase complex activity: Synthesis and in vitro evaluation. Bioorg. Med. Chem. Lett., 2007, 17(18), 5199-5203.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.084] [PMID: 17643302]
[36]
Ndungu, J.M.; Krumm, S.A.; Yan, D.; Arrendale, R.F.; Reddy, G.P.; Evers, T.; Howard, R.; Natchus, M.G.; Saindane, M.T.; Liotta, D.C.; Plemper, R.K.; Snyder, J.P.; Sun, A. Non-nucleoside inhibitors of the measles virus RNA-dependent RNA polymerase: Synthesis, structure-activity relationships, and pharmacokinetics. J. Med. Chem., 2012, 55(9), 4220-4230.
[http://dx.doi.org/10.1021/jm201699w] [PMID: 22480182]
[37]
Lusardi, M.; Spallarossa, A.; Brullo, C. Amino-pyrazoles in medicinal chemistry: A review. Int. J. Mol. Sci., 2023, 24(9), 7834-7859.
[http://dx.doi.org/10.3390/ijms24097834] [PMID: 37175540]
[38]
Secrieru, A.; O’Neill, P.M.; Cristiano, M.L.S. Revisiting the structure and chemistry of 3(5)-substituted pyrazoles. Molecules, 2019, 25(1), 42-70.
[http://dx.doi.org/10.3390/molecules25010042] [PMID: 31877672]
[39]
Boolell, M.; Gepi-Attee, S.; Gingell, J.C.; Allen, M.J. Sildenafil, a novel effective oral therapy for male erectile dysfunction. Br. J. Urol., 1996, 78(2), 257-261.
[http://dx.doi.org/10.1046/j.1464-410X.1996.10220.x] [PMID: 8813924]
[40]
Moreland, R.B.; Goldstein, I.; Traish, A. Sildenafil, a novel inhibitor of phosphodiesterase type 5 in human corpus cavernosum smooth muscle cells. Life Sci., 1998, 62(20), PL309-PL318.
[http://dx.doi.org/10.1016/S0024-3205(98)00158-1] [PMID: 9600334]
[41]
Ko, Y.; Wang, S.A.; Ogasawara, Y.; Ruszczycky, M.W.; Liu, H. Identification and characterization of enzymes catalyzing pyrazolopyrimidine formation in the biosynthesis of formycin A. Org. Lett., 2017, 19(6), 1426-1429.
[http://dx.doi.org/10.1021/acs.orglett.7b00355] [PMID: 28233490]
[42]
Zhang, D.Q.; Xu, G.F.; Fan, Z.J.; Wang, D.Q.; Yang, X.L.; Yuan, D.K. Synthesis and anti-TMV activity of novel N-(3-alkyl-1H-pyrazol-4-yl)-3-alkyl-4-substituted-1H-pyrazole-5-carboxamides. Chin. Chem. Lett., 2012, 23(6), 669-672.
[http://dx.doi.org/10.1016/j.cclet.2012.04.010]
[43]
Lee, I.Y.; Gruber, T.D.; Samuels, A.; Yun, M.; Nam, B.; Kang, M.; Crowley, K.; Winterroth, B.; Boshoff, H.I.; Barry, C.E., III Structure-activity relationships of antitubercular salicylanilides consistent with disruption of the proton gradient via proton shuttling. Bioorg. Med. Chem., 2013, 21(1), 114-126.
[http://dx.doi.org/10.1016/j.bmc.2012.10.056] [PMID: 23211970]
[44]
Khalil, K.D.; Al-Matar, H.M. Studies on 2-arylhydrazononitriles: Synthesis of 3-aryl-2-arylhydrazopropanenitriles and their utility as precursors to 2-substituted indoles, 2-substituted-1,2,3-triazoles, and 1-substituted pyrazolo[4,3-d]pyrimidines. Molecules, 2012, 17(10), 12225-12233.
[http://dx.doi.org/10.3390/molecules171012225] [PMID: 23079493]
[45]
Corre, L.L.; Tak-Tak, L.; Guillard, A.; Prestat, G.; Gravier-Pelletier, C.; Busca, P. Microwave-assisted preparation of 4-amino-3-cyano-5-methoxycarbonyl-N-arylpyrazoles as building blocks for the diversity-oriented synthesis of pyrazole-based polycyclic scaffolds. Org. Biomol. Chem., 2015, 13(2), 409-423.
[http://dx.doi.org/10.1039/C4OB01951B] [PMID: 25369050]
[46]
Migliara, O.; Spanò, V.; Parrino, B.; Ciancimino, C.; Diana, P. Synthesis of pyrazolo[4,3-c][1,2,6]benzothiadiazocine, a new ring system as potential COX inhibitor. ARKIVOC, 2012, 2012(2), 41-49.
[http://dx.doi.org/10.3998/ark.5550190.0013.205]
[47]
Butin, A.V.; Nevolina, T.A.; Shcherbinin, V.A.; Trushkov, I.V.; Cheshkov, D.A.; Krapivin, G.D. Furan ring opening-pyrrole ring closure: A new synthetic route to aryl(heteroaryl)-annulated pyrrolo[1,2-a][1,4]diazepines. Org. Biomol. Chem., 2010, 8(14), 3316-3327.
[http://dx.doi.org/10.1039/c002994g] [PMID: 20523958]
[48]
Cantini, N.; Khlebnikov, A.I.; Crocetti, L.; Schepetkin, I.A.; Floresta, G.; Guerrini, G.; Vergelli, C.; Bartolucci, G.; Quinn, M.T.; Giovannoni, M.P. Exploration of nitrogen heterocycle scaffolds for the development of potent human neutrophil elastase inhibitors. Bioorg. Med. Chem., 2021, 29, 115836.
[http://dx.doi.org/10.1016/j.bmc.2020.115836] [PMID: 33218895]
[49]
Ertl, P.; Altmann, E.; McKenna, J.M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem., 2020, 63(15), 8408-8418.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00754] [PMID: 32663408]
[50]
Alafeefy, A.M.; Isik, S.; Abdel-Aziz, H.A.; Ashour, A.E.; Vullo, D.; Al-Jaber, N.A.; Supuran, C.T. Carbonic anhydrase inhibitors: Benzenesulfonamides incorporating cyanoacrylamide moieties are low nanomolar/subnanomolar inhibitors of the tumor-associated isoforms IX and XII. Bioorg. Med. Chem., 2013, 21(6), 1396-1403.
[http://dx.doi.org/10.1016/j.bmc.2012.12.004] [PMID: 23290254]
[51]
Radwan, H.A.; Ahmad, I.; Othman, I.M.M.; Gad-Elkareem, M.A.M.; Patel, H.; Aouadi, K.; Snoussi, M.; Kadri, A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J. Mol. Struct., 2022, 1264, 133312.
[http://dx.doi.org/10.1016/j.molstruc.2022.133312]
[52]
Abdel-Latif, E.; Keshk, E.M.; Khalil, A.G.M.; Saeed, A.; Metwally, H.M. Synthesis, characterization, and anticancer activity (MCF‐7) of some acetanilide‐based heterocycles. J. Heterocycl. Chem., 2018, 55(10), 2334-2341.
[http://dx.doi.org/10.1002/jhet.3294]
[53]
Metwally, H.M.; Younis, N.M.; Abdel-Latif, E.; El-Rayyes, A. New thiazole, thiophene and 2-pyridone compounds incorporating dimethylaniline moiety: Synthesis, cytotoxicity, ADME and molecular docking studies. BMC Chem., 2024, 18(1), 52.
[http://dx.doi.org/10.1186/s13065-024-01136-z] [PMID: 38486282]
[54]
Reddy, P.N.; Padmaja, P.; Reddy, B.V.S.; Ugale, V.G. Arylidenemalononitriles as versatile synthons in heterocyclic synthesis. Curr. Org. Synth., 2022, 19(5), 591-615.
[http://dx.doi.org/10.2174/1385272826666220113100746] [PMID: 35023458]
[55]
Xue, T.; Ding, S.; Guo, B.; Chu, W.; Wang, H.; Yang, Y. Synthesis and structure-activity relationship studies of novel [6,6,5] tricyclic oxazolidinone derivatives as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2015, 25(10), 2203-2210.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.053] [PMID: 25838143]
[56]
Li, X.; Zhang, Y.K.; Plattner, J.J.; Mao, W.; Alley, M.R.K.; Xia, Y.; Hernandez, V.; Zhou, Y.; Ding, C.Z.; Li, J.; Shao, Z.; Zhang, H.; Xu, M. Synthesis and antibacterial evaluation of a novel tricyclic oxaborole-fused fluoroquinolone. Bioorg. Med. Chem. Lett., 2013, 23(4), 963-966.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.045] [PMID: 23312945]
[57]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[58]
Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model., 2014, 54(12), 3284-3301.
[http://dx.doi.org/10.1021/ci500467k] [PMID: 25382374]
[59]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[60]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[61]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 1-10.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[62]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[63]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[64]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[65]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[66]
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 2008, 3(3), 435-444.
[http://dx.doi.org/10.1002/cmdc.200700139] [PMID: 18064617]
[67]
Daina, A.; Zoete, V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[68]
Montanari, F.; Ecker, G.F. Prediction of drug-ABC-transporter interaction - Recent advances and future challenges. Adv. Drug Deliv. Rev., 2015, 86, 17-26.
[http://dx.doi.org/10.1016/j.addr.2015.03.001] [PMID: 25769815]
[69]
Szakács, G.; Váradi, A.; Özvegy-Laczka, C.; Sarkadi, B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov. Today, 2008, 13(9-10), 379-393.
[http://dx.doi.org/10.1016/j.drudis.2007.12.010] [PMID: 18468555]
[70]
Denison, M.S.; Whitlock, J.P. Jr Xenobiotic-inducible transcription of cytochrome P450 genes. J. Biol. Chem., 1995, 270(31), 18175-18178.
[http://dx.doi.org/10.1074/jbc.270.31.18175] [PMID: 7629130]
[71]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[72]
Desai, N.C.; Rupala, Y.M.; Khasiya, A.G.; Shah, K.N.; Pandit, U.P.; Khedkar, V.M. Synthesis, biological evaluation, and molecular docking study of thiophene‐, piperazine‐, and thiazolidinone‐based hybrids as potential antimicrobial agents. J. Heterocycl. Chem., 2022, 59(1), 75-87.
[http://dx.doi.org/10.1002/jhet.4366]
[73]
Lafitte, D.; Lamour, V.; Tsvetkov, P.O.; Makarov, A.A.; Klich, M.; Deprez, P.; Moras, D.; Briand, C.; Gilli, R. DNA gyrase interaction with coumarin-based inhibitors: The role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry, 2002, 41(23), 7217-7223.
[http://dx.doi.org/10.1021/bi0159837] [PMID: 12044152]
[74]
Ehmann, D.E.; Lahiri, S.D. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr. Opin. Pharmacol., 2014, 18, 76-83.
[http://dx.doi.org/10.1016/j.coph.2014.09.007] [PMID: 25271174]
[75]
Pommier, Y. Drugging topoisomerases: Lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95.
[http://dx.doi.org/10.1021/cb300648v] [PMID: 23259582]