Respiratory Complications in the Inborn Errors of Metabolism
  • * (Excluding Mailing and Handling)

Abstract

Inborn Errors of Metabolism (IEMs) are a large heterogeneous group of monogenic disorders that affect specific metabolic pathways. Although the clinical picture is variable and shows a multisystemic impairment, most of these defects encompass neurologic symptoms and signs. The respiratory involvement may represent a late-onset feature of a complex multisystemic disease or the only manifestation of an underlying IEM. The severity of the respiratory disease can range from mild aspecific symptoms, such as tachypnea and respiratory distress in response to metabolic acidosis, to severe conditions, such as respiratory failure and restrictive disease. This review aims to offer an overview of the principal IEMs with neurologic and respiratory involvement, highlighting the significance of early recognition and multidisciplinary management for optimal patient care.

[1]
Campistol Plana J. Epilepsies of metabolic origin in the neonate. Medicine 2019; 79(3): 20-4.
[2]
Waters D, Adeloye D, Woolham D, Wastnedge E, Patel S, Rudan I. Global birth prevalence and mortality from inborn errors of metabolism: A systematic analysis of the evidence. J Glob Health 2018; 8(2): 021102.
[http://dx.doi.org/10.7189/jogh.08.021102] [PMID: 30479748]
[3]
Ferreira CR, van Karnebeek CDM, Vockley J, Blau N. A proposed nosology of inborn errors of metabolism. Genet Med 2019; 21(1): 102-6.
[http://dx.doi.org/10.1038/s41436-018-0022-8] [PMID: 29884839]
[4]
García-Cazorla À, Saudubray JM. Cellular neurometabolism: A tentative to connect cell biology and metabolism in neurology. J Inherit Metab Dis 2018; 41(6): 1043-54.
[http://dx.doi.org/10.1007/s10545-018-0226-8] [PMID: 30014209]
[5]
Choudhry S, Khan M, Rao HA, Jalan A, Khan EA. Etiology and outcome of inborn errors of metabolism. J Pak Med Assoc 2013; 63(9): 1112-6.
[PMID: 24601187]
[6]
Hu WF, Chahrour MH, Walsh CA. The diverse genetic landscape of neurodevelopmental disorders. Annu Rev Genomics Hum Genet 2014; 15(1): 195-213.
[http://dx.doi.org/10.1146/annurev-genom-090413-025600] [PMID: 25184530]
[7]
Spoto G, Valentini G, Saia MC, et al. Synaptopathies in developmental and epileptic encephalopathies: A focus on pre-synaptic dysfunction. Front Neurol 2022; 13: 826211.
[http://dx.doi.org/10.3389/fneur.2022.826211] [PMID: 35350397]
[8]
Saudubray JM, Garcia-Cazorla A. An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders. Dialogues Clin Neurosci 2018; 20(4): 301-25.
[http://dx.doi.org/10.31887/DCNS.2018.20.4/jmsaudubray] [PMID: 30936770]
[9]
Spoto G, Saia MC, Amore G, et al. Neonatal seizures: An overview of genetic causes and treatment options. Brain Sci 2021; 11(10): 1295.
[http://dx.doi.org/10.3390/brainsci11101295] [PMID: 34679360]
[10]
Broomfield A, Kenth J, Bruce IA, Tan HL, Wilkinson S. Respiratory complications of metabolic disease in the paediatric population: A review of presentation, diagnosis and therapeutic options. Paediatr Respir Rev 2019; 32: 55-65.
[http://dx.doi.org/10.1016/j.prrv.2019.04.004] [PMID: 31101546]
[11]
Tran C, Barbey F, Lazor R, Bonafé L. Pulmonary involvement in adult patients with inborn errors of metabolism. Respiration 2017; 94(1): 2-13.
[http://dx.doi.org/10.1159/000475762]
[12]
Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol 2015; 77(1): 57-80.
[http://dx.doi.org/10.1146/annurev-physiol-021014-071649] [PMID: 25668017]
[13]
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13(2): e12836.
[http://dx.doi.org/10.15252/emmm.202012836] [PMID: 33459519]
[14]
Marques ARA, Saftig P. Lysosomal storage disorders – challenges, concepts and avenues for therapy: Beyond rare diseases. J Cell Sci 2019; 132(2): jcs221739.
[http://dx.doi.org/10.1242/jcs.221739] [PMID: 30651381]
[15]
Zhou J, Lin J, Leung WT, Wang L. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management. Intractable Rare Dis Res 2020; 9(1): 1-9.
[http://dx.doi.org/10.5582/irdr.2020.01011] [PMID: 32201668]
[16]
Shapiro eg, Eisengart JB. The natural history of neurocognition in MPS disorders: A review. Mol Genet Metab 2021; 133(1): 8-34.
[http://dx.doi.org/10.1016/j.ymgme.2021.03.002] [PMID: 33741271]
[17]
Levy PA. Inborn errors of metabolism: Part 1: Overview. Pediatr Rev 2009; 30(4): 131-8.
[http://dx.doi.org/10.1542/pir.30.4.131] [PMID: 19339386]
[18]
Bruni S, Lavery C, Broomfield A. The diagnostic journey of patients with mucopolysaccharidosis I: A real-world survey of patient and physician experiences. Mol Genet Metab Rep 2016; 8: 67-73.
[http://dx.doi.org/10.1016/j.ymgmr.2016.07.006] [PMID: 27536552]
[19]
Shih SL, Lee YJ, Lin SP, Sheu CY, Blickman JG. Airway changes in children with mucopolysaccharidoses. CT evaluation. Acta Radiol 2002; 43(1): 40-3.
[http://dx.doi.org/10.1034/j.1600-0455.2002.430108.x] [PMID: 11972460]
[20]
Clarke LA, Giugliani R, Guffon N, et al. Genotype-phenotype relationships in mucopolysaccharidosis type I (MPS I): Insights from the International MPS I Registry. Clin Genet 2019; 96(4): 281-9.
[http://dx.doi.org/10.1111/cge.13583] [PMID: 31194252]
[21]
Wasserstein MP, Orsini JJ, Goldenberg A, et al. The future of newborn screening for lysosomal disorders. Neurosci Lett 2021; 760: 136080.
[http://dx.doi.org/10.1016/j.neulet.2021.136080] [PMID: 34166724]
[22]
Michaud M, Belmatoug N, Catros F, et al. Mucopolysaccharidoses: When to think about it? Rev Med Interne 2020; 41(3): 180-8.
[http://dx.doi.org/10.1016/j.revmed.2019.11.010]
[23]
Zapolnik P, Pyrkosz A. Gene therapy for mucopolysaccharidosis type II—A review of the current possibilities. Int J Mol Sci 2021; 22(11): 5490.
[http://dx.doi.org/10.3390/ijms22115490] [PMID: 34070997]
[24]
Seker Yilmaz B, Davison J, Jones SA, Baruteau J. Novel therapies for mucopolysaccharidosis type III. J Inherit Metab Dis 2021; 44(1): 129-47.
[http://dx.doi.org/10.1002/jimd.12316] [PMID: 32944950]
[25]
Arn P, Bruce IA, Wraith JE, Travers H, Fallet S. Airway-related symptoms and surgeries in patients with mucopolysaccharidosis I. Ann Otol Rhinol Laryngol 2015; 124(3): 198-205.
[http://dx.doi.org/10.1177/0003489414550154] [PMID: 25214650]
[26]
Sandhoff K. Metabolic and cellular bases of sphingolipidoses. Biochem Soc Trans 2013; 41(6): 1562-8.
[http://dx.doi.org/10.1042/BST20130083] [PMID: 24256255]
[27]
Rosenbloom BE, Weinreb NJ. Gaucher disease: A comprehensive review. Crit Rev Oncog 2013; 18(3): 163-75.
[http://dx.doi.org/10.1615/CritRevOncog.2013006060] [PMID: 23510062]
[28]
Ferreira CR, Gahl WA. Lysosomal storage diseases. Transl Sci Rare Dis 2017; 2(1-2): 1-71.
[http://dx.doi.org/10.3233/TRD-160005] [PMID: 29152458]
[29]
Vanier MT. Niemann–Pick diseases. Handb Clin Neurol 2013; 113: 1717-21.
[http://dx.doi.org/10.1016/B978-0-444-59565-2.00041-1] [PMID: 23622394]
[30]
Minai OA, Sullivan EJ, Stoller JK. Pulmonary involvement in Niemann–Pick disease: Case report and literature review. Respir Med 2000; 94(12): 1241-51.
[http://dx.doi.org/10.1053/rmed.2000.0942] [PMID: 11192962]
[31]
Roszell BR, Tao JQ, Yu KJ, Huang S, Bates SR. Characterization of the Niemann-Pick C pathway in alveolar type II cells and lamellar bodies of the lung. Am J Physiol Lung Cell Mol Physiol 2012; 302(9): L919-32.
[http://dx.doi.org/10.1152/ajplung.00383.2011] [PMID: 22367786]
[32]
Jo DS, Cho DH. Peroxisomal dysfunction in neurodegenerative diseases. Arch Pharm Res 2019; 42(5): 393-406.
[http://dx.doi.org/10.1007/s12272-019-01131-2] [PMID: 30739266]
[33]
Waterham HR, Ferdinandusse S, Wanders RJA. Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta Mol Cell Res 2016; 1863(5): 922-33.
[http://dx.doi.org/10.1016/j.bbamcr.2015.11.015] [PMID: 26611709]
[34]
Klouwer FCC, Berendse K, Ferdinandusse S, Wanders RJA, Engelen M, Poll-The BT. Zellweger spectrum disorders: Clinical overview and management approach. Orphanet J Rare Dis 2015; 10(1): 151.
[http://dx.doi.org/10.1186/s13023-015-0368-9] [PMID: 26627182]
[35]
Tinnion RJ, Davidson N, Moran P, Wright M, Harigopal S. Rhizomelic chondrodysplasia punctata: A classic ‘spot’ diagnosis. BMJ Case Rep 2011; 2011: bcr0120113747.
[http://dx.doi.org/10.1136/bcr.01.2011.3747] [PMID: 22692643]
[36]
White AL, Modaff P, Holland-Morris F, Pauli RM. Natural history of rhizomelic chondrodysplasia punctata. Am J Med Genet A 2003; 118A(4): 332-42.
[http://dx.doi.org/10.1002/ajmg.a.20009] [PMID: 12687664]
[37]
Purdue PE, Skoneczny M, Yang X, Zhang JW, Lazarow PB. Rhizomelic chondrodysplasia punctata, a peroxisomal biogenesis disorder caused by defects in Pex7p, a peroxisomal protein import receptor: A minireview. Neurochem Res 1999; 24(4): 581-6.
[http://dx.doi.org/10.1023/A:1023957110171] [PMID: 10227689]
[38]
Karabayır N, Keskindemirci G, Adal E, Korkmaz O. A case of rhizomelic chondrodysplasia punctata in newborn. Case Rep Med 2014; 2014: 1-3.
[http://dx.doi.org/10.1155/2014/879679] [PMID: 24715923]
[39]
Irving MD, Chitty LS, Mansour S, Hall CM. Chondrodysplasia punctata: A clinical diagnostic and radiological review. Clin Dysmorphol 2008; 17(4): 229-41.
[http://dx.doi.org/10.1097/MCD.0b013e3282fdcc70] [PMID: 18978650]
[40]
Abousamra O, Kandula V, Duker AL, Rogers KJ, Bober MB, Mackenzie WG. Cervical spine deformities in children with rhizomelic chondrodysplasia punctata. J Pediatr Orthop 2019; 39(9): e680-6.
[http://dx.doi.org/10.1097/BPO.0000000000001014] [PMID: 31503224]
[41]
Gerami R, Barkhordari S. Antenatal ultrasonographic diagnosis of rhizomelic chondrodysplasia punctata. J Ultrasound 2022; 26(2): 539-42. Advance online publication
[http://dx.doi.org/10.1007/s40477-022-00737-5] [PMID: 36315400]
[42]
Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822(9): 1442-52.
[http://dx.doi.org/10.1016/j.bbadis.2012.05.008] [PMID: 22627108]
[43]
Oswald G, Lawson C, Raymond G, Golden WC, Braverman N. Rhizomelic chondrodysplasia punctata type I and fulminant neonatal respiratory failure, a case report and discussion of pathophysiology. Am J Med Genet A 2011; 155(12): 3160-3.
[http://dx.doi.org/10.1002/ajmg.a.34331] [PMID: 22052861]
[44]
Fiumara A, Barone R, Del Campo G, Striano P, Jaeken J. Electroclinical features of early-onset epileptic encephalopathies in congenital disorders of glycosylation (CDGs). JIMD Rep 2015; 27: 93-9.
[http://dx.doi.org/10.1007/8904_2015_497] [PMID: 26453362]
[45]
Nicotera AG, Spoto G, Calì F, et al. A novel homozygous mutation in a patient with CDG type Ig: New report of a case with a mild phenotype. Mol Syndromol 2021; 12(5): 327-32.
[http://dx.doi.org/10.1159/000516606] [PMID: 34602961]
[46]
Silver G, Bahl S, Cordeiro D, Thakral A, Athey T, Mercimek-Andrews S. Prevalence of congenital disorders of glycosylation in childhood epilepsy and effects of anti-epileptic drugs on the transferrin isoelectric focusing test. Genes 2021; 12(8): 1227.
[http://dx.doi.org/10.3390/genes12081227] [PMID: 34440401]
[47]
Francisco R, Marques-da-Silva D, Brasil S, et al. The challenge of CDG diagnosis. Mol Genet Metab 2019; 126(1): 1-5.
[http://dx.doi.org/10.1016/j.ymgme.2018.11.003] [PMID: 30454869]
[48]
Bogdańska A, Lipiński P, Szymańska-Rożek P, et al. Clinical, biochemical and molecular phenotype of congenital disorders of glycosylation: Long-term follow-up. Orphanet J Rare Dis 2021; 16(1): 17.
[http://dx.doi.org/10.1186/s13023-020-01657-5] [PMID: 33407696]
[49]
Saudubray JM, Sedel F, Walter JH. Clinical approach to treatable inborn metabolic diseases: An introduction. J Inherit Metab Dis 2006; 29(2-3): 261-74.
[http://dx.doi.org/10.1007/s10545-006-0358-0] [PMID: 16763886]
[50]
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 2021; 22(22): 12504.
[http://dx.doi.org/10.3390/ijms222212504] [PMID: 34830385]
[51]
Van Vliet D, Derks TGJ, van Rijn M, et al. Single amino acid supplementation in aminoacidopathies: A systematic review. Orphanet J Rare Dis 2014; 9(1): 7.
[http://dx.doi.org/10.1186/1750-1172-9-7] [PMID: 24422943]
[52]
Ferreira CR, Van Karnebeek CDM. Inborn errors of metabolism. Handb Clin Neurol 2019; 162: 449-81.
[http://dx.doi.org/10.1016/B978-0-444-64029-1.00022-9] [PMID: 31324325]
[53]
Van Hove JLK, Coughlin C II, Swanson M, Hennermann JB. Nonketotic hyperglycinemia. GeneReviews. Seattle (WA): University of Washington, Seattle 2002; pp. 1993-2023.
[54]
Bhumika S, Basalingappa KM, Gopenath TS, Basavaraju S. Glycine encephalopathy. Egypt J Neurol Psychiat Neurosurg 2022; 58(1): 132.
[http://dx.doi.org/10.1186/s41983-022-00567-6] [PMID: 36415754]
[55]
Panayiotou E, Spike K, Morley C, Belteki G. Ventilator respiratory graphic diagnosis of hiccupping in non-ketotic hyperglycinaemia. BMJ Case Rep 2017; 2017: bcr-2017-220267.
[http://dx.doi.org/10.1136/bcr-2017-220267] [PMID: 28794088]
[56]
Çataltepe S, Van Marter LJ, Kozakewich H, Wessel DL, Lee PJ, Levy HL. Pulmonary hypertension associated with nonketotic hyperglycinaemia. J Inherit Metab Dis 2000; 23(2): 137-44.
[http://dx.doi.org/10.1023/A:1005613715351] [PMID: 10801055]
[57]
Stone WL, Basit H, Jaishankar GB. Urea cycle disorders. StatPearls . Treasure Island (FL): StatPearls Publishing 2023.
[58]
Summar ML, Mew NA. Inborn errors of metabolism with hyperammonemia. Pediatr Clin North Am 2018; 65(2): 231-46.
[http://dx.doi.org/10.1016/j.pcl.2017.11.004] [PMID: 29502911]
[59]
Barmore W, Azad F, Stone WL. Physiology, urea cycle. StatPearls . Treasure Island (FL): StatPearls Publishing 2023.
[60]
Smith W, Kishnani PS, Lee B, et al. Urea cycle disorders: Clinical presentation outside the newborn period. Crit Care Clin 2005; 21(4) (Suppl.): S9-S17.
[http://dx.doi.org/10.1016/j.ccc.2005.05.007] [PMID: 16227115]
[61]
Endo F, Matsuura T, Yanagita K, Matsuda I. Clinical manifestations of inborn errors of the urea cycle and related metabolic disorders during childhood. J Nutr 2004; 134(6 Suppl): 1605S-9S.
[http://dx.doi.org/10.1093/jn/134.6.1605S]
[62]
Takanashi J, Barkovich AJ, Cheng SF, et al. Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 2003; 24(6): 1184-7.
[PMID: 12812952]
[63]
Häberle J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders. Arch Biochem Biophys 2013; 536(2): 101-8.
[http://dx.doi.org/10.1016/j.abb.2013.04.009] [PMID: 23628343]
[64]
Sebastio G, Sperandeo MP, Andria G. Lysinuric protein intolerance: Reviewing concepts on a multisystem disease. Am J Med Genet C Semin Med Genet 2011; 157(1): 54-62.
[http://dx.doi.org/10.1002/ajmg.c.30287] [PMID: 21308987]
[65]
Hemmati F, Barzegar H. Persistent pulmonary hypertension of the newborn due to methylmalonic acidemia: A case report and review of the literature. J Med Case Reports 2023; 17(1): 288.
[http://dx.doi.org/10.1186/s13256-023-04031-8] [PMID: 37430309]
[66]
Scott D, Clinton Frazee C III, Garg U. Screening of organic acidurias by gas chromatography–mass spectrometry (GC–MS). Methods Mol Biol 2022; 2546: 321-33.
[http://dx.doi.org/10.1007/978-1-0716-2565-1_29] [PMID: 36127601]
[67]
Ogier de Baulny H, Saudubray J M. Branched-chain organic acidurias. Semin Neonatol 2002; 7(1): 65-74.
[http://dx.doi.org/10.1053/siny.2001.0087]
[68]
Wajner M. Neurological manifestations of organic acidurias. Nat Rev Neurol 2019; 15(5): 253-71.
[http://dx.doi.org/10.1038/s41582-019-0161-9] [PMID: 30914790]
[69]
Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Adam MP, Ardinger HH, Pagon RA, Eds. GeneReviews®. Seattle: University of Washington 2021.https://www.ncbi.nlm.nih.gov/books/NBK1319/
[70]
Reddy P. Preventing vitamin B6-related neurotoxicity. Am J Ther 2022; 29(6): e637-43.
[http://dx.doi.org/10.1097/MJT.0000000000001460]
[71]
Wang HS, Kuo MF. Vitamin B6 related epilepsy during childhood. Chang Gung Med J 2007; 30(5): 396-401.
[PMID: 18062169]
[72]
Kaur R, Paria P, Saini AG, Suthar R, Bhatia V, Attri SV. Metabolic epilepsy in hyperprolinemia type II due to a novel nonsense ALDH4A1 gene variant. Metab Brain Dis 2021; 36(6): 1413-7.
[http://dx.doi.org/10.1007/s11011-021-00757-w] [PMID: 34037900]
[73]
Di Rosa G, Nicotera AG, Lenzo P, Spanò M, Tortorella G. Long-term neuropsychiatric follow-up in hyperprolinemia type I. Psychiatr Genet 2014; 24(4): 172-5.
[http://dx.doi.org/10.1097/YPG.0000000000000037] [PMID: 24842239]
[74]
Namavar Y, Duineveld DJ, Both GIA, et al. Psychiatric phenotypes associated with hyperprolinemia: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2021; 186(5): 289-317.
[http://dx.doi.org/10.1002/ajmg.b.32869] [PMID: 34302426]
[75]
Flynn MP, Martin MC, Moore PT, Stafford JA, Fleming GA, Phang JM. Type II hyperprolinaemia in a pedigree of Irish travellers (nomads). Arch Dis Child 1989; 64(12): 1699-707.
[http://dx.doi.org/10.1136/adc.64.12.1699] [PMID: 2624476]
[76]
Guilmatre A, Legallic S, Steel G, et al. Type I hyperprolinemia: Genotype/phenotype correlations. Hum Mutat 2010; 31(8): 961-5.
[http://dx.doi.org/10.1002/humu.21296] [PMID: 20524212]
[77]
Di Rosa G, Pustorino G, Spano M, et al. Type I hyperprolinemia and proline dehydrogenase (PRODH) mutations in four Italian children with epilepsy and mental retardation. Psychiatr Genet 2008; 18(1): 40-2.
[http://dx.doi.org/10.1097/YPG.0b013e3282f08a3d] [PMID: 18197084]
[78]
Stockler S, Plecko B, Gospe SM Jr, et al. Pyridoxine dependent epilepsy and antiquitin deficiency. Mol Genet Metab 2011; 104(1-2): 48-60.
[http://dx.doi.org/10.1016/j.ymgme.2011.05.014] [PMID: 21704546]
[79]
Crowther LM, Mathis D, Poms M, Plecko B. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. J Inherit Metab Dis 2019; 42(4): 620-8.
[http://dx.doi.org/10.1002/jimd.12076] [PMID: 30767241]
[80]
Kaminiów K, Pająk M, Pająk R, Paprocka J. Pyridoxine-dependent epilepsy and antiquitin deficiency resulting in neonatal-onset refractory seizures. Brain Sci 2021; 12(1): 65.
[http://dx.doi.org/10.3390/brainsci12010065] [PMID: 35053812]
[81]
Amore G, Butera A, Spoto G, et al. KCNQ2-related neonatal epilepsy treated with vitamin B6: A report of two cases and literature review. Front Neurol 2022; 13: 826225.
[http://dx.doi.org/10.3389/fneur.2022.826225] [PMID: 35401395]
[82]
Mills PB, Footitt EJ, Mills KA, et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 2010; 133(7): 2148-59.
[http://dx.doi.org/10.1093/brain/awq143] [PMID: 20554659]
[83]
Van Karnebeek CDM, Stockler-Ipsiroglu S, Jaggumantri S, et al. Lysine-restricted diet as adjunct therapy for pyridoxine-dependent epilepsy: The PDE consortium consensus recommendations. JIMD Rep 2014; 15: 1-11.
[http://dx.doi.org/10.1007/8904_2014_296] [PMID: 24748525]
[84]
Whyte MP. Hypophosphatasia: An overview for 2017. Bone 2017; 102: 15-25.
[http://dx.doi.org/10.1016/j.bone.2017.02.011] [PMID: 28238808]
[85]
Baumgartner-Sigl S, Haberlandt E, Mumm S, et al. Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 2007; 40(6): 1655-61.
[http://dx.doi.org/10.1016/j.bone.2007.01.020] [PMID: 17395561]
[86]
Whyte MP, Zhang F, Wenkert D, et al. Hypophosphatasia: Vitamin B6 status of affected children and adults. Bone 2022; 154: 116204.
[http://dx.doi.org/10.1016/j.bone.2021.116204] [PMID: 34547524]
[87]
Wilson MP, Plecko B, Mills PB, Clayton PT. Disorders affecting vitamin B 6 metabolism. J Inherit Metab Dis 2019; 42(4): 629-46.
[http://dx.doi.org/10.1002/jimd.12060] [PMID: 30671974]
[88]
Bianchi ML, Vai S. Alkaline phosphatase replacement therapy. Adv Exp Med Biol 2019; 1148: 201-32.
[http://dx.doi.org/10.1007/978-981-13-7709-9_10] [PMID: 31482501]
[89]
Koohmanaee S, Zarkesh M, Tabrizi M, Hassanzadeh Rad A, Divshali S, Dalili S. Biotinidase deficiency in newborns as respiratory distress and tachypnea: A case report. Iran J Child Neurol 2015; 9(2): 58-60.
[PMID: 26221165]
[90]
Mock DM. Biotin Present Knowledge in Nutrition . John Wiley & Sons 2017; pp. 541-9.
[91]
Ala-Leppilampi K, Ojala T, Makitie O, Lipsanen-Nyman M. Biotinidase deficiency and biotin-responsive disorders. J Pediatr Biochem 2019; 9(3): 95-101.
[92]
Zempleni J, Hassan YI, Wijeratne SS. Biotin: from nutrition to therapeutics. J Nutr 2019; 149(9): 1546S-55S.
[93]
Sedel F, Bernard D, Mock DM, Tourbah A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 2016; 110(Pt B): 644-53.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.028]
[94]
Said HM, Seetheram S. Biotin: biochemical, physiological and clinical aspects. Subcell Biochem 2018; 90: 377-99.
[http://dx.doi.org/10.1007/978-3-319-98179-4_13] [PMID: 22116691]
[95]
Wolf B. Biotinidase deficiency. GeneReviews®. Seattle (WA): University of Washington, Seattle. 2000; pp. 1993-2023.
[96]
Grange DK, Kaler SG, Albers GM, Petterchak JA, Thorpe CM, DeMello DE. Severe bilateral panlobular emphysema and pulmonary arterial hypoplasia: Unusual manifestations of Menkes disease. Am J Med Genet A 2005; 139A(2): 151-5.
[http://dx.doi.org/10.1002/ajmg.a.31001] [PMID: 16278898]
[97]
Peltonen L, Kuivaniemi H, Palotie A, Horn N, Kaitila I, Kivirikko KI. Alterations in copper and collagen metabolism in Menkes’ syndrome and a new subtype of Ehlers-Danlos syndrome. Biochemistry 1983; 22(26): 6156-63.
[http://dx.doi.org/10.1021/bi00295a018] [PMID: 6140952]
[98]
Møller L, Lenartowicz M, Zabot MT, et al. Clinical expression of Menkes disease in females with normal karyotype. Orphanet J Rare Dis 2012; 7(1): 6.
[http://dx.doi.org/10.1186/1750-1172-7-6] [PMID: 22264391]
[99]
Vairo FP, Chwal BC, Perini S, Ferreira MAP, De Freitas Lopes AC, Saute JAM. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol Genet Metab 2019; 126(1): 6-13.
[http://dx.doi.org/10.1016/j.ymgme.2018.12.005] [PMID: 30594472]
[100]
Prasad AN, Levin S, Rupar CA, Prasad C. Menkes disease and infantile epilepsy. Brain Dev 2011; 33(10): 866-76.
[http://dx.doi.org/10.1016/j.braindev.2011.08.002] [PMID: 21924848]
[101]
Sarkar B, Lingertat-Walsh K, Clarke JTR. Copper-histidine therapy for Menkes disease. J Pediatr 1993; 123(5): 828-30.
[http://dx.doi.org/10.1016/S0022-3476(05)80870-4] [PMID: 8229500]
[102]
Mellis AT, Roeper J, Misko AL, Kohl J, Schwarz G. Sulfite alters the mitochondrial network in molybdenum cofactor deficiency. Front Genet 2021; 11: 594828.
[http://dx.doi.org/10.3389/fgene.2020.594828] [PMID: 33488670]
[103]
Hobson EE, Thomas S, Crofton PM, Murray AD, Dean JCS, Lloyd D. Isolated sulphite oxidase deficiency mimics the features of hypoxic ischemic encephalopathy. Eur J Pediatr 2005; 164(11): 655-9.
[http://dx.doi.org/10.1007/s00431-005-1729-5] [PMID: 16025295]
[104]
Spiegel R, Schwahn BC, Squires L, Confer N. Molybdenum cofactor deficiency: A natural history. J Inherit Metab Dis 2022; 45(3): 456-69.
[http://dx.doi.org/10.1002/jimd.12488] [PMID: 35192225]
[105]
Johannes L, Fu CY, Schwarz G. Molybdenum cofactor deficiency in humans. Molecules 2022; 27(20): 6896.
[http://dx.doi.org/10.3390/molecules27206896] [PMID: 36296488]
[106]
Lai LM, Gropman AL, Whitehead MT. MR neuroimaging in pediatric inborn errors of metabolism. Diagnostics 2022; 12(4): 861.
[http://dx.doi.org/10.3390/diagnostics12040861] [PMID: 35453911]
[107]
Misko A, Mahtani K, Abbott J, Schwarz G, Atwal P. Molybdenum cofactor deficiency. GeneReviews®. Seattle (WA): University of Washington, Seattle 2021; pp. 1993-2023.
[108]
Ng YS, Turnbull DM. Mitochondrial disease: Genetics and management. J Neurol 2016; 263(1): 179-91.
[http://dx.doi.org/10.1007/s00415-015-7884-3] [PMID: 26315846]
[109]
Ju Wang JD, Chen M, Zhang C, Parker J, Saneto R, Ramirez JM. Sleep and breathing disturbances in children with leigh syndrome: A comparative study. Pediatr Neurol 2022; 136: 56-63.
[http://dx.doi.org/10.1016/j.pediatrneurol.2022.08.006] [PMID: 36137349]
[110]
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The genetics of sleep disorders in children: A narrative review. Brain Sci 2021; 11(10): 1259.
[http://dx.doi.org/10.3390/brainsci11101259] [PMID: 34679324]
[111]
Thorburn DR, Rahman J, Rahman S. Mitochondrial DNA-associated leigh syndrome and NARP. GeneReviews®. University of Washington, Seattle. 2003.
[112]
Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh syndrome. J Neuropathol Exp Neurol 2015; 74(6): 482-92.
[http://dx.doi.org/10.1097/NEN.0000000000000195] [PMID: 25978847]
[113]
Chen L, Cui Y, Jiang D, et al. Management of leigh syndrome: Current status and new insights. Clin Genet 2018; 93(6): 1131-40.
[http://dx.doi.org/10.1111/cge.13139] [PMID: 28905387]
[114]
Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: Basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 2008; 1142(1): 133-58.
[http://dx.doi.org/10.1196/annals.1444.011] [PMID: 18990125]
[115]
El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 2015; 116(1-2): 4-12.
[http://dx.doi.org/10.1016/j.ymgme.2015.06.004] [PMID: 26095523]
[116]
Malhotra K, Liebeskind DS. Imaging of MELAS. Curr Pain Headache Rep 2016; 20(9): 54.
[http://dx.doi.org/10.1007/s11916-016-0583-7] [PMID: 27477183]
[117]
Kerr DS. Treatment of mitochondrial electron transport chain disorders: A review of clinical trials over the past decade. Mol Genet Metab 2010; 99(3): 246-55.
[http://dx.doi.org/10.1016/j.ymgme.2009.11.005] [PMID: 20060349]