New Aspects in the Mechanism of Action of 3-Hydroxy-3-Methylglutaryl- COA Reductase (HMG-COA reductase): Cyclic Lactones - Potential Inhibitors of the Enzyme (Review)
  • * (Excluding Mailing and Handling)

Abstract

The aim is to systematize data from literature sources on the study of changes in the activity of HMGR enzymes and lipid metabolism under the influence of cyclic lactones, identify among them new potential inhibitors of HMGR and formulate hypotheses about the details of the mechanism of action of the enzyme in relation to the product - mevalonolactone.

[1]
Riyad, P.; Purohit, A.; Sen, K.; Panwar, A.; Ram, H. HMG – CoA reductase inhibition mediated hypocholesterolemic potential of myricetin and quercetin: in-silico and in-vivo studies. CYTA J. Food, 2023, 21(1), 115-125.
[http://dx.doi.org/10.1080/19476337.2022.2162976]
[2]
Zhou, Y.; Tashiro, J.; Kamatani, S. HMG-CoA reductase degrader, SR-12813, counteracts statin-induced upregulation of HMG-CoA reductase and augments the anticancer effect of atorvastatin. Biochem. Biophys. Res. Commun., 2023, 677, 13-19.
[http://dx.doi.org/10.1016/j.bbrc.2023.07.056] [PMID: 37541087]
[3]
Pak, V.V.; Kim, S.H.; Koo, M.; Lee, N.; Shakhidoyatov, K.M.; Kwon, D.Y. Peptide design of a competitive inhibitor for HMG-CoA reductase based on statin structure. Biopolymers, 2006, 84(6), 586-594.
[http://dx.doi.org/10.1002/bip.20580] [PMID: 16886212]
[4]
Samizo, S.; Kaneko, H. Predictive Modeling of HMG-CoA Reductase Inhibitory Activity and Design of New HMG-CoA Reductase Inhibitors. ACS Omega, 2023, 8(30), 27247-27255.
[http://dx.doi.org/10.1021/acsomega.3c02567] [PMID: 37546661]
[5]
Marahatha, R; Basnet, S; Bhattarai, B R Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis. BMC compl med therap, 2021, 21(1), 1.
[http://dx.doi.org/10.1186/s12906-020-03162-5]
[6]
Bose, S.; Steussy, C.N.; López-Pérez, D. Targeting Enterococcus faecalis HMG-CoA reductase with a non-statin inhibitor. Commun. Biol., 2023, 6(1), 360.
[http://dx.doi.org/10.1038/s42003-023-04639-y] [PMID: 37012403]
[7]
Ojha, S.; Islam, B.; Charu, C.; Adem, A.; Aburawi, E. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking. Drug Des. Devel. Ther., 2015, 9, 4943-4951.
[http://dx.doi.org/10.2147/DDDT.S86705] [PMID: 26357462]
[8]
Suganya, S.; Nandagopal, B.; Anbarasu, A. Natural inhibitors of HMG-CoA reductase—An in silico approach through molecular docking and simulation studies. J. Cell. Biochem., 2017, 118(1), 52-57.
[http://dx.doi.org/10.1002/jcb.25608] [PMID: 27216569]
[9]
Jaitrong, M.; Boonsri, P.; Samosorn, S. Molecular docking studies of berberine derivative as novel multitarget pcsk9 and hmgcr inhibitors. Science Essence Journal, 2021, 37(1), 124-142.
[10]
García, I.; Fall, Y.; Gómez, G. Review of synthesis, biological assay, and QSAR studies of HMGR inhibitors. Curr. Top. Med. Chem., 2012, 12(8), 895-919.
[http://dx.doi.org/10.2174/156802612800166729] [PMID: 22352916]
[11]
Abu Mellal, A.; Hussain, N.; Said, A. The clinical significance of statins-macrolides interaction: comprehensive review of in vivo studies, case reports, and population studies. Ther. Clin. Risk Manag., 2019, 15, 921-936.
[http://dx.doi.org/10.2147/TCRM.S214938] [PMID: 31413581]
[12]
Gallego-Colon, E.; Daum, A.; Yosefy, C. Statins and PCSK9 inhibitors: A new lipid-lowering therapy. Eur. J. Pharmacol., 2020, 878173114.
[http://dx.doi.org/10.1016/j.ejphar.2020.173114] [PMID: 32302598]
[13]
Park, M.S.; Youn, J.C.; Kim, E.J. Efficacy and safety of fenofibrate-statin combination therapy in patients with inadequately controlled triglyceride levels despite previous statin monotherapy: A Multicenter, Randomized, double-blind, Phase IV study. Clin. Ther., 2021, 43(10), 1735-1747.
[http://dx.doi.org/10.1016/j.clinthera.2021.08.005] [PMID: 34518033]
[14]
Engell, A.E.; Svendsen, A.L.O.; Lind, B.S. Drug-drug interaction between warfarin and statins: A Danish cohort study. Br. J. Clin. Pharmacol., 2021, 87(2), 694-699.
[http://dx.doi.org/10.1111/bcp.14428] [PMID: 32533893]
[15]
Ruszkowski, P.; Masajtis-Zagajewska, A.; Nowicki, M. Effects of combined statin and ACE inhibitor therapy on endothelial function and blood pressure in essential hypertension - a randomised double-blind, placebo controlled crossover study. J. Renin Angiotensin Aldosterone Syst., 2019, 20(3)
[http://dx.doi.org/10.1177/1470320319868890] [PMID: 31486700]
[16]
Koh, K.K.; Sakuma, I.; Shimada, K.; Hayashi, T.; Quon, M.J. Combining potent statin therapy with other drugs to optimize simultaneous cardiovascular and metabolic benefits while minimizing adverse events. Korean Circ. J., 2017, 47(4), 432-439.
[http://dx.doi.org/10.4070/kcj.2016.0406] [PMID: 28765731]
[17]
Masana, L.; Ibarretxe, D.; Plana, N. Reasons Why Combination Therapy should be the new standard of care to achieve the LDL-cholesterol targets. Curr. Cardiol. Rep., 2020, 22(8), 66.
[http://dx.doi.org/10.1007/s11886-020-01326-w] [PMID: 32562015]
[18]
Chung, S.; Ko, Y.G.; Kim, J.S. Effect of FIXed-dose combination of ARb and statin on adherence and risk factor control: The randomized FIXAR study. Cardiol. J., 2022, 29(5), 815-823.
[http://dx.doi.org/10.5603/CJ.a2020.0167] [PMID: 33346375]
[19]
Almalki, H.H.; Alshibani, T.M.; Alhifany, A.A.; Almohammed, O.A. Comparative efficacy of statins, metformin, spironolactone and combined oral contraceptives in reducing testosterone levels in women with polycystic ovary syndrome: a network meta-analysis of randomized clinical trials. BMC Womens Health, 2020, 20(1), 68.
[http://dx.doi.org/10.1186/s12905-020-00919-5] [PMID: 32248801]
[20]
Rhee, M.Y.; Kim, C.H.; Ahn, Y. Efficacy and safety of nebivolol and rosuvastatin combination treatment in patients with concomitant hypertension and hyperlipidemia. Drug Des. Devel. Ther., 2020, 14, 5005-5017.
[http://dx.doi.org/10.2147/DDDT.S280055] [PMID: 33235439]
[21]
Vögeli, B.; Shima, S.; Erb, T.J.; Wagner, T. Crystal structure of archaeal HMG -CoA reductase: insights into structural changes of the C-terminal helix of the class-I enzyme. FEBS Lett., 2019, 593(5), 543-553.
[http://dx.doi.org/10.1002/1873-3468.13331] [PMID: 30702149]
[22]
Lin, F.; Das, D.; Lin, X.N.; Marsh, E.N.G. Aldehyde-forming fatty acyl-C o A reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme. FEBS J., 2013, 280(19), 4773-4781.
[http://dx.doi.org/10.1111/febs.12443] [PMID: 23895371]
[23]
Haines, B.E.; Wiest, O.; Stauffacher, C.V. The increasingly complex mechanism of HMG-CoA reductase. Acc. Chem. Res., 2013, 46(11), 2416-2426.
[http://dx.doi.org/10.1021/ar3003267] [PMID: 23898905]
[24]
Gesto, D.S.; Pereira, C.M.S.; Cerqueira, N.M.F.S.; Sousa, S.F. An atomic-level perspective of HMG-CoA-reductase: The target enzyme to treat hypercholesterolemia. Molecules, 2020, 25(17), 3891.
[http://dx.doi.org/10.3390/molecules25173891] [PMID: 32859023]
[25]
Mushkabarov, N.N. Moscow - Flinta: Monograph. Publisher 2020.Metabolism: structural-chemical and thermodynamic analysis: in 3 vol. Moscow - Flinta: Monograph. Publisher, 2020.
[26]
Yogev, Y.; Shorer, Z.; Koifman, A. Limb girdle muscular disease caused by HMGCR mutation and statin myopathy treatable with mevalonolactone. Proc. Natl. Acad. Sci. USA, 2023, 120(7), e2217831120.
[http://dx.doi.org/10.1073/pnas.2217831120] [PMID: 36745799]
[27]
Gómez-Bombarelli, R.; Calle, E.; Casado, J. Mechanisms of lactone hydrolysis in acidic conditions. J. Org. Chem., 2013, 78(14), 6880-6889.
[http://dx.doi.org/10.1021/jo4002596] [PMID: 23731203]
[28]
Fatoki, T.H. Effect of pH on structural dynamics of HMG-CoA reductase and binding affinity to β-sitosterol. J. Biomol. Struct. Dyn., 2023, 41(10), 4398-4404.
[http://dx.doi.org/10.1080/07391102.2022.2067240] [PMID: 35470784]
[29]
Houten, S.M.; Schneiders, M.S.; Wanders, R.J.A.; Waterham, H.R. Regulation of isoprenoid/cholesterol biosynthesis in cells from mevalonate kinase-deficient patients. J. Biol. Chem., 2003, 278(8), 5736-5743.
[http://dx.doi.org/10.1074/jbc.M206564200] [PMID: 12477733]
[30]
McClory, J.; Lin, J.T.; Timson, D.J.; Zhang, J.; Huang, M. Catalytic mechanism of mevalonate kinase revisited, a QM/MM study. Org. Biomol. Chem., 2019, 17(9), 2423-2431.
[http://dx.doi.org/10.1039/C8OB03197E] [PMID: 30735219]
[31]
Edwards, P.A.; Lan, S.F.; Tanaka, R.D.; Fogelman, A.M. Mevalonolactone inhibits the rate of synthesis and enhances the rate of degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat hepatocytes. J. Biol. Chem., 1983, 258(12), 7272-7275.
[http://dx.doi.org/10.1016/S0021-9258(18)32171-9] [PMID: 6863245]
[32]
Chen, T.; Gao, Y.; Zhang, S.; Wang, Y.; Sui, C.; Yang, L. Methylmalonic acidemia: Neurodevelopment and neuroimaging. Front. Neurosci., 2023, 171110942.
[http://dx.doi.org/10.3389/fnins.2023.1110942] [PMID: 36777632]
[33]
Zhou, X.; Cui, Y.; Han, J. Methylmalonic acidemia: Current status and research priorities. Intractable Rare Dis. Res., 2018, 7(2), 73-78.
[http://dx.doi.org/10.5582/irdr.2018.01026] [PMID: 29862147]
[34]
Goedeke, L.; Canfrán-Duque, A.; Rotllan, N. MMAB promotes negative feedback control of cholesterol homeostasis. Nat. Commun., 2021, 12(1), 6448.
[http://dx.doi.org/10.1038/s41467-021-26787-7] [PMID: 34750386]
[35]
German, C.A.; Liao, J.K. Understanding the molecular mechanisms of statin pleiotropic effects. Arch. Toxicol., 2023, 97(6), 1529-1545.
[http://dx.doi.org/10.1007/s00204-023-03492-6] [PMID: 37084080]
[36]
Lee, Y.J.; Hong, S.J.; Kang, W.C. Rosuvastatin versus atorvastatin treatment in adults with coronary artery disease: secondary analysis of the randomised LODESTAR trial. BMJ, 2023, 383, e075837.
[http://dx.doi.org/10.1136/bmj-2023-075837] [PMID: 37852649]
[37]
Adams, S.P.; Alaeiilkhchi, N.; Tasnim, S.; Wright, J.M. Pravastatin for lowering lipids. Cochrane Libr., 2020, 9(9), CD013673.
[http://dx.doi.org/10.1002/14651858.CD013673] [PMID: 37721222]
[38]
Adams, S.P.; Tiellet, N.; Alaeiilkhchi, N.; Wright, J.M. Cerivastatin for lowering lipids. Cochrane Libr., 2020, 1(1), CD012501.
[http://dx.doi.org/10.1002/14651858.CD012501.pub2] [PMID: 31981471]
[39]
Pinal-Fernandez, I.; Casal-Dominguez, M.; Mammen, A.L. Statins: pros and cons. Med. Clin. (Barc.), 2018, 150(10), 398-402.
[http://dx.doi.org/10.1016/j.medcli.2017.11.030] [PMID: 29292104]
[40]
Preta, G. Role of Lactone and Acid Forms in the Pleiotropic Effects of Statins. Pharmaceutics, 2022, 14(9), 1899.
[http://dx.doi.org/10.3390/pharmaceutics14091899] [PMID: 36145647]
[41]
Yin, W.; Alwabli, R.I.; Attwa, M.W.; Rahman, A.F.M.M.; Kadi, A.A. Simvastatin: In vitro metabolic profiling of a potent competitive HMG-CoA reductase inhibitor. Separations, 2022, 9(12), 400.
[http://dx.doi.org/10.3390/separations9120400]
[42]
Balasubramanian, R.; Maideen, N.M.P. HMG-CoA reductase inhibitors (Statins) and their drug interactions involving CYP enzymes, P-glycoprotein and OATP transporters-an overview. Curr. Drug Metab., 2021, 22(5), 328-341.
[http://dx.doi.org/10.2174/18755453MTEz9MzEj5] [PMID: 33459228]
[43]
Yee, J.; Kim, H.; Heo, Y.; Yoon, H.Y.; Song, G.; Gwak, H.S. Association between CYP3A5 polymorphism and statin-induced adverse events: A systemic review and meta-analysis. J. Pers. Med., 2021, 11(7), 677.
[http://dx.doi.org/10.3390/jpm11070677] [PMID: 34357144]
[44]
Zheng, E; Madura, P; Grandos, J When the same treatment has different response: The role of pharmacogenomics in statin therapy. Biomed pharmacoth, 2024, 170, 115966.
[http://dx.doi.org/10.1016/j.biopha.2023.115966]
[45]
Yow, H Y; Hamzah, S; Abdul Rahim, N; Suppiah, V. Pharmacogenomics of response to statin treatment and susceptibility to statin-induced adverse drug reactions in Asians: a scoping review. As biomed, 2023, 17(3), 95-114.
[http://dx.doi.org/10.2478/abm-2023-0050]
[46]
Neuvonen, P.J.; Backman, J.T.; Niemi, M. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin. Pharmacokinet., 2008, 47(7), 463-474.
[http://dx.doi.org/10.2165/00003088-200847070-00003] [PMID: 18563955]
[47]
Park, J.E.; Kim, K.B.; Bae, S.K.; Moon, B.S.; Liu, K.H.; Shin, J.G. Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica, 2008, 38(9), 1240-1251.
[http://dx.doi.org/10.1080/00498250802334391] [PMID: 18720283]
[48]
Gorabi, A.M.; Kiaie, N.; Hajighasemi, S. Statin-induced nitric oxide signaling: mechanisms and therapeutic implications. J. Clin. Med., 2019, 8(12), 2051.
[http://dx.doi.org/10.3390/jcm8122051] [PMID: 31766595]
[49]
Tennakoon, M.; Kankanamge, D.; Senarath, K.; Fasih, Z.; Karunarathne, A. Statins perturb G βγ signaling and cell behavior in a G γ subtype dependent manner. Mol. Pharmacol., 2019, 95(4), 361-375.
[http://dx.doi.org/10.1124/mol.118.114710] [PMID: 30765461]
[50]
Nenna, A.; Nappi, F.; Lusini, M. Effect of statins on platelet activation and function: from molecular pathways to clinical effects. BioMed Res. Int., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6661847] [PMID: 33564680]
[51]
Sikora, J.; Kostka, B.; Marczyk, I.; Krajewska, U.; Chałubiński, M.; Broncel, M. Effect of statins on platelet function in patients with hyperlipidemia. Arch. Med. Sci., 2013, 4(4), 622-628.
[http://dx.doi.org/10.5114/aoms.2013.36905] [PMID: 24049520]
[52]
Safitri, N.; Alaina, M.F.; Pitaloka, D.A.E.; Abdulah, R. A narrative review of statin-induced rhabdomyolysis: molecular mechanism, risk factors, and management. Drug Healthc. Patient Saf., 2021, 13, 211-219.
[http://dx.doi.org/10.2147/DHPS.S333738] [PMID: 34795533]
[53]
Dohlmann, T.L.; Kuhlman, A.B.; Morville, T. Coenzyme Q10 supplementation in statin treated patients: A double-blinded randomized placebo-controlled trial. Antioxidants, 2022, 11(9), 1698.
[http://dx.doi.org/10.3390/antiox11091698] [PMID: 36139772]
[54]
Coenzyme, Q. 10 and statin-related myopathy. Drug Ther. Bull., 2015, 53(5), 54-56.
[http://dx.doi.org/10.1136/dtb.2015.5.0325]
[55]
Ezad, S.; Cheema, H.; Collins, N. Statin-induced rhabdomyolysis: a complication of a commonly overlooked drug interaction. Oxf. Med. Case Rep., 2018, 2018(3), omx104.
[http://dx.doi.org/10.1093/omcr/omx104] [PMID: 29593874]
[56]
Chen, C.W.; Leimer, N.; Syroegin, E.A. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A. Nat. Commun., 2023, 14(1), 4196.
[http://dx.doi.org/10.1038/s41467-023-39653-5] [PMID: 37452045]
[57]
Miklasińska-Majdanik, M. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics (Basel), 2021, 10(11), 1406.
[http://dx.doi.org/10.3390/antibiotics10111406] [PMID: 34827344]
[58]
Fyfe, C.; Grossman, T.H.; Kerstein, K.; Sutcliffe, J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb. Perspect. Med., 2016, 6(10), a025395.
[http://dx.doi.org/10.1101/cshperspect.a025395] [PMID: 27527699]
[59]
Desjardins, M.; Delgaty, K.L.; Ramotar, K.; Seetaram, C.; Toye, B. Prevalence and mechanisms of erythromycin resistance in group A and group B Streptococcus: implications for reporting susceptibility results. J. Clin. Microbiol., 2004, 42(12), 5620-5623.
[http://dx.doi.org/10.1128/JCM.42.12.5620-5623.2004] [PMID: 15583291]
[60]
Chiou, C.S.; Hong, Y.P.; Wang, Y.W. Antimicrobial resistance and mechanisms of azithromycin resistance in nontyphoidal salmonella isolates in Taiwan, 2017 to 2018. Microbiol. Spectr., 2023, 11(1), e03364-e22.
[http://dx.doi.org/10.1128/spectrum.03364-22] [PMID: 36688703]
[61]
Heidary, M.; Ebrahimi Samangani, A.; Kargari, A. Mechanism of action, resistance, synergism, and clinical implications of azithromycin. J. Clin. Lab. Anal., 2022, 36(6), e24427.
[http://dx.doi.org/10.1002/jcla.24427] [PMID: 35447019]
[62]
Reygaert, W C An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482]
[63]
Maslub, M.G.; Radwan, M.A.; Daud, N.A.A.; Sha’aban, A. Association between CYP3A4/CYP3A5 genetic polymorphisms and treatment outcomes of atorvastatin worldwide: is there enough research on the Egyptian population? Eur. J. Med. Res., 2023, 28(1), 381.
[http://dx.doi.org/10.1186/s40001-023-01038-1] [PMID: 37759317]
[64]
Hennessy, E.; Adams, C.; Reen, F.J.; O’Gara, F. Is there potential for repurposing statins as novel antimicrobials? Antimicrob. Agents Chemother., 2016, 60(9), 5111-5121.
[http://dx.doi.org/10.1128/AAC.00192-16] [PMID: 27324773]
[65]
Wei, Z.; Li, T.; Gu, Y. Design, synthesis, and biological evaluation of N-acyl-homoserine lactone analogs of quorum sensing in Pseudomonas aeruginosa. Front Chem., 2022, 10948687.
[http://dx.doi.org/10.3389/fchem.2022.948687] [PMID: 35873042]
[66]
Hennessy, E.; Mooij, M.J.; Legendre, C. Statins inhibit in vitro virulence phenotypes of Pseudomonas aeruginosa. J. Antibiot. (Tokyo), 2013, 66(2), 99-101.
[http://dx.doi.org/10.1038/ja.2012.95] [PMID: 23149514]
[67]
Zhang, Y.; Chen, Z.; Wen, Q. An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin. Food Funct., 2020, 11(7), 5738-5748.
[http://dx.doi.org/10.1039/D0FO00691B] [PMID: 32555902]
[68]
El-Tantawy, W.H. Biochemical effects, hypolipidemic and anti-inflammatory activities of Artemisia vulgaris extract in hypercholesterolemic rats. J. Clin. Biochem. Nutr., 2015, 57(1), 33-38.
[http://dx.doi.org/10.3164/jcbn.14-141] [PMID: 26236098]
[69]
Konovalov, D.A.; Shevchuk, O.M.; Logvinenko, L.A.; Khamilo, A.A. Biologically active compounds of annual wormwood. Sesquiterpene lactones. Pharmacy & Pharmacology, 2016, 4(5), 4-35.
[http://dx.doi.org/10.19163/2307-9266-2016-4-5-4-35]
[70]
El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses. Life, 2022, 12(4), 479.
[http://dx.doi.org/10.3390/life12040479] [PMID: 35454969]
[71]
Ayoobi, F.; Shamsizadeh, A.; Fatemi, I. Bio-effectiveness of the main flavonoids of Achillea millefolium in the pathophysiology of neurodegenerative disorders- a review. Iran. J. Basic Med. Sci., 2017, 20(6), 604-612.
[http://dx.doi.org/10.22038/IJBMS.2017.8827] [PMID: 28868116]
[72]
Villalva, M.; Silvan, J.M.; Alarcón-Cavero, T. Antioxidant, anti-inflammatory, and antibacterial properties of an Achillea millefolium L. extract and its fractions obtained by supercritical anti-solvent fractionation against Helicobacter pylori. Antioxidants, 2022, 11(10), 1849.
[http://dx.doi.org/10.3390/antiox11101849] [PMID: 36290572]
[73]
Rolnik, A.; Olas, B. The plants of the Asteraceae family as agents in the protection of human health. Int. J. Mol. Sci., 2021, 22(6), 3009.
[http://dx.doi.org/10.3390/ijms22063009] [PMID: 33809449]
[74]
Soković, M.; Skaltsa, H.; Ferreira, I.C.F.R. Editorial: Bioactive phytochemicals in asteraceae: Structure, function, and biological activity. Front Plant Sci, 2019, 10, 1464.
[http://dx.doi.org/10.3389/fpls.2019.01464] [PMID: 31798612]
[75]
Ozalp, L.; Danış, Ö.; Yuce-Dursun, B.; Demir, S.; Gündüz, C.; Ogan, A. Investigation of HMG-CoA reductase inhibitory and antioxidant effects of various hydroxycoumarin derivatives. Arch Pharm, 2020, 353(10), 1900378.
[http://dx.doi.org/10.1002/ardp.201900378] [PMID: 32648617]
[76]
Ahmed, M.G.; Mehmood, M.H.; Mehdi, S.; Farrukh, M. Caryopteris odorata and its metabolite coumarin attenuate characteristic features of cardiometabolic syndrome in high-refined carbohydrate-high fat-cholesterol-loaded feed-fed diet rats. Front. Pharmacol., 2023, 141097407.
[http://dx.doi.org/10.3389/fphar.2023.1097407] [PMID: 37033655]
[77]
Agrawal, S.; Heiss, M.S.; Fenter, R.B. Impact of CYP2C9-interacting drugs on warfarin pharmacogenomics. Clin. Transl. Sci., 2020, 13(5), 941-949.
[http://dx.doi.org/10.1111/cts.12781] [PMID: 32270628]
[78]
Foroozesh, M.; Sridhar, J.; Goyal, N.; Liu, J. Coumarins and P450s, studies reported to-date. Molecules, 2019, 24(8), 1620.
[http://dx.doi.org/10.3390/molecules24081620] [PMID: 31022888]
[79]
Li, J; Wang, S; Barone, J; Malone, B. Warfarin pharmacogenomics. peer-rev j formul management, 2009, 34(8), 422-7.
[80]
Guasch, L.; Peach, M.L.; Nicklaus, M.C. Tautomerism of warfarin: combined chemoinformatics, quantum chemical, and NMR investigation. J. Org. Chem., 2015, 80(20), 9900-9909.
[http://dx.doi.org/10.1021/acs.joc.5b01370] [PMID: 26372257]
[81]
Soliemanabad, S K; Rasouli, K; Zakariaei, Z; Soleymani, M; Aliabadi, P K Rhabdomyolysis due to warfarin and atorvastatin combination therapy in a patient with ischemic heart disease: (A drug interaction). Annal med surg, 2022, 75, 103384.
[http://dx.doi.org/10.1016/j.amsu.2022.103384]
[82]
Azmi, M.B.; Khan, F.; Asif, U. In silico characterization of Withania coagulans bioactive compounds as potential inhibitors of hydroxymethylglutaryl (HMG-CoA) reductase of Mus musculus. ACS Omega, 2023, 8(5), 5057-5071.
[http://dx.doi.org/10.1021/acsomega.2c07893] [PMID: 36777558]
[83]
Flores-Morales, V.; Villasana-Ruíz, A.P.; Garza-Veloz, I.; González-Delgado, S.; Martinez-Fierro, M.L. Therapeutic effects of coumarins with different substitution patterns. Molecules, 2023, 28(5), 2413.
[http://dx.doi.org/10.3390/molecules28052413] [PMID: 36903660]
[84]
Harwood, H.J., Jr; Greene, Y.J.; Stacpoole, P.W. Inhibition of human leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by ascorbic acid. An effect mediated by the free radical monodehydroascorbate. J. Biol. Chem., 1986, 261(16), 7127-7135.
[http://dx.doi.org/10.1016/S0021-9258(17)38365-5] [PMID: 3711081]
[85]
Ainembabazi, D.; Zhang, Y.; Turchi, J.J. The mechanistic role of cardiac glycosides in DNA damage response and repair signalling. Cellular and molecular life sciences. Cell. Mol. Life Sci., 2023, 80(9), 250.
[http://dx.doi.org/10.1007/s00018-023-04910-9] [PMID: 37584722]
[86]
Pak, V.V.; Koo, M.; Kwon, D.Y.; Yun, L. Design of a highly potent inhibitory peptide acting as a competitive inhibitor of HMG-CoA reductase. Amino Acids, 2012, 43(5), 2015-2025.
[http://dx.doi.org/10.1007/s00726-012-1276-0] [PMID: 22451276]
[87]
Andrade-Pavón, D.; Gómez-García, O.; Villa-Tanaca, L. Molecular recognition of citroflavonoids naringin and naringenin at the active site of the HMG-CoA reductase and DNA topoisomerase Type II Enzymes of Candida spp. and Ustilago maydis. Indian J. Microbiol., 2022, 62(1), 79-87.
[http://dx.doi.org/10.1007/s12088-021-00980-0] [PMID: 35068607]
[88]
Sung, J.H.; Choi, S.J.; Lee, S.W.; Park, K.H.; Moon, T.W. Isoflavones found in Korean soybean paste as 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitors. Biosci. Biotechnol. Biochem., 2004, 68(5), 1051-1058.
[http://dx.doi.org/10.1271/bbb.68.1051] [PMID: 15170109]
[89]
Leopoldini, M.; Malaj, N.; Toscano, M.; Sindona, G.; Russo, N. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme. J. Agric. Food Chem., 2010, 58(19), 10768-10773.
[http://dx.doi.org/10.1021/jf102576j] [PMID: 20843083]
[90]
Srivastava, S.; Sonkar, R.; Mishra, S.K. Antidyslipidemic and antioxidant effects of novel Lupeol-derived chalcones. Lipids, 2013, 48(10), 1017-1027.
[http://dx.doi.org/10.1007/s11745-013-3824-0] [PMID: 23943005]
[91]
Sun, P.; Zhao, L.; Zhang, N. Bioactivity of dietary polyphenols: the role in LDL-C lowering. Foods, 2021, 10(11), 2666.
[http://dx.doi.org/10.3390/foods10112666] [PMID: 34828946]
[92]
Burse, A.; Frick, S.; Schmidt, A. Implication of HMGR in homeostasis of sequestered and de novo produced precursors of the iridoid biosynthesis in leaf beetle larvae. Insect Biochem. Mol. Biol., 2008, 38(1), 76-88.
[http://dx.doi.org/10.1016/j.ibmb.2007.09.006] [PMID: 18070667]
[93]
Dhyani, P.; Sati, P.; Sharma, E. Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies. Cancer Cell Int., 2022, 22(1), 305.
[http://dx.doi.org/10.1186/s12935-022-02721-9] [PMID: 36207736]
[94]
Paço, A.; Brás, T.; Santos, J.O.; Sampaio, P.; Gomes, A.C.; Duarte, M.F. Anti-inflammatory and immunoregulatory action of sesquiterpene lactones. Molecules, 2022, 27(3), 1142.
[http://dx.doi.org/10.3390/molecules27031142] [PMID: 35164406]
[95]
Mazur, M.; Masłowiec, D. Antimicrobial activity of lactones. Antibiotics, 2022, 11(10), 1327.
[http://dx.doi.org/10.3390/antibiotics11101327] [PMID: 36289985]