Current Medicinal Chemistry

Author(s): Anwesha Kanungo, Chandana Mohanty and Sarbari Acharya*

DOI: 10.2174/0109298673300897240602130258

DownloadDownload PDF Flyer Cite As
Smart Cancer Nanomedicine for Synergetic Therapy

Page: [286 - 300] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Cancer is the second leading cause of death. Notwithstanding endeavors to comprehend tumor causes and therapeutic modalities, no noteworthy advancements in cancer therapy have been identified. Nanomedicine has drawn interest for its diagnostic potential because of its ability to deliver therapeutic agents specifically to tumors with little adverse effects. Nanomedicines have become prevalent in the treatment of cancer. Here, we present four strategic suggestions for improvement in the functionality and use of nanomedicine. (1) Smart drug selection is a prerequisite for both medicinal and commercial achievement. Allocating resources to the advancement of modular (pro)drugs and nanocarrier design ought to consider the role of opportunistic decisions depending on drug availability. (2) Stimuli-responsive nanomedicine for cancer therapy is being designed to release medications at particular locations precisely. (3) The cornerstone of clinical cancer treatment is combination therapy. Nanomedicines should be included more frequently in multimodal combination therapy regimens since they complement pharmacological and physical co-treatments. (4) Regulation by the immune system is transforming cancer therapy. Nanomedicines can improve the effectiveness of the immune system and control the behavior of anticancer immunity. These four approaches, both separately and particularly in combination, will accelerate and promote the creation of effective cancer nanomedicine treatments.

Keywords: Synergetic therapy, smart cancer nanomedicine, stimuli-responsive, combination therapy, immune system, cancer, chemotherapeutic drugs.

[1]
Ma, X.; Li, X.; Shi, J.; Yao, M.; Zhang, X.; Hou, R.; Shao, N.; Luo, Q.; Gao, Y.; Du, S.; Liang, X.; Wang, F. Host–guest polypyrrole nanocomplex for three-stimuli-responsive drug delivery and imaging-guided chemo-photothermal synergetic therapy of refractory thyroid cancer. Adv. Healthc. Mater., 2019, 8(17), 1900661.
[http://dx.doi.org/10.1002/adhm.201900661] [PMID: 31389191]
[2]
Giri, P.M.; Banerjee, A.; Layek, B. A recent review on cancer nanomedicine. Cancers (Basel), 2023, 15(8), 2256.
[http://dx.doi.org/10.3390/cancers15082256] [PMID: 37190185]
[3]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[4]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[5]
Björnmalm, M.; Thurecht, K.J.; Michael, M.; Scott, A.M.; Caruso, F. Bridging bio–nano science and cancer nanomedicine. ACS Nano, 2017, 11(10), 9594-9613.
[http://dx.doi.org/10.1021/acsnano.7b04855] [PMID: 28926225]
[6]
van der Meel, R.; Lammers, T.; Hennink, W.E. Cancer nanomedicines: Oversold or underappreciated? Expert Opin. Drug Deliv., 2017, 14(1), 1-5.
[http://dx.doi.org/10.1080/17425247.2017.1262346] [PMID: 27852113]
[7]
Anchordoquy, T.J.; Barenholz, Y.; Boraschi, D.; Chorny, M.; Decuzzi, P.; Dobrovolskaia, M.A.; Farhangrazi, Z.S.; Farrell, D.; Gabizon, A.; Ghandehari, H.; Godin, B.; La-Beck, N.M.; Ljubimova, J.; Moghimi, S.M.; Pagliaro, L.; Park, J.H.; Peer, D.; Ruoslahti, E.; Serkova, N.J.; Simberg, D. Mechanisms and barriers in cancer nanomedicine: Addressing challenges, looking for solutions. ACS Nano, 2017, 11(1), 12-18.
[http://dx.doi.org/10.1021/acsnano.6b08244] [PMID: 28068099]
[8]
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[9]
Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov., 2014, 13(11), 813-827.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[10]
LaVan, D.A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol., 2003, 21(10), 1184-1191.
[http://dx.doi.org/10.1038/nbt876] [PMID: 14520404]
[11]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[12]
Elsabahy, M.; Heo, G.S.; Lim, S.M.; Sun, G.; Wooley, K.L. Polymeric nanostructures for imaging and therapy. Chem. Rev., 2015, 115(19), 10967-11011.
[http://dx.doi.org/10.1021/acs.chemrev.5b00135] [PMID: 26463640]
[13]
Elsabahy, M.; Wooley, K.L. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly. Acc. Chem. Res., 2015, 48(6), 1620-1630.
[http://dx.doi.org/10.1021/acs.accounts.5b00066] [PMID: 26011318]
[14]
Samarajeewa, S.; Shrestha, R.; Elsabahy, M.; Karwa, A.; Li, A.; Zentay, R.P.; Kostelc, J.G.; Dorshow, R.B.; Wooley, K.L. In vitro efficacy of paclitaxel-loaded dual-responsive shell cross-linked polymer nanoparticles having orthogonally degradable disulfide cross-linked corona and polyester core domains. Mol. Pharm., 2013, 10(3), 1092-1099.
[http://dx.doi.org/10.1021/mp3005897] [PMID: 23421959]
[15]
Yu, G.; Yang, Z.; Fu, X.; Yung, B.C.; Yang, J.; Mao, Z.; Shao, L.; Hua, B.; Liu, Y.; Zhang, F.; Fan, Q.; Wang, S.; Jacobson, O.; Jin, A.; Gao, C.; Tang, X.; Huang, F.; Chen, X. Polyrotaxane-based supramolecular theranostics. Nat. Commun., 2018, 9(1), 766.
[http://dx.doi.org/10.1038/s41467-018-03119-w] [PMID: 29472567]
[16]
Mukherjee, B.; Patra, B.; Layek, B.; Mukherjee, A. Sustained release of acyclovir from nano-liposomes and nano-niosomes: An in vitro study. Int. J. Nanomedicine, 2007, 2(2), 213-225.
[PMID: 17722549]
[17]
Moosavian, S.A.; Bianconi, V.; Pirro, M.; Sahebkar, A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin. Cancer Biol., 2021, 69, 337-348.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.025] [PMID: 31585213]
[18]
Yang, S.; Shim, M.K.; Song, S.; Cho, H.; Choi, J.; Jeon, S.I.; Kim, W.J.; Um, W.; Park, J.H.; Yoon, H.Y.; Kim, K. Liposome-mediated PD-L1 multivalent binding promotes the lysosomal degradation of PD-L1 for T cell-mediated antitumor immunity. Biomaterials, 2022, 290, 121841.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121841] [PMID: 36206664]
[19]
Layek, B.; Gidwani, B.; Tiwari, S.; Joshi, V.; Jain, V.; Vyas, A. Recent advances in lipid-based nanodrug delivery systems in cancer therapy. Curr. Pharm. Des., 2020, 26(27), 3218-3233.
[http://dx.doi.org/10.2174/1381612826666200622133407] [PMID: 32568015]
[20]
Liu, P.; Chen, G.; Zhang, J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules, 2022, 27(4), 1372.
[http://dx.doi.org/10.3390/molecules27041372] [PMID: 35209162]
[21]
Taléns-Visconti, R.; Díez-Sales, O.; de Julián-Ortiz, J.V.; Nácher, A. Nanoliposomes in cancer therapy: Marketed products and current clinical trials. Int. J. Mol. Sci., 2022, 23(8), 4249.
[http://dx.doi.org/10.3390/ijms23084249] [PMID: 35457065]
[22]
Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res., 1994, 54(4), 987-992.
[PMID: 8313389]
[23]
Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol., 2021, 12, 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[24]
Layek, B.; Mandal, S. Natural polysaccharides for controlled delivery of oral therapeutics: A recent update. Carbohydr. Polym., 2020, 230, 115617.
[http://dx.doi.org/10.1016/j.carbpol.2019.115617] [PMID: 31887888]
[25]
Pagels, R.F.; Prud’homme, R.K. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J. Control. Release, 2015, 219, 519-535.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.001] [PMID: 26359125]
[26]
Markwalter, C. E.; Pagels, R. F.; Wilson, B. K.; Ristroph, K. D.; Prud'homme, R. K. Flash nanoprecipitation for the encapsulation of hydrophobic and hydrophilic compounds in polymeric nanoparticles. J. Vis. Exp, 2019, 143, 58757.
[27]
Sánchez, A.; Mejía, S.P.; Orozco, J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules, 2020, 25(16), 3760.
[http://dx.doi.org/10.3390/molecules25163760] [PMID: 32824757]
[28]
Liyanage, P.Y.; Hettiarachchi, S.D.; Zhou, Y.; Ouhtit, A.; Seven, E.S.; Oztan, C.Y.; Celik, E.; Leblanc, R.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 419-433.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.006] [PMID: 31034927]
[29]
Al-Nemrawi, N.K.; Altawabeyeh, R.M.; Darweesh, R.S. Preparation and characterization of Docetaxel-PLGA nanoparticles coated with folic acid-chitosan conjugate for cancer treatment. J. Pharm. Sci., 2022, 111(2), 485-494.
[http://dx.doi.org/10.1016/j.xphs.2021.10.034] [PMID: 34728172]
[30]
Wang, J.; Li, S.; Han, Y.; Guan, J.; Chung, S.; Wang, C.; Li, D. Poly(Ethylene Glycol)-polylactide micelles for cancer therapy. Front. Pharmacol., 2018, 9, 202.
[http://dx.doi.org/10.3389/fphar.2018.00202] [PMID: 29662450]
[31]
Dirisala, A.; Osada, K.; Chen, Q.; Tockary, T.A.; Machitani, K.; Osawa, S.; Liu, X.; Ishii, T.; Miyata, K.; Oba, M.; Uchida, S.; Itaka, K.; Kataoka, K. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors. Biomaterials, 2014, 35(20), 5359-5368.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.037] [PMID: 24720877]
[32]
Chen, P.; Yang, W.; Hong, T.; Miyazaki, T.; Dirisala, A.; Kataoka, K.; Cabral, H. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor- targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC. Biomaterials, 2022, 288, 121748.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121748] [PMID: 36038419]
[33]
Abdelbaky, S.B.; Ibrahim, M.T.; Samy, H.; Mohamed, M.; Mohamed, H.; Mustafa, M.; Abdelaziz, M.M.; Forrest, M.L.; Khalil, I.A. Cancer immunotherapy from biology to nanomedicine. J. Control. Release, 2021, 336, 410-432.
[http://dx.doi.org/10.1016/j.jconrel.2021.06.025] [PMID: 34171445]
[34]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[35]
Szebeni, J.; Simberg, D.; González-Fernández, Á.; Barenholz, Y.; Dobrovolskaia, M.A. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat. Nanotechnol., 2018, 13(12), 1100-1108.
[http://dx.doi.org/10.1038/s41565-018-0273-1] [PMID: 30348955]
[36]
Qi, R.; Wang, Y.; Bruno, P.M.; Xiao, H.; Yu, Y.; Li, T.; Lauffer, S.; Wei, W.; Chen, Q.; Kang, X.; Song, H.; Yang, X.; Huang, X.; Detappe, A.; Matulonis, U.; Pepin, D.; Hemann, M.T.; Birrer, M.J.; Ghoroghchian, P.P. Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nat. Commun., 2017, 8(1), 2166.
[http://dx.doi.org/10.1038/s41467-017-02390-7] [PMID: 29255160]
[37]
Ashton, S.; Song, Y.H.; Nolan, J.; Cadogan, E.; Murray, J.; Odedra, R.; Foster, J.; Hall, P.A.; Low, S.; Taylor, P.; Ellston, R.; Polanska, U.M.; Wilson, J.; Howes, C.; Smith, A.; Goodwin, R.J.A.; Swales, J.G.; Strittmatter, N.; Takáts, Z.; Nilsson, A.; Andren, P.; Trueman, D.; Walker, M.; Reimer, C.L.; Troiano, G.; Parsons, D.; De Witt, D.; Ashford, M.; Hrkach, J.; Zale, S.; Jewsbury, P.J.; Barry, S.T. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci. Transl. Med., 2016, 8(325), 325ra17.
[http://dx.doi.org/10.1126/scitranslmed.aad2355] [PMID: 26865565]
[38]
Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science, 2018, 359(6382), 1355-1360.
[http://dx.doi.org/10.1126/science.aar7112] [PMID: 29567706]
[39]
Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[40]
Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; Grunwitz, C.; Vormehr, M.; Hüsemann, Y.; Selmi, A.; Kuhn, A.N.; Buck, J.; Derhovanessian, E.; Rae, R.; Attig, S.; Diekmann, J.; Jabulowsky, R.A.; Heesch, S.; Hassel, J.; Langguth, P.; Grabbe, S.; Huber, C.; Türeci, Ö.; Sahin, U. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016, 534(7607), 396-401.
[http://dx.doi.org/10.1038/nature18300] [PMID: 27281205]
[41]
Kreiter, S.; Vormehr, M.; van de Roemer, N.; Diken, M.; Löwer, M.; Diekmann, J.; Boegel, S.; Schrörs, B.; Vascotto, F.; Castle, J.C.; Tadmor, A.D.; Schoenberger, S.P.; Huber, C.; Türeci, Ö.; Sahin, U. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature, 2015, 520(7549), 692-696.
[http://dx.doi.org/10.1038/nature14426] [PMID: 25901682]
[42]
Oberli, M.A.; Reichmuth, A.M.; Dorkin, J.R.; Mitchell, M.J.; Fenton, O.S.; Jaklenec, A.; Anderson, D.G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett., 2017, 17(3), 1326-1335.
[http://dx.doi.org/10.1021/acs.nanolett.6b03329] [PMID: 28273716]
[43]
Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; Omokoko, T.; Vormehr, M.; Albrecht, C.; Paruzynski, A.; Kuhn, A.N.; Buck, J.; Heesch, S.; Schreeb, K.H.; Müller, F.; Ortseifer, I.; Vogler, I.; Godehardt, E.; Attig, S.; Rae, R.; Breitkreuz, A.; Tolliver, C.; Suchan, M.; Martic, G.; Hohberger, A.; Sorn, P.; Diekmann, J.; Ciesla, J.; Waksmann, O.; Brück, A.K.; Witt, M.; Zillgen, M.; Rothermel, A.; Kasemann, B.; Langer, D.; Bolte, S.; Diken, M.; Kreiter, S.; Nemecek, R.; Gebhardt, C.; Grabbe, S.; Höller, C.; Utikal, J.; Huber, C.; Loquai, C.; Türeci, Ö. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662), 222-226.
[http://dx.doi.org/10.1038/nature23003] [PMID: 28678784]
[44]
Hrkach, J.; Von Hoff, D.; Ali, M.M.; Andrianova, E.; Auer, J.; Campbell, T.; De Witt, D.; Figa, M.; Figueiredo, M.; Horhota, A.; Low, S.; McDonnell, K.; Peeke, E.; Retnarajan, B.; Sabnis, A.; Schnipper, E.; Song, J.J.; Song, Y.H.; Summa, J.; Tompsett, D.; Troiano, G.; Van Geen Hoven, T.; Wright, J.; LoRusso, P.; Kantoff, P.W.; Bander, N.H.; Sweeney, C.; Farokhzad, O.C.; Langer, R.; Zale, S. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med., 2012, 4(128), 128ra39.
[http://dx.doi.org/10.1126/scitranslmed.3003651] [PMID: 22491949]
[45]
Yaari, Z.; da Silva, D.; Zinger, A.; Goldman, E.; Kajal, A.; Tshuva, R.; Barak, E.; Dahan, N.; Hershkovitz, D.; Goldfeder, M.; Roitman, J.S.; Schroeder, A. Theranostic barcoded nanoparticles for personalized cancer medicine. Nat. Commun., 2016, 7(1), 13325.
[http://dx.doi.org/10.1038/ncomms13325] [PMID: 27830705]
[46]
Ning, S.; Suo, M.; Huang, Q.; Gao, S.; Qiao, K.; Lyu, M.; Huang, Q.; Zhang, T.; Tang, B.Z. Biomimetic fusion liposomes boosting antitumor immunity and promote memory T cell differentiation to inhibit postoperative recurrence of breast cancer. Nano Today, 2024, 54, 102106.
[http://dx.doi.org/10.1016/j.nantod.2023.102106]
[47]
Pan, Y.; Suo, M.; Huang, Q.; Lyu, M.; Jiang, Y.; Wang, S.; Tang, W.; Ning, S.; Zhang, T. Near-infrared laser-activated aggregation-induced emission nanoparticles boost tumor carbonyl stress and immunotherapy of breast cancer. Aggregate, 2024, 5(2), e432.
[http://dx.doi.org/10.1002/agt2.432]
[48]
Ning, S.; Zhang, X.; Suo, M.; Lyu, M.; Pan, Y.; Jiang, Y.; Yang, H.; Yip Lam, J.W.; Zhang, T.; Pan, L.; Tang, B.Z. Platelet-derived exosomes hybrid liposomes facilitate uninterrupted singlet oxygen generation to enhance breast cancer immunotherapy. Cell Rep. Phys. Sci., 2023, 4(7), 101505.
[http://dx.doi.org/10.1016/j.xcrp.2023.101505]
[49]
Lu, Y.; Aimetti, A.A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater., 2016, 2(1), 16075.
[http://dx.doi.org/10.1038/natrevmats.2016.75]
[50]
Xie, A.; Hanif, S.; Ouyang, J.; Tang, Z.; Kong, N.; Kim, N.Y.; Qi, B.; Patel, D.; Shi, B.; Tao, W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine, 2020, 56, 102821.
[http://dx.doi.org/10.1016/j.ebiom.2020.102821] [PMID: 32505922]
[51]
Wang, J.; Zhang, X.; Cen, Y.; Lin, X.; Wu, Q. Antitumor gemcitabine conjugated micelles from amphiphilic comb- like random copolymers. Colloids Surf. B Biointerfaces, 2016, 146, 707-715.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.027] [PMID: 27434158]
[52]
Li, J.; Li, Y.; Wang, Y.; Ke, W.; Chen, W.; Wang, W.; Ge, Z. Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy. Nano Lett., 2017, 17(11), 6983-6990.
[http://dx.doi.org/10.1021/acs.nanolett.7b03531] [PMID: 28977746]
[53]
Duan, Z.; Cai, H.; Zhang, H.; Chen, K.; Li, N.; Xu, Z.; Gong, Q.; Luo, K. PEGylated multistimuli-responsive dendritic prodrug-based nanoscale system for enhanced anticancer activity. ACS Appl. Mater. Interfaces, 2018, 10(42), 35770-35783.
[http://dx.doi.org/10.1021/acsami.8b12232] [PMID: 30246536]
[54]
Peng, M.; Qin, S.; Jia, H.; Zheng, D.; Rong, L.; Zhang, X. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res., 2016, 9(3), 663-673.
[http://dx.doi.org/10.1007/s12274-015-0945-1]
[55]
Bai, Y.; Liu, C.P.; Song, X.; Zhuo, L.; Bu, H.; Tian, W. Photo-and pH-dual-responsive β-Cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery. Chem. Asian J., 2018, 13(24), 3903-3911.
[http://dx.doi.org/10.1002/asia.201801366] [PMID: 30311448]
[56]
Wang, Y.; Du, J.; Wang, Y.; Jin, Q.; Ji, J. Pillar[5]arene based supramolecular prodrug micelles with pH induced aggregate behavior for intracellular drug delivery. Chem. Commun. (Camb.), 2015, 51(14), 2999-3002.
[http://dx.doi.org/10.1039/C4CC09274K] [PMID: 25598131]
[57]
Caron, J.; Maksimenko, A.; Wack, S.; Lepeltier, E.; Bourgaux, C.; Morvan, E.; Leblanc, K.; Couvreur, P.; Desmaële, D. Improving the antitumor activity of squalenoyl- paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene. Adv. Healthcare Mater., 2013, 2(1), 172-185.
[http://dx.doi.org/10.1002/adhm.201200099] [PMID: 23213041]
[58]
Yue, Z.; Wang, H.; Li, Y.; Qin, Y.; Xu, L.; Bowers, D.J.; Gangoda, M.; Li, X.; Yang, H.B.; Zheng, Y.R. Coordination-driven self-assembly of a Pt(IV) prodrug-conjugated supramolecular hexagon. Chem. Commun. (Camb.), 2018, 54(7), 731-734.
[http://dx.doi.org/10.1039/C7CC07622C] [PMID: 29303526]
[59]
Fang, T.; Ye, Z.; Wu, J.; Wang, H. Reprogramming axial ligands facilitates the self-assembly of a platinum (IV) prodrug: Overcoming drug resistance and safer in vivo delivery of cisplatin. Chem. Commun. (Camb.), 2018, 54(66), 9167-9170.
[http://dx.doi.org/10.1039/C8CC03763A] [PMID: 30062328]
[60]
Yang, B.; Wang, K.; Zhang, D.; Sun, B.; Ji, B.; Wei, L.; Li, Z.; Wang, M.; Zhang, X.; Zhang, H.; Kan, Q.; Luo, C.; Wang, Y.; He, Z.; Sun, J. Light-activatable dual-source ROS-responsive prodrug nanoplatform for synergistic chemo-photodynamic therapy. Biomater. Sci., 2018, 6(11), 2965-2975.
[http://dx.doi.org/10.1039/C8BM00899J] [PMID: 30255178]
[61]
Luo, C.; Sun, J.; Sun, B.; He, Z. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol. Sci., 2014, 35(11), 556-566.
[http://dx.doi.org/10.1016/j.tips.2014.09.008] [PMID: 25441774]
[62]
Lv, Y.; Xu, C.; Zhao, X.; Lin, C.; Yang, X.; Xin, X.; Zhang, L.; Qin, C.; Han, X.; Yang, L.; He, W.; Yin, L. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano, 2018, 12(2), 1519-1536.
[http://dx.doi.org/10.1021/acsnano.7b08051] [PMID: 29350904]
[63]
Xue, X.; Qu, H.; Li, Y. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration, 2022, 2(6), 20210134.
[http://dx.doi.org/10.1002/EXP.20210134] [PMID: 37324805]
[64]
Davies, C.L.; Lundstrøm, L.M.; Frengen, J.; Eikenes, L.; Bruland, Ø.S.; Kaalhus, O.; Hjelstuen, M.H.B.; Brekken, C. Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res., 2004, 64(2), 547-553.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0576] [PMID: 14744768]
[65]
Lammers, T.; Subr, V.; Peschke, P.; Kühnlein, R.; Hennink, W.E.; Ulbrich, K.; Kiessling, F.; Heilmann, M.; Debus, J.; Huber, P.E.; Storm, G. Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br. J. Cancer, 2008, 99(6), 900-910.
[http://dx.doi.org/10.1038/sj.bjc.6604561] [PMID: 19238631]
[66]
Miller, M.A.; Chandra, R.; Cuccarese, M.F.; Pfirschke, C.; Engblom, C.; Stapleton, S.; Adhikary, U.; Kohler, R.H.; Mohan, J.F.; Pittet, M.J.; Weissleder, R. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl. Med., 2017, 9(392), eaal0225.
[http://dx.doi.org/10.1126/scitranslmed.aal0225] [PMID: 28566423]
[67]
Min, Y.; Roche, K.C.; Tian, S.; Eblan, M.J.; McKinnon, K.P.; Caster, J.M.; Chai, S.; Herring, L.E.; Zhang, L.; Zhang, T.; DeSimone, J.M.; Tepper, J.E.; Vincent, B.G.; Serody, J.S.; Wang, A.Z. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol., 2017, 12(9), 877-882.
[http://dx.doi.org/10.1038/nnano.2017.113] [PMID: 28650437]
[68]
Snipstad, S.; Sulheim, E.; de Lange Davies, C.; Moonen, C.; Storm, G.; Kiessling, F.; Schmid, R.; Lammers, T. Sonopermeation to improve drug delivery to tumors: From fundamental understanding to clinical translation. Expert Opin. Drug Deliv., 2018, 15(12), 1249-1261.
[http://dx.doi.org/10.1080/17425247.2018.1547279] [PMID: 30415585]
[69]
Carpentier, A.; Canney, M.; Vignot, A.; Reina, V.; Beccaria, K.; Horodyckid, C.; Karachi, C.; Leclercq, D.; Lafon, C.; Chapelon, J.Y.; Capelle, L.; Cornu, P.; Sanson, M.; Hoang-Xuan, K.; Delattre, J.Y.; Idbaih, A. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl. Med., 2016, 8(343), 343re2.
[http://dx.doi.org/10.1126/scitranslmed.aaf6086] [PMID: 27306666]
[70]
Mainprize, T.; Lipsman, N.; Huang, Y.; Meng, Y.; Bethune, A.; Ironside, S.; Heyn, C.; Alkins, R.; Trudeau, M.; Sahgal, A.; Perry, J.; Hynynen, K. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: A clinical safety and feasibility study. Sci. Rep., 2019, 9(1), 321.
[http://dx.doi.org/10.1038/s41598-018-36340-0] [PMID: 30674905]
[71]
Tak, W.Y.; Lin, S.M.; Wang, Y.; Zheng, J.; Vecchione, A.; Park, S.Y.; Chen, M.H.; Wong, S.; Xu, R.; Peng, C.Y.; Chiou, Y.Y.; Huang, G.T.; Cai, J.; Abdullah, B.J.J.; Lee, J.S.; Lee, J.Y.; Choi, J.Y.; Gopez-Cervantes, J.; Sherman, M.; Finn, R.S.; Omata, M.; O’Neal, M.; Makris, L.; Borys, N.; Poon, R.; Lencioni, R. Phase III HEAT study adding lyso-thermosensitive liposomal doxorubicin to radiofrequency ablation in patients with unresectable hepatocellular carcinoma lesions. Clin. Cancer Res., 2018, 24(1), 73-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2433] [PMID: 29018051]
[72]
de Maar, J.S.; Suelmann, B.B.M.; Braat, M.N.G.J.A.; van Diest, P.J.; Vaessen, H.H.B.; Witkamp, A.J.; Linn, S.C.; Moonen, C.T.W.; van der Wall, E.; Deckers, R. Phase I feasibility study of magnetic resonance guided high intensity focused ultrasound-induced hyperthermia, lyso-thermosensitive liposomal doxorubicin and cyclophosphamide in de novo stage IV breast cancer patients: Study protocol of the i-GO study. BMJ Open, 2020, 10(11), e040162.
[http://dx.doi.org/10.1136/bmjopen-2020-040162] [PMID: 33243800]
[73]
Wang-Gillam, A.; Li, C.P.; Bodoky, G.; Dean, A.; Shan, Y.S.; Jameson, G.; Macarulla, T.; Lee, K.H.; Cunningham, D.; Blanc, J.F.; Hubner, R.A.; Chiu, C.F.; Schwartsmann, G.; Siveke, J.T.; Braiteh, F.; Moyo, V.; Belanger, B.; Dhindsa, N.; Bayever, E.; Von Hoff, D.D.; Chen, L.T.; Adoo, C.; Anderson, T.; Asselah, J.; Azambuja, A.; Bampton, C.; Barrios, C.H.; Bekaii-Saab, T.; Bohuslav, M.; Chang, D.; Chen, J-S.; Chen, Y-C.; Choi, H.J.; Chung, I.J.; Chung, V.; Csoszi, T.; Cubillo, A.; DeMarco, L.; de Wit, M.; Dragovich, T.; Edenfield, W.; Fein, L.E.; Franke, F.; Fuchs, M.; Gonzales-Cruz, V.; Gozza, A.; Fernando, R.H.; Iaffaioli, R.; Jakesova, J.; Kahan, Z.; Karimi, M.; Kim, J.S.; Korbenfeld, E.; Lang, I.; Lee, F-C.; Lee, K-D.; Lipton, L.; Ma, W.W.; Mangel, L.; Mena, R.; Palmer, D.; Pant, S.; Park, J.O.; Piacentini, P.; Pelzer, U.; Plazas, J.G.; Prasad, C.; Rau, K-M.; Raoul, J-L.; Richards, D.; Ross, P.; Schlittler, L.; Smakal, M.; Stahalova, V.; Sternberg, C.; Seufferlein, T.; Tebbutt, N.; Vinholes, J.J.; Wadlow, R.; Wenczl, M.; Wong, M. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet, 2016, 387(10018), 545-557.
[http://dx.doi.org/10.1016/S0140-6736(15)00986-1] [PMID: 26615328]
[74]
Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med., 2018, 379(22), 2108-2121.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[75]
Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Kozin, S.V.; Stylianopoulos, T.; Mousa, A.S.; Han, X.; Adstamongkonkul, P.; Popović, Z.; Huang, P.; Bawendi, M.G.; Boucher, Y.; Jain, R.K. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun., 2013, 4(1), 2516.
[http://dx.doi.org/10.1038/ncomms3516] [PMID: 24084631]
[76]
Diop-Frimpong, B.; Chauhan, V.P.; Krane, S.; Boucher, Y.; Jain, R.K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 2909-2914.
[http://dx.doi.org/10.1073/pnas.1018892108] [PMID: 21282607]
[77]
Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Clark, J.W.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Ly, L.; Baglini, C.V.; Blaszkowsky, L.S.; Ferrone, C.R.; Parikh, A.R.; Weekes, C.D.; Nipp, R.D.; Kwak, E.L.; Allen, J.N.; Corcoran, R.B.; Ting, D.T.; Faris, J.E.; Zhu, A.X.; Goyal, L.; Berger, D.L.; Qadan, M.; Lillemoe, K.D.; Talele, N.; Jain, R.K.; DeLaney, T.F.; Duda, D.G.; Boucher, Y.; Fernández-Del Castillo, C.; Hong, T.S. Total neoadjuvant therapy with folfirinox in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer. JAMA Oncol., 2019, 5(7), 1020-1027.
[http://dx.doi.org/10.1001/jamaoncol.2019.0892] [PMID: 31145418]
[78]
Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; Stone, R.M.; Bixby, D.L.; Kolitz, J.E.; Schiller, G.J.; Wieduwilt, M.J.; Ryan, D.H.; Hoering, A.; Banerjee, K.; Chiarella, M.; Louie, A.C.; Medeiros, B.C. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J. Clin. Oncol., 2018, 36(26), 2684-2692.
[http://dx.doi.org/10.1200/JCO.2017.77.6112] [PMID: 30024784]
[79]
Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[80]
June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science, 2018, 359(6382), 1361-1365.
[http://dx.doi.org/10.1126/science.aar6711] [PMID: 29567707]
[81]
Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; Vonderheide, R.H.; Pittet, M.J.; Jain, R.K.; Zou, W.; Howcroft, T.K.; Woodhouse, E.C.; Weinberg, R.A.; Krummel, M.F. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med., 2018, 24(5), 541-550.
[http://dx.doi.org/10.1038/s41591-018-0014-x] [PMID: 29686425]
[82]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[83]
Sun, Q.; Barz, M.; De Geest, B.G.; Diken, M.; Hennink, W.E.; Kiessling, F.; Lammers, T.; Shi, Y. Nanomedicine and macroscale materials in immuno-oncology. Chem. Soc. Rev., 2019, 48(1), 351-381.
[http://dx.doi.org/10.1039/C8CS00473K] [PMID: 30465669]
[84]
Mulder, W.J.M.; Ochando, J.; Joosten, L.A.B.; Fayad, Z.A.; Netea, M.G. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov., 2019, 18(7), 553-566.
[http://dx.doi.org/10.1038/s41573-019-0025-4] [PMID: 30967658]
[85]
Jiang, W.; von Roemeling, C. A.; Chen, Y.; Qie, Y.; Liu, X.; Chen, J.; Kim, B. Y. S. Designing nanomedicine for immuno-oncology. Nature Biomed. Eng., 2017, 1(2), 0029.
[http://dx.doi.org/10.1038/s41551-017-0029]
[86]
Friedman, C.F.; Proverbs-Singh, T.A.; Postow, M.A. Treatment of the immune-related adverse effects of immune checkpoint inhibitors. JAMA Oncol., 2016, 2(10), 1346-1353.
[http://dx.doi.org/10.1001/jamaoncol.2016.1051] [PMID: 27367787]
[87]
Borden, E.C. Interferons α and β in cancer: Therapeutic opportunities from new insights. Nat. Rev. Drug Discov., 2019, 18(3), 219-234.
[http://dx.doi.org/10.1038/s41573-018-0011-2] [PMID: 30679806]
[88]
Netea, M.G.; Latz, E.; Mills, K.H.G.; O’Neill, L.A.J. Innate immune memory: A paradigm shift in understanding host defense. Nat. Immunol., 2015, 16(7), 675-679.
[http://dx.doi.org/10.1038/ni.3178] [PMID: 26086132]
[89]
Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science, 2016, 352(6284), aaf1098.
[http://dx.doi.org/10.1126/science.aaf1098] [PMID: 27102489]
[90]
Prendergast, G.C.; Malachowski, W.P.; DuHadaway, J.B.; Muller, A.J. Discovery of IDO1 inhibitors: From bench to bedside. Cancer Res., 2017, 77(24), 6795-6811.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2285] [PMID: 29247038]
[91]
Lu, J.; Liu, X.; Liao, Y.P.; Salazar, F.; Sun, B.; Jiang, W.; Chang, C.H.; Jiang, J.; Wang, X.; Wu, A.M.; Meng, H.; Nel, A.E. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun., 2017, 8(1), 1811.
[http://dx.doi.org/10.1038/s41467-017-01651-9] [PMID: 29180759]
[92]
Shae, D.; Becker, K.W.; Christov, P.; Yun, D.S.; Lytton- Jean, A.K.R.; Sevimli, S.; Ascano, M.; Kelley, M.; Johnson, D.B.; Balko, J.M.; Wilson, J.T. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol., 2019, 14(3), 269-278.
[http://dx.doi.org/10.1038/s41565-018-0342-5] [PMID: 30664751]
[93]
Pfirschke, C.; Engblom, C.; Rickelt, S.; Cortez-Retamozo, V.; Garris, C.; Pucci, F.; Yamazaki, T.; Poirier-Colame, V.; Newton, A.; Redouane, Y.; Lin, Y.J.; Wojtkiewicz, G.; Iwamoto, Y.; Mino-Kenudson, M.; Huynh, T.G.; Hynes, R.O.; Freeman, G.J.; Kroemer, G.; Zitvogel, L.; Weissleder, R.; Pittet, M.J. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity, 2016, 44(2), 343-354.
[http://dx.doi.org/10.1016/j.immuni.2015.11.024] [PMID: 26872698]
[94]
Hwang, W.L.; Pike, L.R.G.; Royce, T.J.; Mahal, B.A.; Loeffler, J.S. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol., 2018, 15(8), 477-494.
[http://dx.doi.org/10.1038/s41571-018-0046-7] [PMID: 29872177]
[95]
Ngwa, W.; Irabor, O.C.; Schoenfeld, J.D.; Hesser, J.; Demaria, S.; Formenti, S.C. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer, 2018, 18(5), 313-322.
[http://dx.doi.org/10.1038/nrc.2018.6] [PMID: 29449659]
[96]
LoPachin, R. M. Acrylamide neurotoxicity: Neurological, morhological and molecular endpoints in animal models. Adv Exp Med Biol, 2005, 56121, 21-37.
[97]
Han, T.H.; Zhao, B. Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates. Drug Metab. Dispos., 2014, 42(11), 1914-1920.
[http://dx.doi.org/10.1124/dmd.114.058586] [PMID: 25048520]
[98]
Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; Xu, J.; Sun, Y.; Liang, H.; Liu, J.; Wang, J.; Tak, W.Y.; Pan, H.; Burock, K.; Zou, J.; Voliotis, D.; Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2009, 10(1), 25-34.
[http://dx.doi.org/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]
[99]
Hou, M.; Gao, Y.E.; Shi, X.; Bai, S.; Ma, X.; Li, B.; Xiao, B.; Xue, P.; Kang, Y.; Xu, Z. Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy. Acta Biomater., 2018, 77, 228-239.
[http://dx.doi.org/10.1016/j.actbio.2018.07.014] [PMID: 30006314]