Xanthenes: Novelty and Green Photocatalysis for the Formation of Carbon-carbon or Carbon-heteroatom Bond

Page: [1346 - 1365] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

This review covers photoreduction reactions using xanthenes reported from 2011 to date and compares them with the conventional photocatalytic method. Xanthenes have strong absorption in the visible light spectrum (520-550 nm), and their redox potential resembles organometallic complexes, such as those containing Ir or Ru, and they are also easy to handle and accessible. In addition to being metal-free, photocatalysis with xanthenes is performed under mild reaction conditions. For instance, no radical initiators are needed because the energy sources are led devices or household lamps, most reactions are performed at room temperature in common solvents (MeOH, MeCN, acetone, DMSO), and an anhydrous or inert atmosphere is usually not required. As a result, xanthene dyes hold the promise of a more environmentally friendly synthesis of organic compounds.

Graphical Abstract

[1]
Beeler, A.B. Introduction: Photochemistry in organic synthesis. Chem. Rev., 2016, 116(17), 9629-9630.
[http://dx.doi.org/10.1021/acs.chemrev.6b00378] [PMID: 27625298]
[2]
Nicewicz, D.A.; Nguyen, T.M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal., 2014, 4(1), 355-360.
[http://dx.doi.org/10.1021/cs400956a]
[3]
Amos, S.G.E.; Garreau, M.; Buzzetti, L.; Waser, J. Photocatalysis with organic dyes: Facile access to reactive intermediates for synthesis. Beilstein J. Org. Chem., 2020, 16, 1163-1187.
[http://dx.doi.org/10.3762/bjoc.16.103] [PMID: 32550931]
[4]
Sharma, S.; Sharma, A. Recent advances in photocatalytic manipulations of Rose Bengal in organic synthesis. Org. Biomol. Chem., 2019, 17(18), 4384-4405.
[http://dx.doi.org/10.1039/C9OB00092E] [PMID: 30951059]
[5]
Cauwenbergh, R. Photocatalysis: A green tool for redox reactions. Synlett, 2022, 33(2), 129-149.
[http://dx.doi.org/10.1055/s-0040-1706042]
[6]
Romero, N.A.; Nicewicz, D.A. Photoredox catalysis. Chem. Rev., 2016, 116(17), 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
[7]
Maia, M.; Resende, D.I.S.P.; Durães, F.; Pinto, M.M.M.; Sousa, E. Xanthenes in medicinal chemistry – Synthetic strategies and biological activities. Eur. J. Med. Chem., 2021, 210, 113085-113114.
[http://dx.doi.org/10.1016/j.ejmech.2020.113085] [PMID: 33310284]
[8]
Bongard, R.D.; Lepley, M.; Gastonguay, A.; Syrlybaeva, R.R.; Talipov, M.R.; Jones Lipinski, R.A.; Leigh, N.R.; Brahmbhatt, J.; Kutty, R.; Rathore, R.; Ramchandran, R.; Sem, D.S. Discovery and characterization of halogenated xanthene inhibitors of DUSP5 as potential photodynamic therapeutics. J. Photochem. Photobiol. Chem., 2019, 375, 114-131.
[http://dx.doi.org/10.1016/j.jphotochem.2019.01.005] [PMID: 31839699]
[9]
Food and Drug Administration. Compliance Program Guidance Manual: Chapter 09 – Food and Color Additives. 2019. Available from: https://www.fda.gov/media/71661/download
[10]
Khairy, Y.; Mohammed, M.I.; Elsaeedy, H.I.; Yahia, I.S. Synthesis, optical limiting and properties of Rhodamine B-doped PMMA polymeric films/glass substrate: New trends in polymeric composites. Optik, 2020, 212, 164687.
[http://dx.doi.org/10.1016/j.ijleo.2020.164687]
[11]
Lee, D.; Swamy, K.M.K.; Hong, J.; Lee, S.; Yoon, J. A rhodamine-based fluorescent probe for the detection of lysosomal pH changes in living cells. Sens. Actuators B Chem., 2018, 266, 416-421.
[http://dx.doi.org/10.1016/j.snb.2018.03.133]
[12]
Shabir, G.; Saeed, A.; Ali Channar, P. A review on the recent trends in synthetic strategies and applications of xanthene dyes. Mini Rev. Org. Chem., 2018, 15(3), 166-197.
[http://dx.doi.org/10.2174/1570193X14666170518130008]
[13]
Kim, D.H.; Lee, J.; Lee, A. Visible-light-driven silver-catalyzed one-pot approach: A selective synthesis of diaryl sulfoxides and diaryl sulfones. Org. Lett., 2018, 20(3), 764-767.
[http://dx.doi.org/10.1021/acs.orglett.7b03901] [PMID: 29345951]
[14]
Bobo, M.V.; Kuchta, J.J., III; Vannucci, A.K. Recent advancements in the development of molecular organic photocatalysts. Org. Biomol. Chem., 2021, 19(22), 4816-4834.
[http://dx.doi.org/10.1039/D1OB00396H] [PMID: 34008685]
[15]
Wu, Y.; Kim, D.; Teets, T.S. Photophysical properties and redox potentials of photosensitizers for organic photoredox transformations. Synlett, 2021, 33(12), 1154-1179.
[http://dx.doi.org/10.1055/a-1390-9065]
[16]
Hari, D.P.; König, B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun., 2014, 50(51), 6688-6699.
[http://dx.doi.org/10.1039/C4CC00751D] [PMID: 24699920]
[17]
König, B. Photocatalysis in organic synthesis – Past, present, and future. Eur. J. Org. Chem., 2017, 2017(15), 1979-1981.
[http://dx.doi.org/10.1002/ejoc.201700420]
[18]
Lambert, C.R.; Kochevar, I.E. Electron transfer quenching of the rose bengal triplet state. Photochem. Photobiol., 1997, 66(1), 15-25.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb03133.x] [PMID: 9230700]
[19]
Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible‐light photocatalysis: Does it make a difference in organic synthesis? Angew. Chem. Int. Ed., 2018, 57(32), 10034-10072.
[http://dx.doi.org/10.1002/anie.201709766] [PMID: 29457971]
[20]
Zhang, X.F.; Zhang, J.; Liu, L. Fluorescence properties of twenty fluorescein derivatives: Lifetime, quantum yield, absorption and emission spectra. J. Fluoresc., 2014, 24(3), 819-826.
[http://dx.doi.org/10.1007/s10895-014-1356-5] [PMID: 24510430]
[21]
Mori, M.; Ban, Y. The reactions and syntheses with organometallic compounds IV. The new synthesis of oxindole derivatives by utilization of organonickel complex. Tetrahedron Lett., 1976, 17(21), 1807-1810.
[http://dx.doi.org/10.1016/S0040-4039(00)93789-4]
[22]
Grigg, R.; Sansano, J.; Santhakumar, V.; Sridharan, V.; Thangavelanthum, R.; Thornton-Pett, M.; Wilson, D. Palladium catalysed tandem cyclisation-anion capture processes. Part 3. Organoboron anion transfer agents. Tetrahedron, 1997, 53(34), 11803-11826.
[http://dx.doi.org/10.1016/S0040-4020(97)00754-0]
[23]
Fabry, D.C.; Stodulski, M.; Hoerner, S.; Gulder, T. Metal-free synthesis of 3,3-disubstituted oxoindoles by iodine(III)-catalyzed bromocarbocyclizations. Chemistry, 2012, 18(35), 10834-10838.
[http://dx.doi.org/10.1002/chem.201201232] [PMID: 22786809]
[24]
Sharma, R.; Sihag, N.; Bhartiya, H.; Saini, S.; Kumar, A.; Yadav, M.R. Pd-catalyzed double heck and heck–suzuki cascade reaction of N-(o-bromo aryl) CF 3-acrylamides. Org. Chem. Front., 2024, 11(6), 1736-1741.
[http://dx.doi.org/10.1039/D3QO01946B]
[25]
Liu, F.; Li, P. Visible-light-promoted (phenylsulfonyl)methylation of electron-rich heteroarenes and N-arylacrylamides. J. Org. Chem., 2016, 81(16), 6972-6979.
[http://dx.doi.org/10.1021/acs.joc.6b00689] [PMID: 27232447]
[26]
Xia, D.; Miao, T.; Li, P.; Wang, L. Visible‐light photoredox catalysis: direct synthesis of sulfonated oxindoles from N ‐arylacrylamides and arylsulfinic acids by means of a cascade C−S/C−C formation process. Chem. Asian J., 2015, 10(9), 1919-1925.
[http://dx.doi.org/10.1002/asia.201500498] [PMID: 26097076]
[27]
Gonda, Z.; Béke, F.; Tischler, O.; Petró, M.; Novák, Z.; Tóth, B.L.; Erythrosine, B. Erythrosine B catalyzed visible‐light photoredox arylation–cyclization of N ‐Alkyl‐ N ‐aryl‐2‐(trifluoromethyl)acrylamides to 3‐(Trifluoromethyl)indolin‐2‐one derivatives. Eur. J. Org. Chem., 2017, 2017(15), 2112-2117.
[http://dx.doi.org/10.1002/ejoc.201601493]
[28]
Sumunnee, L.; Pimpasri, C.; Noikham, M.; Yotphan, S. Persulfate-promoted oxidative C–N bond coupling of quinoxalinones and NH-sulfoximines. Org. Biomol. Chem., 2018, 16(15), 2697-2704.
[http://dx.doi.org/10.1039/C8OB00375K] [PMID: 29582873]
[29]
Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Direct phosphonation of quinoxalin-2(1H)-ones under transition-metal-free conditions. Chem. Commun., 2016, 52(13), 2846-2849.
[http://dx.doi.org/10.1039/C5CC08049E] [PMID: 26779573]
[30]
Yang, L.; Gao, P.; Duan, X.H.; Gu, Y.R.; Guo, L.N. Direct C–H cyanoalkylation of quinoxalin-2(1H)-ones via radical C–C bond cleavage. Org. Lett., 2018, 20(4), 1034-1037.
[http://dx.doi.org/10.1021/acs.orglett.7b03984] [PMID: 29364685]
[31]
Boivin, J.; Fouquet, E.; Zard, S.Z. Ring opening induced by iminyl radicals derived from cyclobutanones: new aspects of tin hydride cleavage of S-phenyl sulfenylimines. J. Am. Chem. Soc., 1991, 113(3), 1055-1057.
[http://dx.doi.org/10.1021/ja00003a057]
[32]
Boivin, J.; Fouquet, E.; Zard, S.Z. A new and synthetically useful source of iminyl radicals. Tetrahedron Lett., 1991, 32(34), 4299-4302.
[http://dx.doi.org/10.1016/S0040-4039(00)92153-1]
[33]
Yuan, J.; Fu, J.; Yin, J.; Dong, Z.; Xiao, Y.; Mao, P.; Qu, L. Transition-metal-free direct C-3 alkylation of quinoxalin-2(1H)-ones with ethers. Org. Chem. Front., 2018, 5(19), 2820-2828.
[http://dx.doi.org/10.1039/C8QO00731D]
[34]
Wang, L.; Zhang, Y.; Li, F.; Hao, X.; Zhang, H.Y.; Zhao, J. Direct C−H trifluoromethylation of quinoxalin‐2(1H)‐ones under transition‐metal‐free conditions. Adv. Synth. Catal., 2018, 360(20), 3969-3977.
[http://dx.doi.org/10.1002/adsc.201800863]
[35]
Zhang, W.; Pan, Y.L.; Yang, C.; Chen, L.; Li, X.; Cheng, J.P. Metal-free direct C–H cyanoalkylation of quinoxalin-2(1H)-ones by organic photoredox catalysis. J. Org. Chem., 2019, 84(12), 7786-7795.
[http://dx.doi.org/10.1021/acs.joc.9b00657] [PMID: 31140803]
[36]
Mendes, S.R.; Thurow, S.; Fortes, M.P.; Penteado, F.; Lenardão, E.J.; Alves, D.; Perin, G.; Jacob, R.G. Synthesis of bis(indolyl)methanes using silica gel as an efficient and recyclable surface. Tetrahedron Lett., 2012, 53(40), 5402-5406.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.118]
[37]
Mielczarek, M.; Devakaram, R.V.; Ma, C.; Yang, X.; Kandemir, H.; Purwono, B.; Black, D.S.; Griffith, R.; Lewis, P.J.; Kumar, N. Synthesis and biological activity of novel bis-indole inhibitors of bacterial transcription initiation complex formation. Org. Biomol. Chem., 2014, 12(18), 2882-2894.
[http://dx.doi.org/10.1039/C4OB00460D] [PMID: 24668488]
[38]
D’Auria, M. Photochemical synthesis of diindolylmethanes. Tetrahedron, 1991, 47(44), 9225-9230.
[http://dx.doi.org/10.1016/S0040-4020(01)96210-6]
[39]
Groome, N.M.; Elboray, E.E.; Inman, M.W.; Dondas, H.A.; Phillips, R.M.; Kilner, C.; Grigg, R. Carbophilic 3-component cascades: Access to complex bioactive cyclopropyl diindolylmethanes. Chemistry, 2013, 19(6), 2180-2184.
[http://dx.doi.org/10.1002/chem.201202647] [PMID: 23280956]
[40]
Pradhan, P.K.; Dey, S.; Giri, V.S.; Jaisankar, P. InCl3 ‐HMTA as a methylene donor: One‐pot synthesis of diindolylmethane (DIM) and its derivatives. ChemInform, 2005, 36(47), chin.200547117.
[http://dx.doi.org/10.1002/chin.200547117]
[41]
Shaaban, S.; Roller, A.; Maulide, N. Visible‐light, metal‐free α‐amino C(sp3)–H activation through 1,5‐hydrogen migration: A concise method for the preparation of bis(indolyl)alkanes. Eur. J. Org. Chem., 2015, 2015(35), 7643-7647.
[http://dx.doi.org/10.1002/ejoc.201501149]
[42]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[43]
Zhang, H.; Zhang, P.; Jiang, M.; Yang, H.; Fu, H. Merging photoredox with copper catalysis: Decarboxylative alkynylation of α-amino acid derivatives. Org. Lett., 2017, 19(5), 1016-1019.
[http://dx.doi.org/10.1021/acs.orglett.6b03888] [PMID: 28198184]
[44]
Klauck, F.J.R.; James, M.J.; Glorius, F. Deaminative strategy for the visible‐light‐mediated generation of alkyl radicals. Angew. Chem. Int. Ed., 2017, 56(40), 12336-12339.
[http://dx.doi.org/10.1002/anie.201706896] [PMID: 28762257]
[45]
Liao, J.; Guan, W.; Boscoe, B.P.; Tucker, J.W.; Tomlin, J.W.; Garnsey, M.R.; Watson, M.P. Transforming benzylic amines into diarylmethanes: Cross-couplings of benzylic pyridinium salts via C–N bond activation. Org. Lett., 2018, 20(10), 3030-3033.
[http://dx.doi.org/10.1021/acs.orglett.8b01062] [PMID: 29745674]
[46]
Singh, A.; Maji, A.; Mohanty, A.; Ghosh, K. Copper-based catalysts derived from salen-type ligands: Synthesis of 5-substituted-1H-tetrazoles via [3+2] cycloaddition and propargylamines via A3-coupling reactions. New J. Chem., 2020, 44(42), 18399-18418.
[http://dx.doi.org/10.1039/D0NJ03081C]
[47]
Ociepa, M.; Turkowska, J.; Gryko, D. Redox-activated amines in C(sp3)–C(sp) and C(sp3)–C(sp2) bond formation enabled by metal-free photoredox catalysis. ACS Catal., 2018, 8(12), 11362-11367.
[http://dx.doi.org/10.1021/acscatal.8b03437]
[48]
Ma, J.; Yi, W.; Lu, G.; Cai, C. Decarboxylative and denitrative trifluoromethylation for the synthesis of CvinylCF3 compounds with togni (II) reagent. Adv. Synth. Catal., 2015, 357(16-17), 3447-3452.
[http://dx.doi.org/10.1002/adsc.201500631]
[49]
Nagib, D.A.; MacMillan, D.W.C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature, 2011, 480(7376), 224-228.
[http://dx.doi.org/10.1038/nature10647] [PMID: 22158245]
[50]
Midya, S.P.; Rana, J.; Abraham, T.; Aswin, B.; Balaraman, E. Metal-free radical trifluoromethylation of β-nitroalkenes through visible-light photoredox catalysis. Chem. Commun., 2017, 53(50), 6760-6763.
[http://dx.doi.org/10.1039/C7CC02589K] [PMID: 28597876]
[51]
Maji, A.; Singh, O.; Singh, S.; Mohanty, A.; Maji, P.K. Palladium-based catalysts supported by unsymmetrical XYC-1 type pincer ligands : C5 arylation of imidazoles and synthesis of octinoxate utilizing the mizoroki-heck reaction. EURJIC, 2020, 2020(17), 1596-1611.
[http://dx.doi.org/10.1002/ejic.202000211]
[52]
Guchhait, S.; Kashyap, M.; Saraf, S. Direct C-H bond arylation of (Hetero)arenes with aryl and heteroarylboronic acids. Synthesis, 2010, 2010(7), 1166-1170.
[http://dx.doi.org/10.1055/s-0029-1219234]
[53]
Seiple, I.B.; Su, S.; Rodriguez, R.A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A.L.; Baran, P.S. Direct C-H arylation of electron-deficient heterocycles with arylboronic acids. J. Am. Chem. Soc., 2010, 132(38), 13194-13196.
[http://dx.doi.org/10.1021/ja1066459] [PMID: 20812741]
[54]
Kumari, S.; Ratnam, A.; Mawai, K.; Chaudhary, V.K.; Mohanty, A.; Ghosh, K. Cu(I) based catalysts derived from bidentate ligands and studies on the effect of substituents for N-arylation of benzimidazoles and indoles. New J. Chem., 2020, 44(45), 19591-19597.
[http://dx.doi.org/10.1039/D0NJ02568B]
[55]
Milanesi, S.; Fagnoni, M.; Albini, A. (Sensitized) photolysis of diazonium salts as a mild general method for the generation of aryl cations. Chemoselectivity of the singlet and triplet 4-substituted phenyl cations. J. Org. Chem., 2005, 70(2), 603-610.
[http://dx.doi.org/10.1021/jo048413w] [PMID: 15651808]
[56]
Kalyani, D.; McMurtrey, K.B.; Neufeldt, S.R.; Sanford, M.S. Room-temperature C-H arylation: Merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. J. Am. Chem. Soc., 2011, 133(46), 18566-18569.
[http://dx.doi.org/10.1021/ja208068w] [PMID: 22047138]
[57]
Hari, D.P.; Schroll, P.; König, B. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. J. Am. Chem. Soc., 2012, 134(6), 2958-2961.
[http://dx.doi.org/10.1021/ja212099r] [PMID: 22296099]
[58]
Zhang, Y.P.; Feng, X.L.; Yang, Y.S.; Cao, B.X. Metal-free, C–H arylation of indole and its derivatives with aryl diazonium salts by visible-light photoredox catalysis. Tetrahedron Lett., 2016, 57(21), 2298-2302.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.051]
[59]
Wu, X.F.; Neumann, H.; Beller, M. Palladium-catalyzed oxidative carbonylation reactions. ChemSusChem, 2013, 6(2), 229-241.
[http://dx.doi.org/10.1002/cssc.201200683] [PMID: 23307763]
[60]
Zhou, Q.; Wei, S.; Han, W. In situ generation of palladium nanoparticles: Ligand-free palladium catalyzed pivalic acid assisted carbonylative Suzuki reactions at ambient conditions. J. Org. Chem., 2014, 79(3), 1454-1460.
[http://dx.doi.org/10.1021/jo402366p] [PMID: 24397578]
[61]
Guo, W.; Lu, L.Q.; Wang, Y.; Wang, Y.N.; Chen, J.R.; Xiao, W.J. Metal-free, room-temperature, radical alkoxycarbonylation of aryldiazonium salts through visible-light photoredox catalysis. Angew. Chem. Int. Ed., 2015, 54(7), 2265-2269.
[http://dx.doi.org/10.1002/anie.201408837] [PMID: 25504666]
[62]
Gu, L.; Jin, C.; Liu, J. Metal-free, visible-light-mediated transformation of aryl diazonium salts and (hetero)arenes: An efficient route to aryl ketones. Green Chem., 2015, 17(7), 3733-3736.
[http://dx.doi.org/10.1039/C5GC00644A]
[63]
Ryu, I. Radical carboxylations of iodoalkanes and saturated alcohols using carbon monoxide. Chem. Soc. Rev., 2001, 30(1), 16-25.
[http://dx.doi.org/10.1039/a904591k]
[64]
Schoenberg, A.; Bartoletti, I.; Heck, R.F. Palladium-catalyzed carboalkoxylation of aryl, benzyl, and vinylic halides. J. Org. Chem., 1974, 39(23), 3318-3326.
[http://dx.doi.org/10.1021/jo00937a003]
[65]
Brennführer, A.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. Int. Ed., 2009, 48(23), 4114-4133.
[http://dx.doi.org/10.1002/anie.200900013] [PMID: 19431166]
[66]
Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Transition-metal-free alkoxycarbonylation of aryl halides. Angew. Chem. Int. Ed., 2012, 51(50), 12542-12545.
[http://dx.doi.org/10.1002/anie.201206518] [PMID: 23129245]
[67]
Mallory, F.B.; Wood, C.S.; Gordon, J.T. Photochemistry of Stilbenes. III. Some aspects of the mechanism of photocyclization to phenanthrenes. J. Am. Chem. Soc., 1964, 86(15), 3094-3102.
[http://dx.doi.org/10.1021/ja01069a025]
[68]
Ye, F.; Shi, Y.; Zhou, L.; Xiao, Q.; Zhang, Y.; Wang, J. Expeditious synthesis of phenanthrenes via CuBr2-catalyzed coupling of terminal alkynes and N-tosylhydrazones derived from o-formyl biphenyls. Org. Lett., 2011, 13(19), 5020-5023.
[http://dx.doi.org/10.1021/ol201788v] [PMID: 21875127]
[69]
Leardini, R.; Nanni, D.; Tundo, A. Convenient synthesis of phenantrene and crysine derivatives. Synthesis, 1988, 4, 333-335.
[http://dx.doi.org/10.1055/s-1988-27563]
[70]
Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Phenanthrene synthesis by eosin y‐catalyzed, visible light‐induced [4+2] benzannulation of biaryldiazonium salts with alkynes. Adv. Synth. Catal., 2012, 354(17), 3195-3199.
[http://dx.doi.org/10.1002/adsc.201200569]
[71]
Yan, J.; Fang, H.; Wang, B. Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Med. Res. Rev., 2005, 25(5), 490-520.
[http://dx.doi.org/10.1002/med.20038] [PMID: 16025498]
[72]
Brown, H.C.; Bhat, N.G.; Somayaji, V. Organoboranes. 30. Convenient procedures for the synthesis of alkyl- and alkenylboronic acids and esters. Organometallics, 1983, 2(10), 1311-1316.
[http://dx.doi.org/10.1021/om50004a008]
[73]
Brown, H.C.; Srebnik, M.; Cole, T.E. Organoboranes. 48. Improved procedures for the preparation of boronic and borinic esters. Organometallics, 1986, 5(11), 2300-2303.
[http://dx.doi.org/10.1021/om00142a020]
[74]
Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: A direct procedure for arylboronic esters. J. Org. Chem., 1995, 60(23), 7508-7510.
[http://dx.doi.org/10.1021/jo00128a024]
[75]
Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Direct conversion of arylamines to pinacol boronates: A metal-free borylation process. Angew. Chem. Int. Ed., 2010, 49(10), 1846-1849.
[http://dx.doi.org/10.1002/anie.200905824] [PMID: 20127778]
[76]
Yu, J.; Zhang, L.; Yan, G. Metal‐free, visible light‐induced borylation of aryldiazonium salts: A simple and green synthetic route to arylboronates. Adv. Synth. Catal., 2012, 354(14-15), 2625-2628.
[http://dx.doi.org/10.1002/adsc.201200416]
[77]
Sharp, L.A.; Zard, S.Z. A short total synthesis of (+/-)-aspidospermidine. Org. Lett., 2006, 8(5), 831-834.
[http://dx.doi.org/10.1021/ol052749q] [PMID: 16494452]
[78]
Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev., 2016, 116(19), 12564-12649.
[http://dx.doi.org/10.1021/acs.chemrev.6b00512] [PMID: 27689804]
[79]
Ley, S.V.; Thomas, A.W. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. Angew. Chem. Int. Ed., 2003, 42(44), 5400-5449.
[http://dx.doi.org/10.1002/anie.200300594] [PMID: 14618572]
[80]
Kitamura, M.; Narasaka, K. Catalytic radical cyclization of oximes induced by one-electron transfer. Bull. Chem. Soc. Jpn., 2008, 81(5), 539-547.
[http://dx.doi.org/10.1246/bcsj.81.539]
[81]
McBurney, R.T.; Walton, J.C. Dissociation or cyclization: Options for a triad of radicals released from oxime carbamates. J. Am. Chem. Soc., 2013, 135(19), 7349-7354.
[http://dx.doi.org/10.1021/ja402833w] [PMID: 23600463]
[82]
Xi, Y.; Yi, H.; Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem., 2013, 11(15), 2387-2403.
[http://dx.doi.org/10.1039/c3ob40137e] [PMID: 23426621]
[83]
Neumann, M.; Füldner, S.; König, B.; Zeitler, K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew. Chem. Int. Ed., 2011, 50(4), 951-954.
[http://dx.doi.org/10.1002/anie.201002992] [PMID: 20878819]
[84]
Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Visible-light-promoted iminyl-radical formation from acyl oximes: A unified approach to pyridines, quinolines, and phenanthridines. Angew. Chem. Int. Ed., 2015, 54(13), 4055-4059.
[http://dx.doi.org/10.1002/anie.201411342] [PMID: 25650356]
[85]
Walton, J.C. The oxime portmanteau motif: Released heteroradicals undergo incisive EPR interrogation and deliver diverse heterocycles. Acc. Chem. Res., 2014, 47(4), 1406-1416.
[http://dx.doi.org/10.1021/ar500017f] [PMID: 24654991]
[86]
Davies, J.; Booth, S.G.; Essafi, S.; Dryfe, R.A.W.; Leonori, D. Visible‐light‐mediated generation of nitrogen‐centered radicals: Metal‐free hydroimination and iminohydroxylation cyclization reactions. Angew. Chem. Int. Ed., 2015, 54(47), 14017-14021.
[http://dx.doi.org/10.1002/anie.201507641] [PMID: 26412046]
[87]
Komeyama, K.; Morimoto, T.; Takaki, K. A simple and efficient iron-catalyzed intramolecular hydroamination of unactivated olefins. Angew. Chem. Int. Ed., 2006, 45(18), 2938-2941.
[http://dx.doi.org/10.1002/anie.200503789] [PMID: 16555362]
[88]
Yang, Y.; Shi, S.L.; Niu, D.; Liu, P.; Buchwald, S.L. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 2015, 349(6243), 62-66.
[http://dx.doi.org/10.1126/science.aab3753] [PMID: 26138973]
[89]
Newcomb, M.; Esker, J.L. Facile production and cyclizations of amidyl radicals. Tetrahedron Lett., 1991, 32(8), 1035-1038.
[http://dx.doi.org/10.1016/S0040-4039(00)74480-7]
[90]
Boivin, J.; Callier-Dublanchet, A.C.; Quiclet-Sire, B.; Schiano, A.M.; Zard, S.Z. Iminyl, amidyl, and carbamyl radicals from O-benzoyl oximes and O-benzoyl hydroxamic acid derivatives. Tetrahedron, 1995, 51(23), 6517-6528.
[http://dx.doi.org/10.1016/0040-4020(95)00319-4]
[91]
Kemper, J.; Studer, A. Stable reagents for the generation of N-centered radicals: Hydroamination of norbornene. Angew. Chem. Int. Ed., 2005, 44(31), 4914-4917.
[http://dx.doi.org/10.1002/anie.200463032] [PMID: 15999371]
[92]
Nicolaou, K.C.; Baran, P.S.; Zhong, Y.L.; Barluenga, S.; Hunt, K.W.; Kranich, R.; Vega, J.A. Iodine(V) reagents in organic synthesis. Part 3. New routes to heterocyclic compounds via o-iodoxybenzoic acid-mediated cyclizations: Generality, scope, and mechanism. J. Am. Chem. Soc., 2002, 124(10), 2233-2244.
[http://dx.doi.org/10.1021/ja012126h] [PMID: 11878977]
[93]
Choi, G.J.; Knowles, R.R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc., 2015, 137(29), 9226-9229.
[http://dx.doi.org/10.1021/jacs.5b05377] [PMID: 26166022]
[94]
Miller, D.C.; Choi, G.J.; Orbe, H.S.; Knowles, R.R. Catalytic olefin hydroamidation enabled by proton-coupled electron transfer. J. Am. Chem. Soc., 2015, 137(42), 13492-13495.
[http://dx.doi.org/10.1021/jacs.5b09671] [PMID: 26439818]
[95]
Davies, J.; Svejstrup, T.D.; Fernandez Reina, D.; Sheikh, N.S.; Leonori, D. Visible-light-mediated synthesis of amidyl radicals: Transition-metal-free hydroamination and N-arylation reactions. J. Am. Chem. Soc., 2016, 138(26), 8092-8095.
[http://dx.doi.org/10.1021/jacs.6b04920] [PMID: 27327358]
[96]
Sun, K.; Li, Y.; Xiong, T.; Zhang, J.; Zhang, Q. Palladium-catalyzed C-H aminations of anilides with N-fluorobenzenesulfonimide. J. Am. Chem. Soc., 2011, 133(6), 1694-1697.
[http://dx.doi.org/10.1021/ja1101695] [PMID: 21250687]
[97]
Song, L.; Zhang, L.; Luo, S.; Cheng, J.P. Visible-light promoted catalyst-free imidation of arenes and heteroarenes. Chemistry, 2014, 20(44), 14231-14234.
[http://dx.doi.org/10.1002/chem.201404479] [PMID: 25212493]
[98]
Zhu, S.; Niljianskul, N.; Buchwald, S.L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc., 2013, 135(42), 15746-15749.
[http://dx.doi.org/10.1021/ja4092819] [PMID: 24106781]
[99]
Shi, S.L.; Wong, Z.L.; Buchwald, S.L. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature, 2016, 532(7599), 353-356.
[http://dx.doi.org/10.1038/nature17191] [PMID: 27018656]
[100]
Srivastava, V.; Singh, P.K.; Kanaujia, S.; Singh, P.P. Photoredox catalysed synthesis of amino alcohol. New J. Chem., 2018, 42(1), 688-691.
[http://dx.doi.org/10.1039/C7NJ03068A]
[101]
Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem. Rev., 2015, 115(4), 1847-1935.
[http://dx.doi.org/10.1021/cr500368h] [PMID: 25635524]
[102]
Shibata, N.; Matsnev, A.; Cahard, D. Shelf-stable electrophilic trifluoromethylating reagents: A brief historical perspective. Beilstein J. Org. Chem., 2010, 6, 1-19.
[http://dx.doi.org/10.3762/bjoc.6.65] [PMID: 20703379]
[103]
Liao, J.; Fan, L.; Guo, W.; Zhang, Z.; Li, J.; Zhu, C.; Ren, Y.; Wu, W.; Jiang, H. Palladium-catalyzed fluoroalkylative cyclization of olefins. Org. Lett., 2017, 19(5), 1008-1011.
[http://dx.doi.org/10.1021/acs.orglett.6b03865] [PMID: 28253630]
[104]
Segura-Quezada, L.A.; Torres-Carbajal, K.R.; Satkar, Y.; Juárez Ornelas, K.A.; Mali, N.; Patil, D.B.; Gámez-Montaño, R.; Zapata-Morales, J.R.; Lagunas-Rivera, S.; Ortíz-Alvarado, R.; Solorio-Alvarado, C.R. Oxidative halogenation of arenes, olefins and alkynes mediated by iodine(III) reagents. Mini Rev. Org. Chem., 2021, 18(2), 159-172.
[http://dx.doi.org/10.2174/1570193X17999200504095803]
[105]
Pham, P.V.; Nagib, D.A.; MacMillan, D.W.C. Photoredox catalysis: A mild, operationally simple approach to the synthesis of α-trifluoromethyl carbonyl compounds. Angew. Chem. Int. Ed., 2011, 50(27), 6119-6122.
[http://dx.doi.org/10.1002/anie.201101861] [PMID: 21604347]
[106]
Chu, X.Q.; Xie, T.; Li, L.; Ge, D.; Shen, Z.L.; Loh, T.P. Combining fluoroalkylation and defluorination to enable formal [3 + 2 + 1] heteroannulation by using visible-light photoredox organocatalysis. Org. Lett., 2018, 20(9), 2749-2752.
[http://dx.doi.org/10.1021/acs.orglett.8b00963] [PMID: 29683679]
[107]
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[http://dx.doi.org/10.1021/cr100214d] [PMID: 21425870]
[108]
Lyons, T.W.; Sanford, M.S.; Formation, I.C.N.B. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev., 2010, 110(2), 1147-1169.
[http://dx.doi.org/10.1021/cr900184e] [PMID: 20078038]
[109]
Gabriele, B.; Mancuso, R.; Lupinacci, E.; Veltri, L.; Salerno, G.; Carfagna, C. Synthesis of benzothiophene derivatives by Pd-catalyzed or radical-promoted heterocyclodehydration of 1-(2-mercaptophenyl)-2-yn-1-ols. J. Org. Chem., 2011, 76(20), 8277-8286.
[http://dx.doi.org/10.1021/jo201471k] [PMID: 21902206]
[110]
Lu, W-D.; Wu, M-J. Halocyclization of 2-alkynylthioanisoles by cupric halides: synthesis of 2-substituted 3-halobenzo[b]thiophenes. Tetrahedron, 2007, 63(2), 356-362.
[http://dx.doi.org/10.1016/j.tet.2006.10.068]
[111]
Nakamura, I.; Sato, T.; Yamamoto, Y. Gold-catalyzed intramolecular carbothiolation of alkynes: Synthesis of 2,3-disubstituted benzothiophenes from (α-alkoxy alkyl) (ortho-alkynyl phenyl) sulfides. Angew. Chem. Int. Ed., 2006, 45(27), 4473-4475.
[http://dx.doi.org/10.1002/anie.200601178] [PMID: 16767784]
[112]
Mcdonald, F.E.; Burova, S.A.; Huffman, L.G. Sulfur-alkyne cyclizations for formation of dihydrothiophenes and annulated thiophenes. Synthesis, 2000, 5, 970-974.
[http://dx.doi.org/10.1055/s-2000-6294]
[113]
Leardini, R.; Pedulli, G.F.; Tundo, A.; Zanardi, G. Reaction pathways for the cyclization of ortho-thioalkyl and ortho-thioaryl substituted phenyl radicals with alkynes. Reaction of o-methylthioarenediazonium tetrafluoroborates with alkynes to give 2-substituted benzo[b]thiophenes. J. Chem. Soc. Chem. Commun., 1985, 58(20), 1390.
[114]
Hari, D.P.; Hering, T.; König, B. Visible light photocatalytic synthesis of benzothiophenes. Org. Lett., 2012, 14(20), 5334-5337.
[http://dx.doi.org/10.1021/ol302517n] [PMID: 23039199]
[115]
Sethna, S.; Phadke, R. The pechmann reaction. In: Organic Reactions; Wiley, 2011; pp. 1-58.
[http://dx.doi.org/10.1002/0471264180.or007.01]
[116]
Trost, B.M.; Toste, F.D. A new palladium-catalyzed addition: A mild method for the synthesis of coumarins. J. Am. Chem. Soc., 1996, 118(26), 6305-6306.
[http://dx.doi.org/10.1021/ja961107i]
[117]
Shi, Z.; He, C. Efficient functionalization of aromatic C-H bonds catalyzed by gold(III) under mild and solvent-free conditions. J. Org. Chem., 2004, 69(11), 3669-3671.
[http://dx.doi.org/10.1021/jo0497353] [PMID: 15152995]
[118]
Ferguson, J.; Zeng, F.; Alper, H. Synthesis of coumarins via Pd-catalyzed oxidative cyclocarbonylation of 2-vinylphenols. Org. Lett., 2012, 14(21), 5602-5605.
[http://dx.doi.org/10.1021/ol302725x] [PMID: 23092533]
[119]
Amézquita-Valencia, M.; Alper, H. PdI2-catalyzed regioselective cyclocarbonylation of 2-allyl phenols to dihydrocoumarins. Org. Lett., 2014, 16(22), 5827-5829.
[http://dx.doi.org/10.1021/ol5029157] [PMID: 25384601]
[120]
Tan, H.; Li, H.; Wang, J.; Wang, L. Ru-catalyzed decarboxylative annulations of α-keto acids with internal alkynes: dual roles of COOH as directing group and leaving group. Chemistry, 2015, 21(5), 1904-1907.
[http://dx.doi.org/10.1002/chem.201405715] [PMID: 25491036]
[121]
Dias, T.A.; Proença, M.F. An ecofriendly approach to the synthesis of 2-imino- and 2-oxo-3-phenylsulfonyl-2H-chromenes. Tetrahedron Lett., 2012, 53(39), 5235-5237.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.069]
[122]
Wei, W.; Wen, J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H. Direct and metal-free arylsulfonylation of alkynes with sulfonylhydrazides for the construction of 3-sulfonated coumarins. Chem. Commun., 2015, 51(4), 768-771.
[http://dx.doi.org/10.1039/C4CC08117J] [PMID: 25421259]
[123]
Yang, W.; Yang, S.; Li, P.; Wang, L. Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions. Chem. Commun., 2015, 51(35), 7520-7523.
[http://dx.doi.org/10.1039/C5CC00878F] [PMID: 25838160]
[124]
Siddaraju, Y.; Prabhu, K.R. Iodine-catalyzed cross dehydrogenative coupling reaction: Sulfenylation of enaminones using dimethyl sulfoxide as an oxidant. J. Org. Chem., 2017, 82(6), 3084-3093.
[http://dx.doi.org/10.1021/acs.joc.7b00073] [PMID: 28229592]
[125]
Bates, C.G.; Saejueng, P.; Doherty, M.Q.; Venkataraman, D. Copper-catalyzed synthesis of vinyl sulfides. Org. Lett., 2004, 6(26), 5005-5008.
[http://dx.doi.org/10.1021/ol0477935] [PMID: 15606121]
[126]
Yatsumonji, Y.; Okada, O.; Tsubouchi, A.; Takeda, T. Stereo-recognizing transformation of (E)-alkenyl halides into sulfides catalyzed by nickel(0) triethyl phosphite complex. Tetrahedron, 2006, 62(42), 9981-9987.
[http://dx.doi.org/10.1016/j.tet.2006.08.001]
[127]
Lin, Y.Y.; Wang, Y.J.; Lin, C.H.; Cheng, J.H.; Lee, C.F. Synthesis of alkenyl sulfides through the iron-catalyzed cross-coupling reaction of vinyl halides with thiols. J. Org. Chem., 2012, 77(14), 6100-6106.
[http://dx.doi.org/10.1021/jo3008397] [PMID: 22708836]
[128]
Mao, M.; Zhang, L.; Chen, Y.Z.; Zhu, J.; Wu, L. Palladium-catalyzed coupling of allenylphosphine oxides with N-tosylhydrazones toward phosphinyl [3]dendralenes. ACS Catal., 2017, 7(1), 181-185.
[http://dx.doi.org/10.1021/acscatal.6b02972]
[129]
Luo, K.; Zhang, L.; Ma, J.; Sha, Q.; Wu, L. Acetic acid mediated sulfonylation of allenylphosphine oxides: Divergent synthesis of bifunctionalized 1,3-butadienes and allenes. J. Org. Chem., 2017, 82(13), 6978-6985.
[http://dx.doi.org/10.1021/acs.joc.7b00813] [PMID: 28598618]
[130]
Zhang, L.; Zhu, J.; Ma, J.; Wu, L.; Zhang, W.H. Visible-light-driven α-allenylic C–O bond cleavage and alkenyl C–S formation: Metal-free and oxidant-free thiolation of allenyl phosphine oxides. Org. Lett., 2017, 19(23), 6308-6311.
[http://dx.doi.org/10.1021/acs.orglett.7b03052] [PMID: 29152985]
[131]
Yue, H.; Zhu, C.; Rueping, M. Cross‐coupling of sodium sulfinates with aryl, heteroaryl, and vinyl halides by nickel/photoredox dual catalysis. Angew. Chem. Int. Ed., 2018, 57(5), 1371-1375.
[http://dx.doi.org/10.1002/anie.201711104] [PMID: 29211330]
[132]
Cabrera-Afonso, M.J.; Lu, Z.P.; Kelly, C.B.; Lang, S.B.; Dykstra, R.; Gutierrez, O.; Molander, G.A. Engaging sulfinate salts via Ni/photoredox dual catalysis enables facile Csp2-SO2R coupling. Chem. Sci., 2018, 9(12), 3186-3191.
[http://dx.doi.org/10.1039/C7SC05402E] [PMID: 29732101]
[133]
Liu, N.W.; Hofman, K.; Herbert, A.; Manolikakes, G. Visible-light photoredox/nickel dual catalysis for the cross-coupling of sulfinic acid salts with aryl iodides. Org. Lett., 2018, 20(3), 760-763.
[http://dx.doi.org/10.1021/acs.orglett.7b03896] [PMID: 29336160]
[134]
Gong, X.; Chen, J.; Lai, L.; Cheng, J.; Sun, J.; Wu, J.; Benzylic, C. Benzylic C(sp 3)–H bond sulfonylation of 4-methylphenols with the insertion of sulfur dioxide under photocatalysis. Chem. Commun., 2018, 54(79), 11172-11175.
[http://dx.doi.org/10.1039/C8CC06567E] [PMID: 30229252]
[135]
Chawla, R.; Yadav, L.D.S. Organic photoredox catalysis enabled cross-coupling of arenediazonium and sulfinate salts: Synthesis of (un)symmetrical diaryl/alkyl aryl sulfones. Org. Biomol. Chem., 2019, 17(19), 4761-4766.
[http://dx.doi.org/10.1039/C9OB00864K] [PMID: 31032830]
[136]
Wu, W.; Ding, Y.; Xie, P.; Tang, Q.; Pittman, C.U., Jr; Zhou, A. Synthesis of imidazol[1,2-α]pyridine thioethers via using sulfur powder and halides as reactants. Tetrahedron, 2017, 73(15), 2151-2158.
[http://dx.doi.org/10.1016/j.tet.2017.02.065]
[137]
Klečka, M.; Pohl, R.; Čejka, J.; Hocek, M. Direct C–H sulfenylation of purines and deazapurines. Org. Biomol. Chem., 2013, 11(31), 5189-5193.
[http://dx.doi.org/10.1039/c3ob40881g] [PMID: 23824343]
[138]
Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T.S.A.; Liu, X. Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chem. Soc. Rev., 2015, 44(1), 291-314.
[http://dx.doi.org/10.1039/C4CS00239C] [PMID: 25309983]
[139]
Ravi, C.; Reddy, N.N.K.; Pappula, V.; Samanta, S.; Adimurthy, S. Copper-catalyzed three-component system for arylsulfenylation of imidazopyridines with elemental sulfur. J. Org. Chem., 2016, 81(20), 9964-9972.
[http://dx.doi.org/10.1021/acs.joc.6b01715] [PMID: 27661444]
[140]
Zhang, G.; Zhang, L.; Yi, H.; Luo, Y.; Qi, X.; Tung, C.H.; Wu, L.Z.; Lei, A. Visible-light induced oxidant-free oxidative cross-coupling for constructing allylic sulfones from olefins and sulfinic acids. Chem. Commun., 2016, 52(68), 10407-10410.
[http://dx.doi.org/10.1039/C6CC04109D] [PMID: 27481529]
[141]
Sun, P.; Yang, D.; Wei, W.; Jiang, M.; Wang, Z.; Zhang, L.; Zhang, H.; Zhang, Z.; Wang, Y.; Wang, H. Visible light-induced C–H sulfenylation using sulfinic acids. Green Chem., 2017, 19(20), 4785-4791.
[http://dx.doi.org/10.1039/C7GC01891F]
[142]
Kharasch, M.S.; Urry, W.H.; Jensen, E.V. Addition of derivatives of chlorinated acetic acids to olefins. J. Am. Chem. Soc., 1945, 67(9), 1926.
[http://dx.doi.org/10.1021/ja01225a517]
[143]
Reiser, O. Shining light on copper: Unique opportunities for visible-light-catalyzed atom transfer radical addition reactions and related processes. Acc. Chem. Res., 2016, 49(9), 1990-1996.
[http://dx.doi.org/10.1021/acs.accounts.6b00296] [PMID: 27556932]
[144]
Wille, U. Radical cascades initiated by intermolecular radical addition to alkynes and related triple bond systems. Chem. Rev., 2013, 113(1), 813-853.
[http://dx.doi.org/10.1021/cr100359d] [PMID: 23121090]
[145]
Chakrasali, P.; Kim, K.; Jung, Y.S.; Kim, H.; Han, S.B. Visible-light-mediated photoredox-catalyzed regio- and stereoselective chlorosulfonylation of alkynes. Org. Lett., 2018, 20(23), 7509-7513.
[http://dx.doi.org/10.1021/acs.orglett.8b03273] [PMID: 30489090]
[146]
Song, T.; Li, H.; Wei, F.; Tung, C.H.; Xu, Z. Gold/photoredox-cocatalyzed atom transfer thiosulfonylation of alkynes: Stereoselective synthesis of vinylsulfones. Tetrahedron Lett., 2019, 60(13), 916-919.
[http://dx.doi.org/10.1016/j.tetlet.2019.02.039]
[147]
Peng, Z.; Yin, H.; Zhang, H.; Jia, T. Regio- and stereoselective photoredox-catalyzed atom transfer radical addition of thiosulfonates to aryl alkynes. Org. Lett., 2020, 22(15), 5885-5889.
[http://dx.doi.org/10.1021/acs.orglett.0c01982] [PMID: 32698585]
[148]
Jiang, H.; Cheng, Y.; Wang, R.; Zheng, M.; Zhang, Y.; Yu, S. Synthesis of 6-alkylated phenanthridine derivatives using photoredox neutral somophilic isocyanide insertion. Angew. Chem. Int. Ed., 2013, 52(50), 13289-13292.
[http://dx.doi.org/10.1002/anie.201308376] [PMID: 24222447]
[149]
Pan, C.; Han, J.; Zhang, H.; Zhu, C. Radical arylalkoxycarbonylation of 2-isocyanobiphenyl with carbazates: Dual C-C bond formation toward phenanthridine-6-carboxylates. J. Org. Chem., 2014, 79(11), 5374-5378.
[http://dx.doi.org/10.1021/jo500842e] [PMID: 24807848]
[150]
Li, X.; Fang, X.; Zhuang, S.; Liu, P.; Sun, P. Photoredox catalysis: Construction of polyheterocycles via alkoxycarbonylation/addition/cyclization sequence. Org. Lett., 2017, 19(13), 3580-3583.
[http://dx.doi.org/10.1021/acs.orglett.7b01553] [PMID: 28656766]
[151]
Kumar, S. Ritika. A brief review of the biological potential of indole derivatives. Future J. Pharm. Sci., 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[152]
Ramkissoon, A.; Seepersaud, M.; Maxwell, A.; Jayaraman, J.; Ramsubhag, A. Isolation and antibacterial activity of indole alkaloids from Pseudomonas aeruginosa UWI-1. Molecules, 2020, 25(16), 3744.
[http://dx.doi.org/10.3390/molecules25163744] [PMID: 32824432]
[153]
Rekha, N.; Sharma, S.; Vijaya Anand, R. Visible-light-mediated radical reactions of indoles with para-quinone methides using eosin Y as an organophotoredox catalyst. Org. Biomol. Chem., 2023, 21(30), 6218-6224.
[http://dx.doi.org/10.1039/D3OB00852E] [PMID: 37482765]
[154]
Zhao, Y.N.; Luo, Y.C.; Wang, Z.Y.; Xu, P.F. A new approach to access difluoroalkylated diarylmethanes via visible-light photocatalytic cross-coupling reactions. Chem. Commun., 2018, 54(32), 3993-3996.
[http://dx.doi.org/10.1039/C8CC01486H] [PMID: 29611572]
[155]
Giri, R.; Goodell, J.R.; Xing, C.; Benoit, A.; Kaur, H.; Hiasa, H.; Ferguson, D.M. Synthesis and cancer cell cytotoxicity of substituted xanthenes. Bioorg. Med. Chem., 2010, 18(4), 1456-1463.
[http://dx.doi.org/10.1016/j.bmc.2010.01.018] [PMID: 20129790]
[156]
Yang, Y.Z.; Song, R.J.; Li, J.H. Intermolecular anodic oxidative cross-dehydrogenative C(sp3)–N bond-coupling reactions of xanthenes with azoles. Org. Lett., 2019, 21(9), 3228-3231.
[http://dx.doi.org/10.1021/acs.orglett.9b00947] [PMID: 30998374]
[157]
Yang, Y.Z.; Wu, Y.C.; Song, R.J.; Li, J.H. Electrochemical dehydrogenative cross-coupling of xanthenes with ketones. Chem. Commun., 2020, 56(55), 7585-7588.
[http://dx.doi.org/10.1039/D0CC02580A] [PMID: 32510076]
[158]
Robertson, L.P.; Lucantoni, L.; Duffy, S.; Avery, V.M.; Carroll, A.R. Acrotrione: An oxidized xanthene from the roots of Acronychia pubescens. J. Nat. Prod., 2019, 82(4), 1019-1023.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00956] [PMID: 30865443]
[159]
Costa e Silva, R.; Oliveira da Silva, L.; de Andrade Bartolomeu, A.; Brocksom, T.J.; de Oliveira, K.T. Recent applications of porphyrins as photocatalysts in organic synthesis: Batch and continuous flow approaches. Beilstein J. Org. Chem., 2020, 16, 917-955.
[http://dx.doi.org/10.3762/bjoc.16.83] [PMID: 32461773]
[160]
da Silva, M.; Forezi, L.K.F.; Marra, R.; de Carvalho da Silva, F.F.; Ferreira, V. Synthetic strategies for obtaining xanthenes. Curr. Org. Synth., 2017, 14(7), 929-951.
[http://dx.doi.org/10.2174/1570179414666170825100808]
[161]
Majek, M.; Jacobi von Wangelin, A. Mechanistic perspectives on organic photoredox catalysis for aromatic substitutions. Acc. Chem. Res., 2016, 49(10), 2316-2327.
[http://dx.doi.org/10.1021/acs.accounts.6b00293] [PMID: 27669097]
[162]
Boughelout, A.; Zebbar, N.; Macaluso, R.; Zohour, Z.; Bensouilah, A.; Zaffora, A.; Aida, M.S.; Kechouane, M.; Trari, M. Rhodamine (B) photocatalysis under solar light on high crystalline ZnO films grown by home-made DC sputtering. Optik (Stuttg.), 2018, 174, 77-85.
[http://dx.doi.org/10.1016/j.ijleo.2018.08.061]
[163]
Skjolding, L.M.; Jørgensen, L.; Dyhr, K.S.; Köppl, C.J.; McKnight, U.S.; Bauer-Gottwein, P.; Mayer, P.; Bjerg, P.L.; Baun, A. Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT. Water Res., 2021, 197, 117109.
[http://dx.doi.org/10.1016/j.watres.2021.117109] [PMID: 33857893]
[164]
Deng, P.; Xiao, J.; Chen, J.; Feng, J.; Wei, Y.; Zuo, J.; Liu, J.; Li, J.; He, Q. Polyethylenimine-carbon nanotubes composite as an electrochemical sensing platform for sensitive and selective detection of toxic rhodamine B in soft drinks and chilli-containing products. J. Food Compos. Anal., 2022, 107, 104386.
[http://dx.doi.org/10.1016/j.jfca.2022.104386]
[165]
Chakraborty, M.; Bera, K.K.; Chatterjee, S.; Ghosh, A.; Bhattacharya, S.K. Synthesis of mesoporous BiOI flower and facile in-situ preparation of BiOI/BiOCl mixture for enhanced photocatalytic degradation of toxic dye, Rhodamine-B. J. Photochem. Photobiol., 2021, 8, 100077.
[http://dx.doi.org/10.1016/j.jpap.2021.100077]
[166]
Gupta, R.; Ranjan, S.; Yadav, A.; Verma, B.; Malhotra, K.; Madan, M.; Chopra, O.; Jain, S.; Gupta, S.; Joshi, A.; Bhasin, C.; Mudgal, P. Toxic effects of food colorants erythrosine and tartrazine on zebrafish embryo development. Curr. Res. Nutr. Food Sci., 2019, 7(3), 876-885.
[http://dx.doi.org/10.12944/CRNFSJ.7.3.26]
[167]
Marwa, G.B.; Magdy, M.M.; Maha, M.K.; Omayma, H. Effect of synthetic coloring dye erythrosine (E127) in rats. J. Environ. Sci., 2019, 46(1), 21-34.
[http://dx.doi.org/10.21608/jes.2019.67965]
[168]
Chequer, F.M.D.; Venâncio, V.P.; Bianchi, M.L.P.; Antunes, L.M.G. Genotoxic and mutagenic effects of erythrosine B, a xanthene food dye, on HepG2 cells. Food Chem. Toxicol., 2012, 50(10), 3447-3451.
[http://dx.doi.org/10.1016/j.fct.2012.07.042] [PMID: 22847138]
[169]
Pitre, S.P.; McTiernan, C.D.; Scaiano, J.C. Library of cationic organic dyes for visible-light-driven photoredox transformations. ACS Omega, 2016, 1(1), 66-76.
[http://dx.doi.org/10.1021/acsomega.6b00058] [PMID: 31457117]
[170]
Mastandrea, M.M.; Pericàs, M.A. Photoredox dual catalysis: A fertile playground for the discovery of new reactivities. Eur. J. Inorg. Chem., 2021, 2021(34), 3421-3431.
[http://dx.doi.org/10.1002/ejic.202100455]