The Natural Products Journal

Author(s): Preet Amol Singh, Shiva Tushir*, Subhajit Hazra, Sukhvinder Singh Purewal and Gaurav Agarwal

DOI: 10.2174/0122103155293641240417072907

DownloadDownload PDF Flyer Cite As
Novel Approaches for the Extraction and Identification of Phytoconstituents from Herbs and Spices

Article ID: e060624230784 Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

An important determinant of population health is the caliber and quality of food that can directly affect the health of the population. Herbs and spices are now the primary ingredients in the global food and nutraceutical industry. Traditional methods for extraction of active metabolites of herbs and spices may lead to lowered extraction efficiency due to high solvent consumption and a longer extraction period. These issues can be resolved by the use of novel green and sustainable extraction techniques. The present paper aims to discuss innovative extraction and identification techniques for herbs and spices. Microwave-aided extraction (MAE), ultrasound-assisted extraction (UAE), supercritical fluid extraction (SFE), DNA barcoding, THz-S, e-nose, near-infrared (NIR) spectroscopy, hyperspectral imaging, Raman spectroscopy possess environment-friendly instrumentations, make lesser use of chemicals, and reduce the consumption of solvent. The use of cuttingedge technology in place of outdated ones can improve product quality and help the general public maintain high levels of health.

Keywords: Extraction, food, green chemistry, herbs, industry, spices, sustainable development goals, quality.

Graphical Abstract

[1]
Singh, P.A.; Bajwa, N.; Baldi, A. Possible role of traditional systems of medicine to manage COVID-19: A review. Isr. J. Plant Sci., 2021, 68(1-2), 3-28.
[http://dx.doi.org/10.1163/22238980-bja10021]
[2]
Elleby, C.; Domínguez, I.P.; Adenauer, M.; Genovese, G. Impacts of the COVID-19 pandemic on the global agricultural markets. Environ. Resour. Econ., 2020, 76(4), 1067-1079.
[http://dx.doi.org/10.1007/s10640-020-00473-6] [PMID: 32836856]
[3]
Giacalone, D.; Wendin, K.; Kremer, S.; Frøst, M.B.; Bredie, W.L.P.; Olsson, V.; Otto, M.H.; Skjoldborg, S.; Lindberg, U.; Risvik, E. Health and quality of life in an aging population – Food and beyond. Food Qual. Prefer., 2016, 47, 166-170.
[http://dx.doi.org/10.1016/j.foodqual.2014.12.002]
[4]
Salar, R.K.; Purewal, S.S. Improvement of DNA damage protection and antioxidant activity of biotransformed pearl millet (Pennisetum glaucum) cultivar PUSA-415 using Aspergillus oryzae MTCC 3107. Biocatal. Agric. Biotechnol., 2016, 8, 221-227.
[http://dx.doi.org/10.1016/j.bcab.2016.10.005]
[5]
Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[6]
Purewal, S.S.; Kamboj, R.; Sandhu, K.S.; Kaur, P.; Sharma, K.; Kaur, M.; Salar, R.K.; Punia, S.; Siroha, A.K. Unraveling the effect of storage duration on antioxidant properties, physicochemical and sensorial parameters of ready to serve Kinnow-Amla beverages. Applied Food Research, 2022, 2(1), 100057.
[http://dx.doi.org/10.1016/j.afres.2022.100057]
[7]
Potter, N.N.; Hotchkiss, J.H. Characteristics of the Food Industry.Food Science; Springer Science & Business Media, 2012.
[8]
Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med., 2017, 7(2), 234-244.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.006] [PMID: 28417092]
[9]
Fox, R. Food and Eating: An Anthropological Perspective. J. Soc. Issues, 2003, 1.
[10]
Barthes, R. Toward a Psychosociology of Contemporary Food Consumption. In: Food and Culture; Routledge, 2018.
[http://dx.doi.org/10.4324/9781315680347-2]
[11]
Boccia, F.; Punzo, G. Nutraceuticals: Some remarks by a choice experiment on food, health and new technologies. Food Res. Int., 2020, 130(108888), 108888.
[http://dx.doi.org/10.1016/j.foodres.2019.108888] [PMID: 32156347]
[12]
El-Saber Batiha, G.; Magdy Beshbishy, A.; GWasef, L. Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of garlic (Allium sativum L.): A review. Nutrients, 2020, 12(3), 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[13]
Mukherjee, P.K. Quality Control and Evaluation of Herbal Drugs: Evaluating Natural Products and Traditional Medicine; Elsevier, 2019, pp. 1-735.
[14]
Gu, Z.M.; Wang, L-Q.; Wu, J. Mass defect filter-a new tool to expedite screening and dereplication of natural products and generate natural product profiles. Nat. Prod. J., 2011, 1(2), 135-145.
[http://dx.doi.org/10.2174/2210315511101020135]
[15]
D’Amore, G.; Di Vaio, A.; Balsalobre-Lorente, D.; Boccia, F. Artificial intelligence in the water–energy–food model: A holistic approach towards sustainable development goals. Sustainability, 2022, 14(2), 867.
[http://dx.doi.org/10.3390/su14020867]
[16]
Purewal, S.S.; Kaur, P.; Garg, G.; Sandhu, K.S.; Salar, R.K. Antioxidant, anti-cancer, and debittering potential of edible fungi (Aspergillus oryzae) for bioactive ingredient in personalized foods. Biocatal. Agric. Biotechnol., 2022, 43(102406), 102406.
[http://dx.doi.org/10.1016/j.bcab.2022.102406]
[17]
Goldberg. Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals ; Springer Science & Business Media, 2012.
[18]
Wichchukit, S.; Oztop, M.H.; McCarthy, M.J.; McCarthy, K.L. Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocoll., 2013, 33(1), 66-73.
[http://dx.doi.org/10.1016/j.foodhyd.2013.02.013]
[19]
Gupta, C.; Prakash, D.; Gupta, S. Relationships between bioactive food components and their health benefits. In: Introduction to Functional Food Science Textbook , 2013; pp. 66-85.
[20]
Plasek, B.; Lakner, Z.; Kasza, G.; Temesi, Á. Consumer evaluation of the role of functional food products in disease prevention and the characteristics of target groups. Nutrients, 2019, 12(1), 69.
[http://dx.doi.org/10.3390/nu12010069] [PMID: 31888009]
[21]
Majeed, M.; Majeed, S.; Nagabhushanam, K.; Gnanamani, M.; Mundkur, L. Lesser Investigated Natural Ingredients for the Management of Obesity. Nutrients, 2021, 13(2), 510.
[http://dx.doi.org/10.3390/nu13020510] [PMID: 33557185]
[22]
Shi, J.; Nawaz, H.; Pohorly, J.; Mittal, G.; Kakuda, Y.; Jiang, Y. Extraction of polyphenolics from plant material for functional foods—engineering and technology. Food Rev. Int., 2005, 21(1), 139-166.
[http://dx.doi.org/10.1081/FRI-200040606]
[23]
Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods. Compr. Rev. Food Sci. Food Saf., 2014, 13(6), 1192-1206.
[http://dx.doi.org/10.1111/1541-4337.12109]
[24]
Granato, D.; Branco, G.F.; Nazzaro, F.; Cruz, A.G.; Faria, J.A.F. Functional foods and nondairy probiotic food development: Trends, concepts, and products. Compr. Rev. Food Sci. Food Saf., 2010, 9(3), 292-302.
[http://dx.doi.org/10.1111/j.1541-4337.2010.00110.x] [PMID: 33467814]
[25]
Gul, K.; Singh, A.K.; Jabeen, R. Nutraceuticals and functional foods: The foods for the future world. Crit. Rev. Food Sci. Nutr., 2016, 56(16), 2617-2627.
[http://dx.doi.org/10.1080/10408398.2014.903384] [PMID: 25629711]
[26]
Gilani, A.H. Atta-ur-Rahman, Trends in ethnopharmacology. J. Ethnopharmacol., 2005, 100(1-2), 43-49.
[http://dx.doi.org/10.1016/j.jep.2005.06.001] [PMID: 16127805]
[27]
Joensuu, H.; Trent, J.C.; Reichardt, P. Practical management of tyrosine kinase inhibitor-associated side effects in GIST. Cancer Treat. Rev., 2011, 37(1), 75-88.
[http://dx.doi.org/10.1016/j.ctrv.2010.04.008] [PMID: 20570050]
[28]
Gutiérrez, T.J. Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydr. Polym., 2017, 165, 169-179.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.016] [PMID: 28363537]
[29]
Salami, A.; Seydi, E.; Pourahmad, J. Use of nutraceuticals for prevention and treatment of cancer. Iran. J. Pharm. Res., 2013, 12(3), 219-220.
[PMID: 24250626]
[30]
Bernal, J.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Advanced analysis of nutraceuticals. J. Pharm. Biomed. Anal., 2011, 55(4), 758-774.
[http://dx.doi.org/10.1016/j.jpba.2010.11.033] [PMID: 21168989]
[31]
Santini, A.; Novellino, E. Nutraceuticals: Beyond the diet before the drugs. Curr. Bioact. Compd., 2014, 10(1), 1-12.
[http://dx.doi.org/10.2174/157340721001140724145924]
[32]
Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal., 2011, 24(7), 1043-1048.
[http://dx.doi.org/10.1016/j.jfca.2011.01.008]
[33]
Srinivasan, K. Role of spices beyond food flavoring: Nutraceuticals with multiple health effects. Food Rev. Int., 2005, 21(2), 167-188.
[http://dx.doi.org/10.1081/FRI-200051872]
[34]
Donaghy, J.A.; Danyluk, M.D.; Ross, T.; Krishna, B.; Farber, J. Big data impacting dynamic food safety risk management in the food chain. Front. Microbiol., 2021, 12, 668196.
[http://dx.doi.org/10.3389/fmicb.2021.668196] [PMID: 34093486]
[35]
Benton, T.G. Using scenario analyses to address the future of food. EFSA J., 2019, 17(Suppl. 1), e170703.
[http://dx.doi.org/10.2903/j.efsa.2019.e170703] [PMID: 32626440]
[36]
Székács, A.; Wilkinson, M.G.; Mader, A.; Appel, B. Environmental and food safety of spices and herbs along global food chains. Food Control, 2018, 83, 1-6.
[http://dx.doi.org/10.1016/j.foodcont.2017.06.033]
[37]
Ivanišová, E.; Kačániová, M.; Savitskaya, A. Medicinal herbs: Important source of bioactive compounds for food industry. In: Herbs and Spices - New Processing Technologies; IntechOpen, 2021.
[38]
Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Bodirsky, B.L.; Pradhan, P.; Barrett, C.B.; Benton, T.G.; Hall, A.; Pikaar, I.; Bogard, J.R.; Bonnett, G.D.; Bryan, B.A.; Campbell, B.M.; Christensen, S.; Clark, M.; Fanzo, J.; Godde, C.M.; Jarvis, A.; Loboguerrero, A.M.; Mathys, A.; McIntyre, C.L.; Naylor, R.L.; Nelson, R.; Obersteiner, M.; Parodi, A.; Popp, A.; Ricketts, K.; Smith, P.; Valin, H.; Vermeulen, S.J.; Vervoort, J.; van Wijk, M.; van Zanten, H.H.E.; West, P.C.; Wood, S.A.; Rockström, J. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health, 2021, 5(1), e50-e62.
[http://dx.doi.org/10.1016/S2542-5196(20)30277-1] [PMID: 33306994]
[39]
Giuseppe, E.; Monica, S. GianFranco, G. Science for Food Safety, Security and Quality: A Review - Part 2. Quality of Life (Banja Luka) -. Apeiron, 2010, 1(1)
[http://dx.doi.org/10.7251/QOL1001041G]
[40]
Yu, J.; Wu, X.; Liu, C.; Newmaster, S.; Ragupathy, S.; Kress, W.J. Progress in the use of DNA barcodes in the identification and classification of medicinal plants. Ecotoxicol. Environ. Saf., 2021, 208(111691), 111691.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111691] [PMID: 33396023]
[41]
Opara, E.; Chohan, M. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int. J. Mol. Sci., 2014, 15(10), 19183-19202.
[http://dx.doi.org/10.3390/ijms151019183] [PMID: 25340982]
[42]
Cho, H.D.; Suh, J.H.; Feng, S.; Eom, T.; Kim, J.; Hyun, S.M.; Kim, J.; Wang, Y.; Han, S.B. Comprehensive analysis of multi-class mycotoxins in twenty different species of functional and medicinal herbs using liquid chromatography–tandem mass spectrometry. Food Control, 2019, 96, 517-526.
[http://dx.doi.org/10.1016/j.foodcont.2018.10.007]
[43]
Dorman, H.J.D.; Surai, P.; Deans, S.G. In vitro antioxidant activity of a number of plant essential oils and phytoconstituents. J. Essent. Oil Res., 2000, 12(2), 241-248.
[http://dx.doi.org/10.1080/10412905.2000.9699508]
[44]
Salgueiro, L.; Martins, A.P.; Correia, H. Raw materials: the importance of quality and safety. A review. Flavour Fragrance J., 2010, 25(5), 253-271.
[http://dx.doi.org/10.1002/ffj.1973]
[45]
Cardellina, J.H., II Challenges and opportunities confronting the botanical dietary supplement industry. J. Nat. Prod., 2002, 65(7), 1073-1084.
[http://dx.doi.org/10.1021/np0200515] [PMID: 12141880]
[46]
Bonnet, P.; Joly, A.; Goëau, H.; Champ, J.; Vignau, C.; Molino, J.F.; Barthélémy, D.; Boujemaa, N. Plant identification: man vs. machine. Multimedia Tools Appl., 2016, 75(3), 1647-1665.
[http://dx.doi.org/10.1007/s11042-015-2607-4]
[47]
Thavamoney, N.; Sivanadian, L.; Tee, L.H.; Khoo, H.E.; Prasad, K.N.; Kong, K.W. Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. J. Food Sci. Technol., 2018, 55(7), 2523-2532.
[http://dx.doi.org/10.1007/s13197-018-3170-6] [PMID: 30042568]
[48]
Rahman, M.; Hossain, S.; Rahaman, A.; Fatima, N.; Nahar, T.; Uddin, B.; Basunia, M.A. Antioxidant activity of centellaasiatica (linn.) urban: Impact of extraction solvent polarity. J. Pharmacogn. Phytochem., 2013, 1(6), 27-32.
[49]
Trandafir, I.; Cosmulescu, S.; Nour, V. Phenolic profile and antioxidant capacity of walnut extract as influenced by the extraction method and solvent. Int. J. Food Eng., 2017, 13(1), 20150284.
[http://dx.doi.org/10.1515/ijfe-2015-0284]
[50]
Osman, A.G.; Raman, V.; Haider, S.; Ali, Z.; Chittiboyina, A.G.; Khan, I.A. Overview of analytical tools for the identification of adulterants in commonly traded herbs and spices. J. AOAC Int., 2019, 102(2), 376-385.
[http://dx.doi.org/10.5740/jaoacint.18-0389] [PMID: 30646970]
[51]
Hildreth, J.; Hrabeta-Robinson, E.; Applequist, W.; Betz, J.; Miller, J. Standard operating procedure for the collection and preparation of voucher plant specimens for use in the nutraceutical industry. Anal. Bioanal. Chem., 2007, 389(1), 13-17.
[http://dx.doi.org/10.1007/s00216-007-1405-x] [PMID: 17572883]
[52]
Hayouni, E.; Abedrabba, M.; Bouix, M.; Hamdi, M. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and] Juniperus phoenicea L. fruit extracts. Food Chem., 2007, 105(3), 1126-1134.
[http://dx.doi.org/10.1016/j.foodchem.2007.02.010]
[53]
Fotsing Yannick Stéphane, F.; Kezetas Jean Jules, B.; El-Saber Batiha, G.; Ali, I.; Ndjakou Bruno, L. Extraction of Bioactive Compounds from Medicinal Plants and Herbs. Natural Medicinal Plants; IntechOpen, 2022.
[http://dx.doi.org/10.5772/intechopen.98602]
[54]
Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds. Food Chem., 2013, 136(2), 947-954.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.007] [PMID: 23122148]
[55]
Evans, D.E.; Coleman, J.O.D.; Kearns, A. An introduction to plant cell and tissue culture. Plant Cell Culture; Taylor & Francis, 2020, pp. 1-5.
[http://dx.doi.org/10.1201/9781003076940-1]
[56]
Farzaneh, V.; Carvalho, I.S. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind. Crops Prod., 2015, 65, 247-258.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.057]
[57]
Thakur, R.; Jain, N.; Pathak, R.; Sandhu, S.S. Practices in wound healing studies of plants. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-17.
[http://dx.doi.org/10.1155/2011/438056] [PMID: 21716711]
[58]
Liu, W.; Liu, C.; Yu, J.; Zhang, Y.; Li, J.; Chen, Y.; Zheng, L. Discrimination of geographical origin of extra virgin olive oils using terahertz spectroscopy combined with chemometrics. Food Chem., 2018, 251, 86-92.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.081] [PMID: 29426428]
[59]
Zhang, Q.; Wang, C.; Ma, Y.; Zhu, E.; Wang, Z. UPLC‐ESI/MS determination of 17 active constituents in two categorized formulas of traditional Chinese medicine, Sanhuang Xiexin Tang and Fuzi Xiexin Tang: Application in comparing the differences in decoctions and macerations. Biomed. Chromatogr., 2013, 27(8), 1079-1088.
[http://dx.doi.org/10.1002/bmc.2910] [PMID: 23629873]
[60]
Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Separ. Purif. Tech., 2017, 179, 369-380.
[http://dx.doi.org/10.1016/j.seppur.2017.01.055]
[61]
Morata, C.; González, W.; Tesfaye, I.; Loira, J.A. Maceration and Fermentation: New technologies to increase extraction. In: Red wine tech; , 2019; pp. 35-49.
[62]
Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem., 2016, 194, 135-142.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.008] [PMID: 26471536]
[63]
Albuquerque, B.R.; Prieto, M.A.; Barreiro, M.F.; Rodrigues, A.; Curran, T.P.; Barros, L.; Ferreira, I.C.F.R. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Ind. Crops Prod., 2017, 95, 404-415.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.050]
[64]
Avram, A.; Stoica, T.; Dobre, M. Extraction of vegetable oils from ground seeds by percolation techniques. UPB Scientific Bulletin, Series B, 2014, 76(2), 13-22.
[65]
Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants, 2015, 4, 1-6.
[http://dx.doi.org/10.4172/2167-0412.1000196]
[66]
Zhang, H.; Wang, W.; Fu, Z.M.; Han, C.C.; Song, Y. Study on comparison of extracting fucoxanthin from undaria pinnatifida with percolation extraction and refluxing methods. Zhongguo Shipin Tianjiaji, 2014, 9, 91-95.
[67]
Manirakiza, P.; Covaci, A.; Schepens, P. Comparative study on total lipid determination using soxhlet, roese-gottlieb, bligh & dyer, and modified bligh & dyer extraction methods. J. Food Compos. Anal., 2001, 14(1), 93-100.
[http://dx.doi.org/10.1006/jfca.2000.0972]
[68]
Hawthorne, S.B.; Grabanski, C.B.; Martin, E.; Miller, D.J. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. J. Chromatogr. A, 2000, 892(1-2), 421-433.
[http://dx.doi.org/10.1016/S0021-9673(00)00091-1] [PMID: 11045502]
[69]
López-Bascón, M.A.; De Castro, M.L. Liquid-Phase Extraction. In: Soxhlet extraction; , 2020; pp. 327-354.
[70]
Tandon, S.; Rane, S. Decoction and Hot Continuous Extraction Techniques. In: Extraction technologies for medicinal and aromatic plants; Central Institute of Medicinal and Aromatic Plants: Lucknow, India, 2008.
[71]
Wei, G.W.; Yang, X.J.; Wang, X.X.; Hu, L. The study on optimization of soxhlet extraction process for ursolic acid from cynomorium. Shipin Yanjiu Yu Kaifa, 2013, 34(7), 85-88.
[72]
Kasiramar, G. Significant role of soxhlet extraction process in phytochemical research. Mintage J. Pharm. Med. Sci., 2018, 7, 43-47.
[73]
Bolonkin, A.; Friedlander, J.; Neumann, S. Innovative unconventional oil extraction technologies. Fuel Process. Technol., 2014, 124, 228-242.
[http://dx.doi.org/10.1016/j.fuproc.2014.01.024]
[74]
Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules, 2010, 15(9), 6365-6374.
[http://dx.doi.org/10.3390/molecules15096365] [PMID: 20877228]
[75]
Upadhyay, R.; Ramalakshmi, K.; Jagan Mohan Rao, L. Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem., 2012, 130(1), 184-188.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.057]
[76]
Wei, Q.; Gui, Z.; Qiu, X.U.; Fei, J.I. Microwave-assisted extraction and antioxidant activities in vitro of polysaccharides from cercischinensis bunge flowers. Shipin Kexue, 2015, 36, 39-44.
[77]
Akhtar, I.; Javad, S.; Ansari, M.; Ghaffar, N.; Tariq, A. Process optimization for microwave assisted extraction of Foeniculum vulgare Mill using response surface methodology. J. King Saud Univ. Sci., 2020, 32(2), 1451-1458.
[http://dx.doi.org/10.1016/j.jksus.2019.11.041]
[78]
Jafari, S.M.; Mahdavee Khazaei, K.; Assadpour, E. Production of a natural color through microwave‐assisted extraction of saffron tepal’s anthocyanins. Food Sci. Nutr., 2019, 7(4), 1438-1445.
[http://dx.doi.org/10.1002/fsn3.978] [PMID: 31024717]
[79]
Bonomini, T.; Góes, J.; Machado, M.; Silva, R.; Malheiros, A. Development and optimization of a microwave-assisted extraction of plumieride from Allamanda cathartica L. flowers. Quim. Nova, 2017, 41(1)
[http://dx.doi.org/10.21577/0100-4042.20170153]
[80]
Jusoh, Y.M.M.; Idris, A.A.; Khairuddin, N.; Zaidel, D.N.A.; Hashim, Z.; Mahmooda, N.A.N. Effect of solvent PH, microwave power and extraction time on microwave-assisted extraction of hibiscus rosa-sinensis. Chem. Eng. Trans., 2018, 63, 541-546.
[81]
Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G.S.V. Microwave-assisted extraction of phenolic antioxidants from potato peels. Molecules, 2011, 16(3), 2218-2232.
[http://dx.doi.org/10.3390/molecules16032218] [PMID: 21383659]
[82]
Lovrić, V.; Putnik, P.; Bursać Kovačević, D.; Jukić, M.; Dragović-Uzelac, V. The effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food Technol. Biotechnol., 2017, 55(2), 243-250.
[http://dx.doi.org/10.17113/ftb.55.02.17.4687] [PMID: 28867955]
[83]
Allaf, T.; Tomao, V.; Ruiz, K.; Chemat, F. Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants. Ultrason. Sonochem., 2013, 20(1), 239-246.
[http://dx.doi.org/10.1016/j.ultsonch.2012.05.013] [PMID: 22742902]
[84]
Dhobi, V.; Mandal, S. Optimization of microwave assisted extraction of bioactive flavonolignan-silybinin. J. Chem. Metrol., 2009, 3(1), 13-23.
[85]
Chemat, F. Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem., 2011, 18(4), 813-835.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.023] [PMID: 21216174]
[86]
Fathimah, R.N.; Setyaningsih, W.; Carrera, C.; Palma, M. Microwave-assisted extraction of phenolics from hibiscus sabdariffa flowers: Method development and validation. Proceedings, 2020, 70(1), 51.
[87]
Zengin, G.; Cvetanović, A.; Gašić, U.; Stupar, A.; Bulut, G.; Senkardes, I.; Dogan, A.; Seebaluck-Sandoram, R.; Rengasamy, K.R.R.; Sinan, K.I.; Mahomoodally, M.F. Chemical composition and bio-functional perspectives of Erica arborea L. extracts obtained by different extraction techniques: Innovative insights. Ind. Crops Prod., 2019, 142(111843), 111843.
[http://dx.doi.org/10.1016/j.indcrop.2019.111843]
[88]
Bhadoriya, S.; Tiwari, M.; Mourya, S. Microwave-assisted extraction of flavonoids from zanthoxylumbudrunga W. optimization of extraction process. Asian J. Pharm. Sci., 2011, 1(1), 81-86.
[89]
Chen, X. Liu; Jiang; Zeng, Microwave-assisted extraction of polysaccharides from solanum nigrum. J. Cent. South Univ. Technol., 2005, 12(5), 556-560.
[http://dx.doi.org/10.1007/s11771-005-0122-x]
[90]
Xiao, W.; Han, L.; Shi, B. Microwave-assisted extraction of flavonoids from Radix Astragali. Separ. Purif. Tech., 2008, 62(3), 614-618.
[http://dx.doi.org/10.1016/j.seppur.2008.03.025]
[91]
Sun, Y.; Liao, X.; Wang, Z.; Hu, X.; Chen, F. Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography – mass spectrometry. Eur. Food Res. Technol., 2007, 225(3-4), 511-523.
[http://dx.doi.org/10.1007/s00217-006-0447-1]
[92]
Yan, M.M.; Liu, W.; Fu, Y.J.; Zu, Y.G.; Chen, C.Y.; Luo, M. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food Chem., 2010, 119(4), 1663-1670.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.021]
[93]
Zhang, B.; Yang, R.; Liu, C.Z. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Separ. Purif. Tech., 2008, 62(2), 480-483.
[http://dx.doi.org/10.1016/j.seppur.2008.02.013]
[94]
Lei, Z.; Jinping, Z. Optimization of microwave-assisted extraction of polysaccharides in the flower of platycodon grandiflorum by response surface methodology. Int. J. Agric. Biol. Eng., 2009, 2(2), 65-74.
[95]
Adhami, S.; Farooqi, H.; Abdin, M.Z.; Prasad, R.; Malik, A.A. Chemical Profiling of Chlorophytum comosum (Thunb.) Jaques by GC-MS/LC-ESIMS and its Antiproliferative Effects on Human Carcinoma Cell Lines. Anticancer. Agents Med. Chem., 2021, 21(13), 1697-1707.
[http://dx.doi.org/10.2174/1871520620666201123085300] [PMID: 33231161]
[96]
Rzhepakovsky, I.V.; Areshidze, D.A.; Avanesyan, S.S.; Grimm, W.D.; Filatova, N.V.; Kalinin, A.V.; Kochergin, S.G.; Kozlova, M.A.; Kurchenko, V.P.; Sizonenko, M.N.; Terentiev, A.A.; Timchenko, L.D.; Trigub, M.M.; Nagdalian, A.A.; Piskov, S.I. Phytochemical characterization, antioxidant activity, and cytotoxicity of methanolic leaf extract of chlorophytum comosum (Green Type) (Thunb.) Jacq. Molecules, 2022, 27(3), 762.
[http://dx.doi.org/10.3390/molecules27030762] [PMID: 35164026]
[97]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[98]
Cravotto, G.; Binello, A. Low-Frequency, High-Power Ultrasound-Assisted Food Component Extraction. Innovative Food Processing Technologies; Elsevier, 2016, pp. 3-29.
[http://dx.doi.org/10.1016/B978-0-08-100294-0.00001-8]
[99]
Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry — A review. Innov. Food Sci. Emerg. Technol., 2008, 9(2), 161-169.
[http://dx.doi.org/10.1016/j.ifset.2007.04.014]
[100]
Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf., 2017, 16(2), 295-315.
[http://dx.doi.org/10.1111/1541-4337.12253] [PMID: 33371540]
[101]
Herrero, M.; Sánchez-Camargo, A.P.; Cifuentes, A.; Ibáñez, E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt. Chem., 2015, 71, 26-38.
[http://dx.doi.org/10.1016/j.trac.2015.01.018]
[102]
Hoff, R.B.; Pizzolato, T.M. Combining extraction and purification steps in sample preparation for environmental matrices: A review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications. Trends Analyt. Chem., 2018, 109, 83-96.
[http://dx.doi.org/10.1016/j.trac.2018.10.002]
[103]
Luo, J.; Liang, Z.; Yang, X. Comparative study on extraction of febrifugine from traditional chinese medicine dichroa febrifuga by reflux method and ultrasonic method. Shizhen Guo Yi Guo Yao, 2015, 26(6), 1532-1533.
[104]
Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy , 2017, 7(3), 47.
[http://dx.doi.org/10.3390/agronomy7030047]
[105]
Gadjalova, A.V.; Mihaylova, D.S. Ultrasound-assisted extraction of medicinal plants and evaluation of their biological activity. Food Res., 2019, 3(5), 530-536.
[http://dx.doi.org/10.26656/fr.2017.3(5).128]
[106]
Raut, P.; Bhosle, D.; Janghel, A.; Deo, S.; Verma, C.; Kumar, S.S.; Agrawal, M.; Amit, N.; Sharma, M.; Giri, T.; Tripathi, D.K. Ajazuddin; Alexander, A. Emerging pressurized liquid extraction (PLE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals. Res J Pharm Technol, 2015, 8(6), 800.
[http://dx.doi.org/10.5958/0974-360X.2015.00129.8]
[107]
Aliakbarian, B.; Fathi, A.; Perego, P.; Dehghani, F. Extraction of antioxidants from winery wastes using subcritical water. J. Supercrit. Fluids, 2012, 65, 18-24.
[http://dx.doi.org/10.1016/j.supflu.2012.02.022]
[108]
Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol., 2020, 97, 156-169.
[http://dx.doi.org/10.1016/j.tifs.2020.01.014]
[109]
Gizir, A.M.; Turker, N.; Artuvan, E. Pressurized acidified water extraction of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) anthocyanins. Eur. Food Res. Technol., 2008, 226(3), 363-370.
[http://dx.doi.org/10.1007/s00217-006-0546-z]
[110]
Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review. Antioxidants, 2023, 12(3), 612.
[http://dx.doi.org/10.3390/antiox12030612] [PMID: 36978860]
[111]
Bhusnure, O.G.; Gholve, S.B.; Giram, P.S.; Borsure, V.S.; Jadhav, P.P.; Satpute, V.V.; Sangshetti, J.N. Importance of supercritical fluid extraction techniques in pharmaceutical industry: A review. Int. J. Pharm. Sci. Res., 2015, (5), 3785-3801.
[112]
Sowbhagya, H.B.; Chitra, V.N. Enzyme-assisted extraction of flavorings and colorants from plant materials. Crit. Rev. Food Sci. Nutr., 2010, 50(2), 146-161.
[http://dx.doi.org/10.1080/10408390802248775] [PMID: 20112157]
[113]
Radovanović, K.; Gavarić, N.; Švarc-Gajić, J.; Brezo-Borjan, T.; Zlatković, B.; Lončar, B.; Aćimović, M. Subcritical water extraction as an effective technique for the isolation of phenolic compounds of achillea species. Processes, 2022, 11(1), 86.
[http://dx.doi.org/10.3390/pr11010086]
[114]
Arumugham, T.K.R.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications – A review. Chemosphere, 2021, 271, 129525.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129525] [PMID: 33445028]
[115]
Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Trejo, A.; Guerrero-Beltrán, J.Á. CO2 -supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J. Food Eng., 2017, 200, 81-86.
[http://dx.doi.org/10.1016/j.jfoodeng.2016.12.022]
[116]
Khoo, K.S.; Ooi, C.W.; Chew, K.W.; Foo, S.C.; Lim, J.W.; Tao, Y.; Jiang, N.; Ho, S.H.; Show, P.L. Permeabilization of Haematococcus pluvialis and solid-liquid extraction of astaxanthin by CO2-based alkyl carbamate ionic liquids. Chem. Eng. J., 2021, 411(128510), 128510.
[http://dx.doi.org/10.1016/j.cej.2021.128510]
[117]
Khoo, K.S.; Ooi, C.W.; Chew, K.W.; Chia, S.R.; Foo, S.C.; Ng, H.S.; Show, P.L. Extraction of fucoxanthin from Chaetoceros calcitrans by electropermeabilization-assisted liquid biphasic flotation system. J. Chromatogr. A, 2022, 1668(462915), 462915.
[http://dx.doi.org/10.1016/j.chroma.2022.462915] [PMID: 35259646]
[118]
Falcão, M.A.; Scopel, R.; Almeida, R.N.; do Espirito Santo, A.T.; Franceschini, G.; Garcez, J.J.; Vargas, R.M.F.; Cassel, E. Supercritical fluid extraction of vinblastine from Catharanthus roseus. J. Supercrit. Fluids, 2017, 129, 9-15.
[http://dx.doi.org/10.1016/j.supflu.2017.03.018]
[119]
Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol., 2012, 30(1), 37-44.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.014] [PMID: 21816495]
[120]
Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Rimac Brnčić, S. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol., 2018, 76, 28-37.
[http://dx.doi.org/10.1016/j.tifs.2018.03.022]
[121]
Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int., 2018, 108, 309-330.
[http://dx.doi.org/10.1016/j.foodres.2018.03.006] [PMID: 29735063]
[122]
Mounir, S.; Halle, D.; Allaf, K. Characterization of pure cheese snacks and expanded granule powders textured by the instant controlled pressure drop (DIC) process. Dairy Sci. Technol., 2011, 91(4), 441-455.
[http://dx.doi.org/10.1007/s13594-011-0023-8]
[123]
Chen, H.; Zhou, X.; Zhang, J. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus. Carbohydr. Polym., 2014, 111, 567-575.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.033] [PMID: 25037388]
[124]
Mkaouar, S.; Bahloul, N.; Gelicus, A.; Allaf, K.; Kechaou, N. Instant controlled pressure drop texturing for intensifying ethanol solvent extraction of olive (Olea europaea) leaf polyphenols. Separ. Purif. Tech., 2015, 145, 139-146.
[http://dx.doi.org/10.1016/j.seppur.2015.03.014]
[125]
Lyu, J.; Bi, J.; Wang, F.; Jin, X.; Wu, X.; Xie, J. Recent developments and trends of instant controlled pressure drop drying-a review. Dry. Technol., 2021, 39(11), 1704-1719.
[http://dx.doi.org/10.1080/07373937.2021.1916753]
[126]
Zhu, K.X.; Sun, X.H.; Chen, Z.C.; Peng, W.; Qian, H.F.; Zhou, H.M. Comparison of functional properties and secondary structures of defatted wheat germ proteins separated by reverse micelles and alkaline extraction and isoelectric precipitation. Food Chem., 2010, 123(4), 1163-1169.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.081]
[127]
Zhao, X.; Zhu, H.; Zhang, B.; Chen, J.; Ao, Q.; Wang, X. XRD, SEM, and XPS analysis of soybean protein powders obtained through extraction involving reverse micelles. J. Am. Oil Chem. Soc., 2015, 92(7), 975-983.
[http://dx.doi.org/10.1007/s11746-015-2657-9]
[128]
Sun, X.; Bandara, N. Applications of reverse micelles technique in food science: A comprehensive review. Trends Food Sci. Technol., 2019, 91, 106-115.
[http://dx.doi.org/10.1016/j.tifs.2019.07.001]
[129]
Khan, B.M.; Cheong, K.L.; Liu, Y. ATPS: “Aqueous two-phase system” as the “answer to protein separation” for protein-processing food industry. Crit. Rev. Food Sci. Nutr., 2019, 59(19), 3165-3178.
[http://dx.doi.org/10.1080/10408398.2018.1486283] [PMID: 29883189]
[130]
Song, G.; Sun, C.; Hu, Y.; Wang, C.; Xia, C.; Tu, M.; Zhang, E.; Show, P.L.; Sun, F. Construction of anhydrous two-step organosolv pretreatment of lignocellulosic biomass for efficient lignin membrane-extraction and solvent recovery. Journal of Physics: Energy, 2023, 5(1), 014015.
[http://dx.doi.org/10.1088/2515-7655/acacc7]
[131]
Rawdkuen, S.; Pintathong, P.; Chaiwut, P.; Benjakul, S. The partitioning of protease from Calotropis procera latex by aqueous two-phase systems and its hydrolytic pattern on muscle proteins. Food Bioprod. Process., 2011, 89(1), 73-80.
[http://dx.doi.org/10.1016/j.fbp.2010.02.001]
[132]
Zhang, W.; Liu, X.; Fan, H.; Zhu, D.; Wu, X.; Huang, X.; Tang, J. Separation and purification of alkaloids from Sophora flavescens Ait. by focused microwave-assisted aqueous two-phase extraction coupled with reversed micellar extraction. Ind. Crops Prod., 2016, 86, 231-238.
[http://dx.doi.org/10.1016/j.indcrop.2016.03.052]
[133]
Mat Aron, N.S.; Chew, K.W.; Ma, Z.; Tao, Y.; Sriariyanun, M.; Tan, I.S.; Mạnh, C.N.; Xia, A.; Kurniawan, T.A.; Show, P.L. Lipid recovery from microalgae biomass using sugaring-out extraction in liquid biphasic flotation system. Fermentation, 2023, 9(3), 198.
[http://dx.doi.org/10.3390/fermentation9030198]
[134]
Parniakov, O.; Barba, F.J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chem., 2016, 192, 842-848.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.096] [PMID: 26304419]
[135]
Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; Hussain, H.I.; Ahmed, S.; Yuan, Z. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online, 2016, 18(1), 18.
[http://dx.doi.org/10.1186/s12575-016-0048-8] [PMID: 27807400]
[136]
Pojić, M.; Mišan, A.; Tiwari, B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol., 2018, 75, 93-104.
[http://dx.doi.org/10.1016/j.tifs.2018.03.010]
[137]
De la Peña-Armada, R.; Villanueva-Suárez, M.J.; Rupérez, P.; Mateos-Aparicio, I. High hydrostatic pressure assisted by celluclast® releases oligosaccharides from apple by-product. Foods, 2020, 9(8), 1058.
[http://dx.doi.org/10.3390/foods9081058] [PMID: 32764249]
[138]
Feng, C.H.; Otani, C. Terahertz spectroscopy technology as an innovative technique for food: Current state-of-the-Art research advances. Crit. Rev. Food Sci. Nutr., 2021, 61(15), 2523-2543.
[http://dx.doi.org/10.1080/10408398.2020.1779649] [PMID: 32584169]
[139]
Hou, J.; He, S.; Ling, M.; Li, W.; Dong, R.; Pan, Y.; Zheng, Y. A method of extracting ginsenosides from Panax ginseng by pulsed electric field. J. Sep. Sci., 2010, 33(17-18), 2707-2713.
[http://dx.doi.org/10.1002/jssc.201000033] [PMID: 20715136]
[140]
Bouras, M.; Grimi, N.; Bals, O.; Vorobiev, E. Impact of pulsed electric fields on polyphenols extraction from Norway spruce bark. Ind. Crops Prod., 2016, 80, 50-58.
[http://dx.doi.org/10.1016/j.indcrop.2015.10.051]
[141]
Okur, I.; Namlı, S.; Oztop, M.H.; Alpas, H. High-Pressure-Assisted Extraction of Phenolic Compounds from Olive Leaves: optimization and Comparison with Conventional Extraction. ACS Food Science & Technology, 2023, 3(1), 161-169.
[http://dx.doi.org/10.1021/acsfoodscitech.2c00346]
[142]
Wang, K.; Sun, D.W.; Pu, H. Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry. Trends Food Sci. Technol., 2017, 67, 93-105.
[http://dx.doi.org/10.1016/j.tifs.2017.06.001]
[143]
Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol., 2016, 34(10), 810-824.
[http://dx.doi.org/10.1016/j.tibtech.2016.04.008] [PMID: 27207226]
[144]
Danlami, J.M.; Arsad, A.; Ahmad Zaini, M.A.; Sulaiman, H. A comparative study of various oil extraction techniques from plants. Rev. Chem. Eng., 2014, 30(6)
[http://dx.doi.org/10.1515/revce-2013-0038]
[145]
Dobrinčić, A.; Repajić, M.; Garofulić, I.E.; Tuđen, L.; Dragović-Uzelac, V.; Levaj, B. Comparison of different extraction methods for the recovery of olive leaves polyphenols. Processes (Basel), 2020, 8(9), 1008.
[http://dx.doi.org/10.3390/pr8091008]
[146]
Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical Water Extraction of Natural Products. Molecules, 2021, 26(13), 4004.
[http://dx.doi.org/10.3390/molecules26134004] [PMID: 34209151]
[147]
Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci., 2003, 270(1512), 313-321.
[http://dx.doi.org/10.1098/rspb.2002.2218] [PMID: 12614582]
[148]
Hebert, P.D.N.; Gregory, T.R. The promise of DNA barcoding for taxonomy. Syst. Biol., 2005, 54(5), 852-859.
[http://dx.doi.org/10.1080/10635150500354886] [PMID: 16243770]
[149]
Srirama, R.; Santhosh Kumar, J.U.; Seethapathy, G.S.; Newmaster, S.G.; Ragupathy, S.; Ganeshaiah, K.N.; Uma Shaanker, R.; Ravikanth, G. Species Adulteration in the Herbal Trade: Causes, Consequences and Mitigation. Drug Saf., 2017, 40(8), 651-661.
[http://dx.doi.org/10.1007/s40264-017-0527-0] [PMID: 28389979]
[150]
Park, S.Y.; Kim, Y.; Kim, T.; Eom, T.H.; Kim, S.Y.; Jang, H.W. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges. InfoMat, 2019, 1(3), 289-316.
[http://dx.doi.org/10.1002/inf2.12029]
[151]
Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J.P.; Beccherelli, R.; Perera, A.; Pearce, T.C.; Verschure, P.F.M.J.; Persaud, K. A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation. Microsyst. Technol., 2014, 20(4-5), 729-742.
[http://dx.doi.org/10.1007/s00542-013-2020-8]
[152]
De Das, A.; Pramanik, A. Evolution of E-Sensing Technology.Advances in Intelligent Systems and Computing; Springer Singapore: Singapore, 2021, pp. 565-577.
[153]
Lin, H.; Yan, Y.; Zhao, T.; Peng, L.; Zou, H.; Li, J.; Yang, X.; Xiong, Y.; Wang, M.; Wu, H. Rapid discrimination of Apiaceae plants by electronic nose coupled with multivariate statistical analyses. J. Pharm. Biomed. Anal., 2013, 84, 1-4.
[http://dx.doi.org/10.1016/j.jpba.2013.05.027] [PMID: 23777641]
[154]
Zhou, H.; Luo, D. GholamHosseini, H.; Li, Z.; He, J. Identification of Chinese Herbal Medicines with Electronic Nose Technology: Applications and Challenges. Sensors (Basel), 2017, 17(5), 1073.
[http://dx.doi.org/10.3390/s17051073] [PMID: 28486407]
[155]
Al-Dayyeni, W.S.; Al-Yousif, S.; Taher, M.M.; Al-Faouri, A.W.; Tahir, N.M.; Jaber, M.M.; Ghabban, F.; Najm, I.A.; Alfadli, I.M.; Ameerbakhsh, O.Z.; Mnati, M.J.; Al-Shareefi, N.A.; Saleh, A.H. A Review on Electronic Nose: Coherent Taxonomy, Classification, Motivations, Challenges, Recommendations and Datasets. IEEE Access, 2021, 9, 88535-88551.
[http://dx.doi.org/10.1109/ACCESS.2021.3090165]
[156]
Rasekh, M.; Karami, H.; Wilson, A.D.; Gancarz, M. Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology. Chemosensors (Basel), 2021, 9(6), 142.
[http://dx.doi.org/10.3390/chemosensors9060142]
[157]
Oppong, S.O.; Twum, F.; Hayfron-Acquah, J.B.; Missah, Y.M. A novel computer vision model for medicinal plant identification using log-gabor filters and deep learning algorithms. Comput. Intell. Neurosci., 2022, 2022, 1-21.
[http://dx.doi.org/10.1155/2022/1189509] [PMID: 36203732]
[158]
Pawara, E.; Okafor, L.; Schomaker, M. Data Augmentation for Plant Classification. In: Advanced Concepts for Intelligent Vision Systems; Springer, 2017; p. 10617.
[http://dx.doi.org/10.1007/978-3-319-70353-4_52]
[159]
Zhang, C.; Zhou, P.; Li, C.; Liu, L. A convolutional neural network for leaves recognition using data augmentation. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM); Liverpool, UK,, 2015; pp. 2143-2150.
[http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.318]
[160]
Huynh, H.X.; Truong, B.Q.; Nguyen Thanh, K.T.; Truong, D.Q. Plant identification using new architecture convolutional neural networks combine with replacing the red of color channel image by vein morphology leaf. Vietnam Journal of Computer Science, 2020, 7(2), 197-208.
[http://dx.doi.org/10.1142/S2196888820500116]
[161]
Chung, Y.; Chou, C.A.; Li, C.Y. Central attention and a dual path convolutional neural network in real-world tree species recognition. Int. J. Environ. Res. Public Health, 2021, 18(3), 961.
[http://dx.doi.org/10.3390/ijerph18030961] [PMID: 33499249]
[162]
Adetiba, E.; Ajayi, O.T.; Kala, J.R.; Badejo, J.A.; Ajala, S.; Abayomi, A.; Badejo, J.A.; Adetiba, E.; Adetiba, E. LeafsnapNet: An Experimentally Evolved Deep Learning Model for Recognition of Plant Species based on Leafsnap Image Dataset. J. Comput. Sci., 2021, 17(3), 349-363.
[http://dx.doi.org/10.3844/jcssp.2021.349.363]
[163]
Sulc, M.; Matas, J. Texture-Based Leaf Identification. In: Computer Vision - ECCV 2014 Workshop; , 2015; pp. 185-200.
[164]
Quoc Bao, T.; Tan Kiet, N.T.; Quoc Dinh, T.; Hiep, H.X. Plant species identification from leaf patterns using histogram of oriented gradients feature space and convolution neural networks. Journal of Information and Telecommunication, 2020, 4(2), 140-150.
[http://dx.doi.org/10.1080/24751839.2019.1666625]
[165]
Mehdipour Ghazi, M.; Yanikoglu, B.; Aptoula, E. Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing, 2017, 235, 228-235.
[http://dx.doi.org/10.1016/j.neucom.2017.01.018]
[166]
Anubha Pearline, S.; Sathiesh Kumar, V.; Harini, S. A study on plant recognition using conventional image processing and deep learning approaches. J. Intell. Fuzzy Syst., 2019, 36(3), 1997-2004.
[http://dx.doi.org/10.3233/JIFS-169911]
[167]
Blesslin Elizabeth, C.P.; Baulkani, S. Novel Network for Medicinal Leaves Identification. J. Inst. Electron. Telecommun. Eng., 2023, 69(4), 1772-1782.
[http://dx.doi.org/10.1080/03772063.2021.2016504]
[168]
Beć, K.B.; Grabska, J.; Huck, C.W. NIR spectroscopy of natural medicines supported by novel instrumentation and methods for data analysis and interpretation. J. Pharm. Biomed. Anal., 2021, 193(113686), 113686.
[http://dx.doi.org/10.1016/j.jpba.2020.113686] [PMID: 33142115]
[169]
Guo, T-T.; Zhang, B.; Guo, L.; Li, D-S.; Wu, Y.; Wu, J-J.; Zhao, L. Classification of Plant Leaves by Near-Infrared Spectroscopy Using ANN and Wavelet. 2010 Second International Workshop on Education Technology and Computer Science, Wuhan, China2010, pp. 20-23.
[http://dx.doi.org/10.1109/ETCS.2010.536]
[170]
Lang, C.; Costa, F.R.C.; Camargo, J.L.C.; Durgante, F.M.; Vicentini, A. Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian Tree Species. PLoS One, 2015, 10(8), e0134521.
[http://dx.doi.org/10.1371/journal.pone.0134521] [PMID: 26312996]
[171]
Sohn, S.I.; Oh, Y.J.; Pandian, S.; Lee, Y.H.; Zaukuu, J.L.Z.; Kang, H.J.; Ryu, T.H.; Cho, W.S.; Cho, Y.S.; Shin, E.K. Identification of amaranthus species using visible-near-infrared (Vis-NIR) spectroscopy and machine learning methods. Remote Sens. (Basel), 2021, 13(20), 4149.
[http://dx.doi.org/10.3390/rs13204149]
[172]
Petersen, M.; Yu, Z.; Lu, X. Application of Raman Spectroscopic Methods in Food Safety: A Review. Biosensors (Basel), 2021, 11(6), 187.
[http://dx.doi.org/10.3390/bios11060187] [PMID: 34201167]
[173]
Cialla-May, D.; Schmitt, M.; Popp, J. Theoretical principles of Raman spectroscopy. Physical Sciences Reviews, 2019, 4(6)
[http://dx.doi.org/10.1515/psr-2017-0040]
[174]
Basic Scattering Theory and Principles for Radar Meteorology In: Introduction to Dual Polarization Weather Radar; Cambridge University Press, 2023; pp. 128-181.
[175]
Gao, H.; Liu, Z.; Song, F.; Xing, J.; Zheng, Z.; Liu, S. A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry. Molecules, 2022, 27(13), 4302.
[http://dx.doi.org/10.3390/molecules27134302] [PMID: 35807548]
[176]
Park, M.; Somborn, A.; Schlehuber, D.; Keuter, V.; Deerberg, G. Raman spectroscopy in crop quality assessment: focusing on sensing secondary metabolites: a review. Hortic. Res., 2023, 10(5), uhad074.
[http://dx.doi.org/10.1093/hr/uhad074] [PMID: 37249949]
[177]
Lv, W.; Wang, X. Overview of hyperspectral image classification. J. Sens., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/4817234]
[178]
Lu, Y.; Saeys, W.; Kim, M.; Peng, Y.; Lu, R. Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress. Postharvest Biol. Technol., 2020, 170(111318), 111318.
[http://dx.doi.org/10.1016/j.postharvbio.2020.111318]
[179]
Manolakis, D.; Pieper, M.; Truslow, E.; Lockwood, R.; Weisner, A.; Jacobson, J.; Cooley, T. Longwave Infrared Hyperspectral Imaging: Principles, Progress, and Challenges. IEEE Geosci. Remote Sens. Mag., 2019, 7(2), 72-100.
[http://dx.doi.org/10.1109/MGRS.2018.2889610]
[180]
Liu, Y.N.; Zhang, J.; Zhang, Y.; Sun, W.W.; Jiao, L.L.; Sun, D.X.; Hu, X.N.; Ye, X.; Li, Y.D.; Liu, S.F.; Cao, K.Q.; Chai, M.Y.; Zhou, W.Y.N. The Advanced Hyperspectral Imager: Aboard China’s GaoFen-5 Satellite. IEEE Geosci. Remote Sens. Mag., 2019, 7(4), 23-32.
[http://dx.doi.org/10.1109/MGRS.2019.2927687]
[181]
Pallua, J.D.; Brunner, A.; Zelger, B.; Huck, C.W.; Schirmer, M.; Laimer, J.; Putzer, D.; Thaler, M.; Zelger, B. New perspectives of hyperspectral imaging for clinical research. NIR News, 2021, 32(3-4), 5-13.
[http://dx.doi.org/10.1177/09603360211024971]
[182]
Bianchi, F.; Cervini, M.; Giuberti, G.; Simonato, B. The Potential of Wine Lees as a Fat Substitute for Muffin Formulations. Foods, 2023, 12(13), 2584.
[http://dx.doi.org/10.3390/foods12132584] [PMID: 37444321]
[183]
Reddy, P.; Guthridge, K.M.; Panozzo, J.; Ludlow, E.J.; Spangenberg, G.C.; Rochfort, S.J. Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview. Sensors (Basel), 2022, 22(5), 1981.
[http://dx.doi.org/10.3390/s22051981] [PMID: 35271127]
[184]
Ahmad, M.; Shabbir, S.; Roy, S.K.; Hong, D.; Wu, X.; Yao, J.; Khan, A.M.; Mazzara, M.; Distefano, S.; Chanussot, J. Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2022, 15, 968-999.
[http://dx.doi.org/10.1109/JSTARS.2021.3133021]
[185]
Xie, L.; Wang, C.; Chen, M.; Jin, B.B.; Zhou, R.; Huang, Y.; Hameed, S.; Ying, Y. Temperature-dependent terahertz vibrational spectra of tetracycline and its degradation products. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 222(117179), 117179.
[http://dx.doi.org/10.1016/j.saa.2019.117179] [PMID: 31202030]
[186]
Lee, K.; Jeoung, K.; Kim, S.H.; Ji, Y.; Son, H.; Choi, Y.; Huh, Y.M.; Suh, J.S.; Oh, S.J. Measuring water contents in animal organ tissues using terahertz spectroscopic imaging. Biomed. Opt. Express, 2018, 9(4), 1582-1589.
[http://dx.doi.org/10.1364/BOE.9.001582] [PMID: 29675303]
[187]
Zalkovskij, M.; Malureanu, R.; Lavrinenko, A.V.; Jepsen, P.U.; Savastru, D.; Popescu, A. Ultrabroadband THz Spectroscopy of Disordered Materials. In: 1st International Symposium on Terahertz Nanoscience and 2nd Workshop of International Terahertz Research Network; Nakanoshima Center, Osaka University, Osaka, Japan, Nov 24-Nov 29,, 2011.
[188]
Jiang, Y.; Ge, H.; Zhang, Y. Quantitative analysis of wheat maltose by combined terahertz spectroscopy and imaging based on Boosting ensemble learning. Food Chem., 2020, 307(125533), 125533.
[http://dx.doi.org/10.1016/j.foodchem.2019.125533] [PMID: 31634763]
[189]
Baxter, J.B.; Guglietta, G.W. Terahertz Spectroscopy. Anal. Chem., 2011, 83(12), 4342-4368.
[http://dx.doi.org/10.1021/ac200907z] [PMID: 21534575]
[190]
Lourenço-Lopes, C.; Garcia-Oliveira, P.; Carpena, M.; Fraga-Corral, M.; Jimenez-Lopez, C.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Scientific approaches on extraction, purification and stability for the commercialization of fucoxanthin recovered from brown algae. Foods, 2020, 9(8), 1113.
[http://dx.doi.org/10.3390/foods9081113] [PMID: 32823574]
[191]
Martirosyan, D.M.; Singh, J. A new definition of functional food by FFC: what makes a new definition unique? Funct. Food Health Dis., 2015, 5(6), 209.
[http://dx.doi.org/10.31989/ffhd.v5i6.183]
[192]
Wiśniewska, P.; Śliwińska, M.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The analysis of raw spirits - a review of methodology. J. Inst. Brew., 2016, 122(1), 5-10.
[http://dx.doi.org/10.1002/jib.288]
[193]
Kumar, K.S.; Yadav, A.; Srivastava, S.; Paswan, S.; Sankar Dutta, A. Recent trends in Indian traditional herbs syzygium aromaticum and its health benefits. J. Pharmacogn. Phytochem., 2012, (1), 13-22.
[194]
Loum, J.; Byamukama, R.; Wanyama, P.A.G. Efficient extraction of natural dyes from selected plant species. Chem. Afr., 2021, 4, 677-689.
[http://dx.doi.org/10.1007/s42250-021-00248-6]