Journal of Current Toxicology and Venomics

Author(s): Mhaveer Singh*, Kamal Y.T., Mohammad A. Khan, Navneet Verma, Arun K. Mishra and Sayeed Ahmad

DOI: 10.2174/0126661217302439240513160410

DownloadDownload PDF Flyer Cite As
Elucidation of the Possible Molecular Mechanism for the Anti-Apoptotic Effect of Terpene-Rich Extract of Amomum subulatum and Coriandrum sativum against Rodent Model of Cardiotoxicity

Article ID: e050624230706 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Spices, including Amomum subulatum and Coriander sativum, are not only popular for improving food flavour but are also accepted worldwide for their health benefits in various disorders.

Objective: This study aimed to elucidate the possible mechanism for the anti-apoptotic effect of terpene-rich extract of Amomum subulatum and Coriandrum sativum against the rodent model of cardiotoxicity.

Methods: Effects of standardized terpenoids-rich aqueous methanolic extract of two commonly used spices, viz. Amomum subulatum Roxb. and Coriandrum sativum Linn., were investigated on doxorubicin-induced apoptotic changes and cardiotoxicity in Wistar rats with the aim of investigating the mechanism. Prior to the in vivo experiment, the extracts were subjected to quantitative estimation of possible bioactive markers of the terpenes by employing a newly developed, optimized, and validated GC-MS method along with TLC profiling.

Results: Cardiotoxicity was evident from elevated creatinine kinase (CK-MB), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels in the toxic control group after treatment with doxorubicin (2.5 mg/kg i.p. given twice a week for three weeks). Caspase-3, Tumor necrosis factor-α (TNF-α), and Interleukin-6 (IL-6) were also induced in animals treated with doxorubicin. Treatment with Amomum subulatum and Coriandrum sativum at the doses of 100 and 200 mg/kg exhibited significant (P<0.001) reversal of CK-MB, LDH, MDA, Caspase-3, TNF-α, and IL-6 levels. This protective effect was further supported by the results of DNA gel electrophoresis and histopathological observations.

Conclusion: This study supports the cardioprotective role of selected spices against doxorubicininduced cardiotoxicity through the anti-apoptotic mechanism.

Keywords: Amomum subulatum Roxb., Coriandrum sativum Linn., doxorubicin, cardiovascular disease, apoptosis, caspase-3.

[1]
WHO Prevention of cardiovascular disease: Guidelines for assessment and management of total cardiovascular risk., In: 2007.. Available from: https://www.who.int/publications/i/item/9789241547178
[2]
World Health Organization. Cardiovascular Diseases. Available from: https://www.who.int/health-topics/cardiovasculardiseases#tab=tab_1(Accessed on: 25 September 2021).
[3]
Gill, C.; Mestril, R.; Samali, A. Losing heart: The role of apoptosis in heart disease—a novel therapeutic target? FASEB J., 2002, 16(2), 135-146.
[http://dx.doi.org/10.1096/fj.01-0629com] [PMID: 11818361]
[4]
Singh, S.S.; Kang, P.M. Mechanisms and inhibitors of apoptosis in cardiovascular diseases. Curr. Pharm. Des., 2011, 17(18), 1783-1793.
[http://dx.doi.org/10.2174/138161211796390994] [PMID: 21631422]
[5]
Lee, Y.; Gustafsson, Å.B. Role of apoptosis in cardiovascular disease. Apoptosis, 2009, 14(4), 536-548.
[http://dx.doi.org/10.1007/s10495-008-0302-x] [PMID: 19142731]
[6]
Amirteymoori, E.; Khezri, A.; Dayani, O. Effects of linseed processing method (ground versus extruded) and dietary crude protein content on performance, digestibility, ruminal fermentation pattern, and rumen protozoa population in growing lambs. Ital. J. Anim. Sci., 2021, 20(1), 1506-1517.
[http://dx.doi.org/10.1080/1828051X.2021.1984324]
[7]
Shokri, S.; Khezri, A.; Mohammadabadi, M.; Kheyrodin, H. The expression of MYH7 gene in femur, humeral muscle and back muscle tissues of fattening lambs of the Kermani breed. Agric Biotechnol J, 2023, 15(2), 217-236.
[8]
Vahabzadeh, M.; Chamani, M.; Dayani, O.; Sadeghi, A.A.; Mohammadabadi, M.R. Effect of Origanum majorana leaf (Sweet marjoram) feeding on lamb’s growth, carcass characteristics and blood biochemical parameters. Small Rumin. Res., 2020, 192, 106233.
[http://dx.doi.org/10.1016/j.smallrumres.2020.106233]
[9]
Safaei, SMH; Mohammadabadi, M; Moradi, B Role of fennel (Foeniculum vulgare) seed powder in increasing testosterone and IGF1 gene expression in the testis of lamb. Gene Expr, 2023, 000(000), 000.
[http://dx.doi.org/10.14218/GE.2023.00020]
[10]
Jafari Ahmadabadi, S.A.A.; Askari-Hemmat, H.; Mohammadabadi, M.; Fouzi, M.A.; Mansouri, M. The effect of Cannabis seed on DLK1 gene expression in heart tissue of Kermani lambs. Agric Biotechnol J, 2023, 15(1), 217-234.
[11]
Shahsavari, M; Mohammadabadi, M; Khezri, A Effect of fennel (Foeniculum Vulgare) seed powder consumption on insulin-like growth factor 1 gene expression in the liver tissue of growing lambs. Gene Expr, 2022, 000(000), 000.
[http://dx.doi.org/10.14218/GE.2022.00017]
[12]
Safaei, S.M.H.; Dadpasand, M.; Mohammadabadi, M. An Origanum majorana leaf diet influences myogenin gene expression, performance, and carcass characteristics in lambs. Animals , 2022, 13(1), 14.
[http://dx.doi.org/10.3390/ani13010014] [PMID: 36611623]
[13]
Hajalizadeh, Z.; Dayani, O.; Khezri, A.; Tahmasbi, R.; Mohammadabadi, M.R. The effect of adding fennel (Foeniculum vulgare) seed powder to the diet of fattening lambs on performance, carcass characteristics and liver enzymes. Small Rumin. Res., 2019, 175, 72-77.
[http://dx.doi.org/10.1016/j.smallrumres.2019.04.011]
[14]
Upadhyay, S.; Pandey, D.M.M. Therapeutic potential and phytoconstituents of traditionally used Indian spices. J. Pharmacogn. Phytochem., 2022, 11(5), 146-149.
[http://dx.doi.org/10.22271/phyto.2022.v11.i5b.14506]
[15]
Martins, I.J. Indian spices and biotherapeutics in health and chronic disease. Health, 2018, 10(4), 374-380.
[http://dx.doi.org/10.4236/health.2018.104030]
[16]
Lakshmi, V.; Chauhan, J.S. Structure of a new aurone glycoside from Amomum subulatum seeds. Indian J. Chem., 1977, 15B, 814-815.
[17]
Drishya, S.; Dhanisha, S.S.; Raghukumar, P.; Guruvayoorappan, C. Amomum subulatum mitigates experimental thoracic radiation-induced lung injury by regulating antioxidant status and inflammatory responses. Food Funct., 2023, 14(3), 1545-1559.
[http://dx.doi.org/10.1039/D2FO03208B] [PMID: 36655677]
[18]
Drishya, S.; Dhanisha, S.S.; Guruvayoorappan, C. Antioxidant‐rich fraction of Amomum subulatum fruits mitigates experimental methotrexate‐induced oxidative stress by regulating TNF‐α, IL‐1β, and IL‐6 proinflammatory cytokines. J. Food Biochem., 2022, 46(4), e13855.
[http://dx.doi.org/10.1111/jfbc.13855] [PMID: 34250612]
[19]
Kim, I.S.; Yang, M.R.; Lee, O.H.; Kang, S.N. Antioxidant activities of hot water extracts from various spices. Int. J. Mol. Sci., 2011, 12(6), 4120-4131.
[http://dx.doi.org/10.3390/ijms12064120] [PMID: 21747728]
[20]
Sreelatha, S.; Padma, P.R.; Umadevi, M. Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem. Toxicol., 2009, 47(4), 702-708.
[http://dx.doi.org/10.1016/j.fct.2008.12.022] [PMID: 19146910]
[21]
Mahleyuddin, N.N.; Moshawih, S.; Ming, L.C. Coriandrum sativum L.: A review on ethnopharmacology, phytochemistry, and cardiovascular benefits. Molecules, 2021, 27(1), 209.
[http://dx.doi.org/10.3390/molecules27010209] [PMID: 35011441]
[22]
Eid, A.M.; Issa, L.; Al-kharouf, O.; Jaber, R.; Hreash, F. Development of Coriandrum sativum Oil nanoemulgel and evaluation of its antimicrobial and anticancer activity. BioMed Res. Int., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/5247816] [PMID: 34671674]
[23]
Yadav, A.S.; Bhatnagar, D. Free radical scavenging activity, metal chelation and antioxidant power of some of the Indian spices. Biofactors, 2007, 31(3-4), 219-227.
[http://dx.doi.org/10.1002/biof.5520310309] [PMID: 18997285]
[24]
Dhuley, J.N. Anti-oxidant effects of cinnamon (Cinnamomum verum) bark and greater cardamom (Amomum subulatum) seeds in rats fed high fat diet. Indian J. Exp. Biol., 1999, 37(3), 238-242.
[PMID: 10641152]
[25]
Wang, Z.T.; Lau, C.W.; Chan, F.L. Vasorelaxant effects of cardamonin and alpinetin from Alpinia henryi K. Schum. J. Cardiovasc. Pharmacol., 2001, 37(5), 596-606.
[http://dx.doi.org/10.1097/00005344-200105000-00011] [PMID: 11336110]
[26]
Jabeen, Q.; Bashir, S.; Lyoussi, B.; Gilani, A.H. Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities. J. Ethnopharmacol., 2009, 122(1), 123-130.
[http://dx.doi.org/10.1016/j.jep.2008.12.016] [PMID: 19146935]
[27]
Tenore, G.C.; Manfra, M.; Stiuso, P. Polyphenolic pattern and in vitro cardioprotective properties of typical red wines from vineyards cultivated in Scafati (Salerno, Italy). Food Chem., 2013, 140(4), 803-809.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.023] [PMID: 23692769]
[28]
Validation of analytical procedures. Proceedings of the international conference on harmonization (ICH) Commission of the European Communities. Brussels. 1996.
[29]
Cecen, E.; Dost, T.; Culhaci, N.; Karul, A.; Ergur, B.; Birincioglu, M. Protective effects of silymarin against doxorubicin-induced toxicity. Asian Pac. J. Cancer Prev., 2011, 12(10), 2697-2704.
[PMID: 22320977]
[30]
Iqbal, M.; Dubey, K.; Anwer, T.; Ashish, A.; Pillai, K.K. Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacol. Rep., 2008, 60(3), 382-390.
[PMID: 18622063]
[31]
Sharma, H.; Pathan, R.A.; Kumar, V.; Javed, S.; Bhandari, U. Anti-apoptotic potential of rosuvastatin pretreatment in murine model of cardiomyopathy. Int. J. Cardiol., 2011, 150(2), 193-200.
[http://dx.doi.org/10.1016/j.ijcard.2010.04.008] [PMID: 20452068]
[32]
Pillai, K.K.; Ayaz, S.A.; Bhandari, U. Influence of DL α-lipoic acid and vitamin-E against doxorubicin-induced biochemical and histological changes in the cardiac tissue of rats. Indian J. Pharmacol., 2005, 37(5), 294-299.
[http://dx.doi.org/10.4103/0253-7613.16852]
[33]
Matés, J.M.; Jiménez, S.F. Antioxidant enzymes and their implications in pathophysiologic processes. Front. Biosci., 1999, 4(1-3), d339.
[http://dx.doi.org/10.2741/Mates] [PMID: 10077544]
[34]
Momin, F.; Shikalgar, T.S.; Naikwade, N.S.; Kalai, B.R. Cardioprotective effect of methanolic extract of Ixora coccinea Linn. leaves on doxorubicin-induced cardiac toxicity in rats. Indian J. Pharmacol., 2012, 44(2), 178-183.
[http://dx.doi.org/10.4103/0253-7613.93844] [PMID: 22529471]
[35]
Gnanapragasam, A.; Ebenezar, K.K.; Sathish, V.; Govindaraju, P.; Devaki, T. Protective effect of Centella asiatica on antioxidant tissue defense system against adriamycin induced cardiomyopathy in rats. Life Sci., 2004, 76(5), 585-597.
[http://dx.doi.org/10.1016/j.lfs.2004.09.009] [PMID: 15556170]
[36]
Olson, R.D.; Mushlin, P.S. Doxorubicin cardiotoxicity: Analysis of prevailing hypotheses. FASEB J., 1990, 4(13), 3076-3086.
[http://dx.doi.org/10.1096/fasebj.4.13.2210154] [PMID: 2210154]
[37]
Oliveira, P.J.; Bjork, J.A.; Santos, M.S. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol. Appl. Pharmacol., 2004, 200(2), 159-168.
[http://dx.doi.org/10.1016/j.taap.2004.04.005] [PMID: 15476868]
[38]
Niu, J.; Azfer, A.; Wang, K.; Wang, X.; Kolattukudy, P.E. Cardiac-targeted expression of soluble fats attenuates doxorubicin-induced cardiotoxicity in mice. J. Pharmacol. Exp. Ther., 2009, 2009328, 740-748.
[39]
Yang, S.; Thor, A.D.; Edgerton, S.; Yang, X. Caspase-3 mediated feedback activation of apical caspases in doxorubicin and TNF-α induced apoptosis. Apoptosis, 2006, 11(11), 1987-1997.
[http://dx.doi.org/10.1007/s10495-006-0084-y] [PMID: 17013758]