The Natural Products Journal

Author(s): A.M.D.S. Karunaratna and S. Ekanayake*

DOI: 10.2174/0122103155308948240528050738

DownloadDownload PDF Flyer Cite As
Effect of Herbal Medicine on Insulin Signaling Pathways and Insulin Resistance in Metabolic Dysfunction-associated Fatty Liver Disease: A Review

Article ID: e040624230641 Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease progressing towards a substantial global health concern. A multitude of therapeutic agents are being used to treat MAFLD. The high prevalence and adverse effects of drugs have increased the global popularity of herbal medicines (HMs) as effective therapeutic agents to treat MAFLD. Among the causes of pathogenesis, insulin resistance (IR) plays a crucial role in MAFLD. Hence, the amelioration of IR has emerged as a promising target for potential therapeutic approaches in MAFLD.

Aim: This study aimed to explore in vitro and in vivo mechanisms that unveil recent advances in HMs that target the amelioration of IR in MAFLD.

Materials and Methods: Electronic databases, including PubMed and MEDLINE, were used to search literature for HMs in the management or treatment of NAFLD published up to March, 2023. The three primary search terms were “MAFLD” “NAFLD” and “HM”. MeSH of NAFLD, such as (Non-alcoholic fatty liver disease, Non-alcoholic Steatohepatitis) and HM (Medicinal plants, Plant extracts), and keywords were used to optimize the search strategy.

Results: HMs act on a multitude of molecular pathways that increase insulin sensitization including upregulation of the secretion and activation of insulin receptor substrate (IRS) proteins, upregulation of phosphatidylinositol 3-kinase (PI3K)/AKT (also known as PKB or protein kinase B) signaling pathway, activation of the 5' AMP-activated protein kinase (AMPK) pathway and modulation of enzymes of glucose homeostasis, regeneration of the pancreatic β-cell mass, modulation of secretion of adipokines, enhancement of the uptake of glucose into tissues via increased expression of GLUT in tissues, and upregulation of FGF1/FGF1R signaling pathway.

Conclusion: HMs possess a multitude of potential actions that reduce the IR and improve glucose homeostasis. Hence, HMs are a promising resource as effective medications for the treatment of MAFLD.

Keywords: Metabolic dysfunction, fatty liver disease, herbal medicines, insulin resistance, natural products, GLUT, AMPK pathway, PI3K/AKT pathway.

Graphical Abstract

[1]
Balmer, M.L.; Dufour, J.F. Nicht-alkoholische Steatohepatitis - von NAFLD zu MAFLD. Ther. Umsch., 2011, 68(4), 183-188. [Nonalcoholic steatohepatitis - from NAFLD to MAFLD].
[http://dx.doi.org/10.1024/0040-5930/a000148]
[2]
Bellentani, S.; Tiribelli, C. Is it time to change NAFLD and NASH nomenclature? Lancet Gastroenterol. Hepatol., 2017, 2(8), 547-548.
[http://dx.doi.org/10.1016/S2468-1253(17)30146-2] [PMID: 28691681]
[3]
Sanyal, A.J.; Brunt, E.M.; Kleiner, D.E.; Kowdley, K.V.; Chalasani, N.; Lavine, J.E.; Ratziu, V.; McCullough, A. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology, 2011, 54(1), 344-353.
[http://dx.doi.org/10.1002/hep.24376] [PMID: 21520200]
[4]
Younossi, Z.; Tacke, F.; Arrese, M.; Chander Sharma, B.; Mostafa, I.; Bugianesi, E.; Wai-Sun Wong, V.; Yilmaz, Y.; George, J.; Fan, J.; Vos, M.B. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology, 2019, 69(6), 2672-2682.
[http://dx.doi.org/10.1002/hep.30251] [PMID: 30179269]
[5]
Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; Kawaguchi, T.; Arrese, M.; Valenti, L.; Shiha, G.; Tiribelli, C.; Yki-Järvinen, H.; Fan, J.G.; Grønbæk, H.; Yilmaz, Y.; Cortez-Pinto, H.; Oliveira, C.P.; Bedossa, P.; Adams, L.A.; Zheng, M.H.; Fouad, Y.; Chan, W.K.; Mendez-Sanchez, N.; Ahn, S.H.; Castera, L.; Bugianesi, E.; Ratziu, V.; George, J. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol., 2020, 73(1), 202-209.
[http://dx.doi.org/10.1016/j.jhep.2020.03.039] [PMID: 32278004]
[6]
Fouad, Y.; Waked, I.; Bollipo, S.; Gomaa, A.; Ajlouni, Y.; Attia, D. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int., 2020, 40(6), 1254-1261.
[http://dx.doi.org/10.1111/liv.14478] [PMID: 32301554]
[7]
Lin, S.; Huang, J.; Wang, M.; Kumar, R.; Liu, Y.; Liu, S.; Wu, Y.; Wang, X.; Zhu, Y. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int., 2020, 40(9), 2082-2089.
[http://dx.doi.org/10.1111/liv.14548] [PMID: 32478487]
[8]
Niriella, M.A.; Ediriweera, D.S.; Kasturiratne, A.; De Silva, S.T.; Dassanayaka, A.S.; De Silva, A.P.; Kato, N.; Pathmeswaran, A.; Wickramasinghe, A.R.; de Silva, H.J. Outcomes of NAFLD and MAFLD: Results from a community-based, prospective cohort study. PLoS One, 2021, 16(2), e0245762.
[http://dx.doi.org/10.1371/journal.pone.0245762] [PMID: 33534815]
[9]
Chan, K.E.; Koh, T.J.L.; Tang, A.S.P.; Quek, J.; Yong, J.N.; Tay, P.; Tan, D.J.H.; Lim, W.H.; Lin, S.Y.; Huang, D.; Chan, M.; Khoo, C.M.; Chew, N.W.S.; Kaewdech, A.; Chamroonkul, N.; Dan, Y.Y.; Noureddin, M.; Muthiah, M.; Eslam, M.; Ng, C.H. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: A meta-analysis and systematic review of 10 739 607 individuals. J. Clin. Endocrinol. Metab., 2022, 107(9), 2691-2700.
[http://dx.doi.org/10.1210/clinem/dgac321] [PMID: 35587339]
[10]
Myers, S.; Neyroud-Caspar, I.; Spahr, L.; Gkouvatsos, K.; Fournier, E.; Giostra, E.; Magini, G.; Frossard, J.L.; Bascaron, M.E.; Vernaz, N.; Zampaglione, L.; Negro, F.; Goossens, N. NAFLD and MAFLD as emerging causes of HCC: A populational study. JHEP Reports, 2021, 3(2), 100231.
[http://dx.doi.org/10.1016/j.jhepr.2021.100231] [PMID: 33748726]
[11]
Gill, M.G.; Majumdar, A. Metabolic associated fatty liver disease: Addressing a new era in liver transplantation. World J. Hepatol., 2020, 12(12), 1168-1181.
[http://dx.doi.org/10.4254/wjh.v12.i12.1168] [PMID: 33442446]
[12]
Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of NAFLD and its management. Nutr. Clin. Pract., 2020, 35(1), 72-84.
[http://dx.doi.org/10.1002/ncp.10449] [PMID: 31840865]
[13]
Cai, Y.; Liang, Q.; Chen, W.; Chen, M.; Chen, R.; Zhang, Y.; Xiao, Y.; Chen, L. Evaluation of HuoXueHuaYu therapy for nonalcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trial. BMC Complement. Altern. Med., 2019, 19(1), 178.
[http://dx.doi.org/10.1186/s12906-019-2596-3] [PMID: 31324247]
[14]
Saadati, S.; Hatami, B.; Yari, Z.; Shahrbaf, M.A.; Eghtesad, S.; Mansour, A.; Poustchi, H.; Hedayati, M.; Aghajanpoor-pasha, M.; Sadeghi, A.; Hekmatdoost, A. The effects of curcumin supplementation on liver enzymes, lipid profile, glucose homeostasis, and hepatic steatosis and fibrosis in patients with non-alcoholic fatty liver disease. Eur. J. Clin. Nutr., 2019, 73(3), 441-449.
[http://dx.doi.org/10.1038/s41430-018-0382-9] [PMID: 30610213]
[15]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: A randomized controlled trial. J. Cardiovasc. Pharmacol., 2016, 68(3), 223-229.
[http://dx.doi.org/10.1097/FJC.0000000000000406] [PMID: 27124606]
[16]
Shi, C.; Tian, J.; Ren, D.; Wei, H.; Zhang, L.; Wang, Q.; Yang, K. Methodological reporting of randomized trials in five leading Chinese nursing journals. PLoS One, 2014, 9(11), e113002.
[http://dx.doi.org/10.1371/journal.pone.0113002] [PMID: 25415382]
[17]
Tang, Y. Curcumin targets multiple pathways to halt hepatic stellate cell activation: updated mechanisms in vitro and in vivo. Dig. Dis. Sci., 2015, 60(6), 1554-1564.
[http://dx.doi.org/10.1007/s10620-014-3487-6] [PMID: 25532502]
[18]
Wang, L.; Jia, Z.; Wang, B.; Zhang, B. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway. Turk. J. Gastroenterol., 2021, 31(12), 902-909.
[http://dx.doi.org/10.5152/tjg.2020.19568] [PMID: 33626003]
[19]
Kang, H.; Koppula, S. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells. Am. J. Chin. Med., 2014, 42(3), 651-664.
[http://dx.doi.org/10.1142/S0192415X14500426] [PMID: 24871657]
[20]
Kang, O.H.; Kim, S.B.; Seo, Y.S.; Joung, D.K.; Mun, S.H.; Choi, J.G.; Lee, Y.M.; Kang, D.G.; Lee, H.S.; Kwon, D.Y. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(19), 2578-2586.
[PMID: 24142602]
[21]
Chen, S.; Li, J.; Zhou, H.; Lin, M.; Liu, Y.; Zhang, Y.; Zhao, Z.; Li, G.; Liu, J. Study on effects of Zhi Zi (Fructus gardeniae) on non-alcoholic fatty liver disease in the rat. J. Tradit. Chin. Med., 2012, 32(1), 82-86.
[http://dx.doi.org/10.1016/S0254-6272(12)60037-5] [PMID: 22594108]
[22]
Yao, H.; Qiao, Y.J.; Zhao, Y.L.; Tao, X.F.; Xu, L.N.; Yin, L.H.; Qi, Y.; Peng, J.Y. Herbal medicines and nonalcoholic fatty liver disease. World J. Gastroenterol., 2016, 22(30), 6890-6905.
[http://dx.doi.org/10.3748/wjg.v22.i30.6890] [PMID: 27570425]
[23]
Liu, J.; Zhang, H.; Ji, B.; Cai, S.; Wang, R.; Zhou, F.; Yang, J.; Liu, H. A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells. Food Funct., 2014, 5(5), 1038-1049.
[http://dx.doi.org/10.1039/C3FO60524H] [PMID: 24626737]
[24]
Liang, L.; Ye, S.; Jiang, R.; Zhou, X.; Zhou, J.; Meng, S. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int. Immunopharmacol., 2022, 104, 108306.
[http://dx.doi.org/10.1016/j.intimp.2021.108306] [PMID: 34999396]
[25]
Eslam, M.; Sanyal, A.J.; George, J.; Sanyal, A.; Neuschwander-Tetri, B.; Tiribelli, C.; Kleiner, D.E.; Brunt, E.; Bugianesi, E.; Yki-Järvinen, H.; Grønbæk, H.; Cortez-Pinto, H.; George, J.; Fan, J.; Valenti, L.; Abdelmalek, M.; Romero-Gomez, M.; Rinella, M.; Arrese, M.; Eslam, M.; Bedossa, P.; Newsome, P.N.; Anstee, Q.M.; Jalan, R.; Bataller, R.; Loomba, R.; Sookoian, S.; Sarin, S.K.; Harrison, S.; Kawaguchi, T.; Wong, V.W-S.; Ratziu, V.; Yilmaz, Y.; Younossi, Z. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology, 2020, 158(7), 1999-2014.e1.
[http://dx.doi.org/10.1053/j.gastro.2019.11.312] [PMID: 32044314]
[26]
Cusi, K. Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis. Clin. Liver Dis., 2009, 13(4), 545-563.
[http://dx.doi.org/10.1016/j.cld.2009.07.009] [PMID: 19818304]
[27]
Eslam, M.; Sarin, S.K.; Wong, V.W.S.; Fan, J.G.; Kawaguchi, T.; Ahn, S.H.; Zheng, M.H.; Shiha, G.; Yilmaz, Y.; Gani, R.; Alam, S.; Dan, Y.Y.; Kao, J.H.; Hamid, S.; Cua, I.H.; Chan, W.K.; Payawal, D.; Tan, S.S.; Tanwandee, T.; Adams, L.A.; Kumar, M.; Omata, M.; George, J. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol. Int., 2020, 14(6), 889-919.
[http://dx.doi.org/10.1007/s12072-020-10094-2] [PMID: 33006093]
[28]
Takaki, A.; Kawai, D.; Yamamoto, K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int. J. Mol. Sci., 2013, 14(10), 20704-20728.
[http://dx.doi.org/10.3390/ijms141020704] [PMID: 24132155]
[29]
Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology, 2010, 52(5), 1836-1846.
[http://dx.doi.org/10.1002/hep.24001] [PMID: 21038418]
[30]
Koliaki, C.; Szendroedi, J.; Kaul, K.; Jelenik, T.; Nowotny, P.; Jankowiak, F.; Herder, C.; Carstensen, M.; Krausch, M.; Knoefel, W.T.; Schlensak, M.; Roden, M. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab., 2015, 21(5), 739-746.
[http://dx.doi.org/10.1016/j.cmet.2015.04.004] [PMID: 25955209]
[31]
Rada, P.; González-Rodríguez, Á.; García-Monzón, C.; Valverde, Á.M. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis., 2020, 11(9), 802.
[http://dx.doi.org/10.1038/s41419-020-03003-w] [PMID: 32978374]
[32]
Yalow, R.S.; Berson, S.A. Plasma insulin concentrations in nondiabetic and early diabetic subjects. Determinations by a new sensitive immuno-assay technic. Diabetes, 1960, 9(4), 254-260.
[http://dx.doi.org/10.2337/diab.9.4.254] [PMID: 13846365]
[33]
Bugianesi, E.; Gastaldelli, A.; Vanni, E.; Gambino, R.; Cassader, M.; Baldi, S.; Ponti, V.; Pagano, G.; Ferrannini, E.; Rizzetto, M. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia, 2005, 48(4), 634-642.
[http://dx.doi.org/10.1007/s00125-005-1682-x] [PMID: 15747110]
[34]
Choudhury, J.; Sanyal, A.J. Insulin resistance and the pathogenesis of nonalcoholic fatty liver disease. Clin. Liver Dis., 2004, 8(3), 575-594. [ix]
[http://dx.doi.org/10.1016/j.cld.2004.04.006] [PMID: 15331065]
[35]
Bergman, R.N.; Kim, S.P.; Hsu, I.R.; Catalano, K.J.; Chiu, J.D.; Kabir, M.; Richey, J.M.; Ader, M. Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am. J. Med., 2007, 120(2)(Suppl. 1), S3-S8.
[http://dx.doi.org/10.1016/j.amjmed.2006.11.012] [PMID: 17296343]
[36]
Kelley, D.E.; McKolanis, T.M.; Hegazi, R.A.F.; Kuller, L.H.; Kalhan, S.C. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2003, 285(4), E906-E916.
[http://dx.doi.org/10.1152/ajpendo.00117.2003] [PMID: 12959938]
[37]
Nguyen-Duy, T.B.; Nichaman, M.Z.; Church, T.S.; Blair, S.N.; Ross, R. Visceral fat and liver fat are independent predictors of metabolic risk factors in men. Am. J. Physiol. Endocrinol. Metab., 2003, 284(6), E1065-E1071.
[http://dx.doi.org/10.1152/ajpendo.00442.2002] [PMID: 12554597]
[38]
Svegliati-Baroni, G.; Ridolfi, F.; Di Sario, A.; Casini, A.; Marucci, L.; Gaggiotti, G.; Orlandoni, P.; Macarri, G.; Perego, L.; Benedetti, A.; Folli, F. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: Differential effects on signal transduction pathways. Hepatology, 1999, 29(6), 1743-1751.
[http://dx.doi.org/10.1002/hep.510290632] [PMID: 10347117]
[39]
Thiazolidinediones, Y-J.H. N. Engl. J. Med., 2004, 351(11), 1106-1118.
[http://dx.doi.org/10.1056/NEJMra041001] [PMID: 15356308]
[40]
Yu, J.G.; Javorschi, S.; Hevener, A.L.; Kruszynska, Y.T.; Norman, R.A.; Sinha, M.; Olefsky, J.M. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes, 2002, 51(10), 2968-2974.
[http://dx.doi.org/10.2337/diabetes.51.10.2968] [PMID: 12351435]
[41]
Lincoff, A.M.; Wolski, K.; Nicholls, S.J.; Nissen, S.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA, 2007, 298(10), 1180-1188.
[http://dx.doi.org/10.1001/jama.298.10.1180] [PMID: 17848652]
[42]
Loke, Y.K.; Singh, S.; Furberg, C.D. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ, 2009, 180(1), 32-39.
[http://dx.doi.org/10.1503/cmaj.080486] [PMID: 19073651]
[43]
Neumann, A.; Weill, A.; Ricordeau, P.; Fagot, J.P.; Alla, F.; Allemand, H. Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study. Diabetologia, 2012, 55(7), 1953-1962.
[http://dx.doi.org/10.1007/s00125-012-2538-9] [PMID: 22460763]
[44]
Kirpichnikov, D.; McFarlane, S.I.; Sowers, J.R. Metformin: An Update. Ann. Intern. Med., 2002, 137(1), 25-33.
[http://dx.doi.org/10.7326/0003-4819-137-1-200207020-00009] [PMID: 12093242]
[45]
Bonnet, F.; Scheen, A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes. Metab., 2017, 19(4), 473-481.
[http://dx.doi.org/10.1111/dom.12854] [PMID: 27987248]
[46]
DeFronzo, R.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism, 2016, 65(2), 20-29.
[http://dx.doi.org/10.1016/j.metabol.2015.10.014] [PMID: 26773926]
[47]
Colca, J.R.; McDonald, W.G.; Adams, W.J. MSDC-0602K, a metabolic modulator directed at the core pathology of non-alcoholic steatohepatitis. Expert Opin. Investig. Drugs, 2018, 27(7), 631-636.
[http://dx.doi.org/10.1080/13543784.2018.1494153] [PMID: 29950116]
[48]
Sokol, R.J.; McKim, J.M., Jr; Goff, M.C.; Ruyle, S.Z.; Devereaux, M.W.; Han, D.; Packer, L.; Everson, G. Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochenodeoxycholic acid in the rat. Gastroenterology, 1998, 114(1), 164-174.
[http://dx.doi.org/10.1016/S0016-5085(98)70644-4] [PMID: 9428230]
[49]
Schürks, M.; Glynn, R.J.; Rist, P.M.; Tzourio, C.; Kurth, T. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials. BMJ, 2010, 341(nov04 1), c5702.
[http://dx.doi.org/10.1136/bmj.c5702] [PMID: 21051774]
[50]
Klein, E.A.; Thompson, I.M., Jr; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; Karp, D.D.; Lieber, M.M.; Walther, P.J.; Klotz, L.; Parsons, J.K.; Chin, J.L.; Darke, A.K.; Lippman, S.M.; Goodman, G.E.; Meyskens, F.L., Jr; Baker, L.H. Vitamin E and the Risk of Prostate Cancer. JAMA, 2011, 306(14), 1549-1556.
[http://dx.doi.org/10.1001/jama.2011.1437] [PMID: 21990298]
[51]
Bhat, V.B.; Madyastha, K.M. Antioxidant and radical scavenging properties of 8-oxo derivatives of xanthine drugs pentoxifylline and lisofylline. Biochem. Biophys. Res. Commun., 2001, 288(5), 1212-1217.
[http://dx.doi.org/10.1006/bbrc.2001.5922] [PMID: 11700041]
[52]
Buhaescu, I.; Izzedine, H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin. Biochem., 2007, 40(9-10), 575-584.
[http://dx.doi.org/10.1016/j.clinbiochem.2007.03.016] [PMID: 17467679]
[53]
Sasaki, J.; Iwashita, M.; Kono, S. Statins: beneficial or adverse for glucose metabolism. J. Atheroscler. Thromb., 2006, 13(3), 123-129.
[http://dx.doi.org/10.5551/jat.13.123] [PMID: 16835466]
[54]
Lindor, K.D.; Kowdley, K.V.; Heathcote, E.J.; Harrison, M.E.; Jorgensen, R.; Angulo, P.; Lymp, J.F.; Burgart, L.; Colin, P. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: Results of a randomized trial. Hepatology, 2004, 39(3), 770-778.
[http://dx.doi.org/10.1002/hep.20092] [PMID: 14999696]
[55]
Reardon, J.; Hussaini, T.; Alsahafi, M.; Azalgara, V.M.; Erb, S.R.; Partovi, N.; Yoshida, E.M. Ursodeoxycholic acid in treatment of non-cholestatic liver diseases: A systematic review. J. Clin. Transl. Hepatol., 2016, 4(3), 192-205.
[PMID: 27777888]
[56]
Pellicciari, R.; Costantino, G.; Camaioni, E.; Sadeghpour, B.M.; Entrena, A.; Willson, T.M.; Fiorucci, S.; Clerici, C.; Gioiello, A. Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid. J. Med. Chem., 2004, 47(18), 4559-4569.
[http://dx.doi.org/10.1021/jm049904b] [PMID: 15317466]
[57]
Ratziu, V. Obeticholic acid for the treatment of nonalcoholic steatohepatitis. Clin. Liver Dis. (Hoboken), 2021, 17(6), 398-400.
[http://dx.doi.org/10.1002/cld.1076] [PMID: 34386202]
[58]
Al Mahtab, M.; Akbar, S.M.F.; Roy, P.P.; Rahim, M.A.; Yesmin, S.M.S.; Islam, S.B. Treatment of nonalcoholic steatohepatitis by obeticholic acid: Current status. Euroasian J. Hepatogastroenterol., 2022, 12(S1)(Suppl. 1), S46-S50.
[http://dx.doi.org/10.5005/jp-journals-10018-1360] [PMID: 36466097]
[59]
Tully, D.C.; Rucker, P.V.; Chianelli, D.; Williams, J.; Vidal, A.; Alper, P.B.; Mutnick, D.; Bursulaya, B.; Schmeits, J.; Wu, X.; Bao, D.; Zoll, J.; Kim, Y.; Groessl, T.; McNamara, P.; Seidel, H.M.; Molteni, V.; Liu, B.; Phimister, A.; Joseph, S.B.; Laffitte, B. Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J. Med. Chem., 2017, 60(24), 9960-9973.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00907] [PMID: 29148806]
[60]
Ratziu, V.; Harrison, S.A.; Francque, S.; Bedossa, P.; Lehert, P.; Serfaty, L.; Romero-Gomez, M.; Boursier, J.; Abdelmalek, M.; Caldwell, S.; Drenth, J.; Anstee, Q.M.; Hum, D.; Hanf, R.; Roudot, A.; Megnien, S.; Staels, B.; Sanyal, A.; Mathurin, P.; Gournay, J.; Nguyen-Khac, E.; De Ledinghen, V.; Larrey, D.; Tran, A.; Bourliere, M.; Maynard-Muet, M.; Asselah, T.; Henrion, J.; Nevens, F.; Cassiman, D.; Geerts, A.; Moreno, C.; Beuers, U.H.; Galle, P.R.; Spengler, U.; Bugianesi, E.; Craxi, A.; Angelico, M.; Fargion, S.; Voiculescu, M.; Gheorghe, L.; Preotescu, L.; Caballeria, J.; Andrade, R.J.; Crespo, J.; Callera, J.L.; Ala, A.; Aithal, G.; Abouda, G.; Luketic, V.; Huang, M.A.; Gordon, S.; Pockros, P.; Poordad, F.; Shores, N.; Moehlen, M.W.; Bambha, K.; Clark, V.; Satapathy, S.; Parekh, S.; Reddy, R.K.; Sheikh, M.Y.; Szabo, G.; Vierling, J.; Foster, T.; Umpierrez, G.; Chang, C.; Box, T.; Gallegos-Orozco, J. Elafibranor, an agonist of the peroxisome proliferator−activated receptor−α and −δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology, 2016, 150(5), 1147-1159.e5.
[http://dx.doi.org/10.1053/j.gastro.2016.01.038] [PMID: 26874076]
[61]
Westerouen Van Meeteren, M.J.; Drenth, J.P.H.; Tjwa, E.T.T.L. Elafibranor: a potential drug for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin. Investig. Drugs, 2020, 29(2), 117-123.
[http://dx.doi.org/10.1080/13543784.2020.1668375] [PMID: 31523999]
[62]
Cardoso, A.C.; de Figueiredo-Mendes, C.; A. Villela-Nogueira, C.; Sanyal, A.J. New drugs for non-alcoholic steatohepatitis. Liver Int., 2020, 40(S1)(Suppl. 1), 96-101.
[http://dx.doi.org/10.1111/liv.14354] [PMID: 32077615]
[63]
Harrison, S.A.; Rinella, M.E.; Abdelmalek, M.F.; Trotter, J.F.; Paredes, A.H.; Arnold, H.L.; Kugelmas, M.; Bashir, M.R.; Jaros, M.J.; Ling, L.; Rossi, S.J.; DePaoli, A.M.; Loomba, R. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 2018, 391(10126), 1174-1185.
[http://dx.doi.org/10.1016/S0140-6736(18)30474-4] [PMID: 29519502]
[64]
Sanyal, A.; Charles, E.D.; Neuschwander-Tetri, B.A.; Loomba, R.; Harrison, S.A.; Abdelmalek, M.F.; Lawitz, E.J.; Halegoua-DeMarzio, D.; Kundu, S.; Noviello, S.; Luo, Y.; Christian, R. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet, 2018, 392(10165), 2705-2717.
[http://dx.doi.org/10.1016/S0140-6736(18)31785-9] [PMID: 30554783]
[65]
Wang, Z.Q.; Zhang, X.H.; Yu, Y.; Tipton, R.C.; Raskin, I.; Ribnicky, D. Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by enhancing hepatic insulin and AMPK signaling independently of FGF21 pathway. Metab. Clin. Exp., 2013, 62(9), 1239-1249.
[http://dx.doi.org/10.1016/j.metabol.2013.03.004]
[66]
Araujo, L.C.C.; Feitosa, K.B.; Murata, G.M.; Furigo, I.C.; Teixeira, S.A.; Lucena, C.F.; Ribeiro, L.M.; Muscará, M.N.; Costa, S.K.P.; Donato, J., Jr; Bordin, S.; Curi, R.; Carvalho, C.R.O. Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD. Sci. Rep., 2018, 8(1), 11013.
[http://dx.doi.org/10.1038/s41598-018-29044-y] [PMID: 30030460]
[67]
Mabasa, L.; Kotze, A.; Shabalala, S.; Kimani, C.; Gabuza, K.; Johnson, R.; Sangweni, N.F.; Maharaj, V.; Muller, C.J.F. Sclerocarya birrea (Marula) extract inhibits hepatic steatosis in db/db mice. Int. J. Environ. Res. Public Health, 2022, 19(7), 3782.
[http://dx.doi.org/10.3390/ijerph19073782] [PMID: 35409465]
[68]
Hwang, K.A.; Hwang, Y.J.; Kim, G.R.; Choe, J.S. Extracts from Aralia elata (Miq) Seem alleviate hepatosteatosis via improving hepatic insulin sensitivity. BMC Complement. Altern. Med., 2015, 15(1), 347.
[http://dx.doi.org/10.1186/s12906-015-0871-5] [PMID: 26438035]
[69]
Zhou, L.; Tang, J.; Xiong, X.; Dong, H.; Huang, J.; Zhou, S.; Zhang, L.; Qin, H.; Yan, S. Psoralea corylifolia L. Attenuates Nonalcoholic Steatohepatitis in Juvenile Mouse. Front. Pharmacol., 2017, 8, 876.
[http://dx.doi.org/10.3389/fphar.2017.00876] [PMID: 29249967]
[70]
Wang, J.H.; Hwang, S.J.; Lim, D.W.; Son, C.G. Cynanchum atratum alleviates non-alcoholic fatty liver by balancing lipogenesis and fatty acid oxidation in a high-fat, high-fructose diet mice model. Cells, 2021, 11(1), 23.
[http://dx.doi.org/10.3390/cells11010023] [PMID: 35011585]
[71]
Choi, B.R.; Kim, H.J.; Lee, Y.J.; Ku, S.K. Anti-Diabetic Obesity Effects of Wasabia Japonica Matsum Leaf Extract on 45% Kcal High-Fat Diet-Fed Mice. Nutrients, 2020, 12(9), 2837.
[http://dx.doi.org/10.3390/nu12092837] [PMID: 32947952]
[72]
Wollman, A.; Daniel, T.; Rosenzweig, T. Sarcopoterium spinosum Inhibited the Development of Non-Alcoholic Steatosis and Steatohepatitis in Mice. Nutrients, 2019, 11(12), 3044.
[http://dx.doi.org/10.3390/nu11123044] [PMID: 31847157]
[73]
Chun, Y.S.; Ku, S.K.; Kim, J.K.; Park, S.; Cho, I.; Lee, N.J. Hepatoprotective and anti-obesity effects of Korean blue honeysuckle extracts in high fat diet-fed mice. J. Exerc. Nutrition Biochem., 2018, 22(4), 39-54.
[http://dx.doi.org/10.20463/jenb.2018.0029] [PMID: 30661330]
[74]
Sharma, P.; Nair, J.; Sinh, A. Guava Leaf Extract Suppresses Fructose Mediated Non-Alcoholic Fatty Liver Disease in Growing Rats. Diabetes Metab. Syndr. Obes., 2022, 15, 2827-2845.
[75]
Huang, H.C.; Chen, C.J.; Lai, Y.H.; Lin, Y.C.; Chiou, W.C.; Lu, H.F.; Chen, Y.F.; Chen, Y.H.; Huang, C. Momordica cochinchinensis aril ameliorates diet-induced metabolic dysfunction and non-alcoholic fatty liver by modulating gut microbiota. Int. J. Mol. Sci., 2021, 22(5), 2640.
[http://dx.doi.org/10.3390/ijms22052640] [PMID: 33808007]
[76]
Yu, Y.; Zhang, X.H.; Ebersole, B.; Ribnicky, D.; Wang, Z.Q. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Sci. Rep., 2013, 3(1), 3142.
[http://dx.doi.org/10.1038/srep03142] [PMID: 24189525]
[77]
Kwon, E.Y.; Choi, M.S. Eriocitrin improves adiposity and related metabolic disorders in high-fat diet-induced obese mice. J. Med. Food, 2020, 23(3), 233-241.
[http://dx.doi.org/10.1089/jmf.2019.4638] [PMID: 32191577]
[78]
Arunkumar, E.; Anuradha, C.V. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet. Nutr Res N Y N., 2012, 32(8), 617-625.
[http://dx.doi.org/10.1016/j.nutres.2012.06.002]
[79]
Bhuvaneswari, S.; Anuradha, C.V. Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice. Can. J. Physiol. Pharmacol., 2012, 90(11), 1544-1552.
[http://dx.doi.org/10.1139/y2012-119] [PMID: 23181282]
[80]
Dong, R.; Yang, X.; Wang, C.; Liu, K.; Liu, Z.; Ma, X.; Sun, H.; Huo, X.; Fu, T.; Meng, Q. Yangonin protects against non-alcoholic fatty liver disease through farnesoid X receptor. Phytomedicine, 2019, 53, 134-142.
[http://dx.doi.org/10.1016/j.phymed.2018.09.006] [PMID: 30668392]
[81]
Kang, J.; Guo, C.; Thome, R.; Yang, N.; Zhang, Y.; Li, X.; Cao, X. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: possible involvement of the PI3K–Akt/PKB signaling pathway. RSC Advances, 2018, 8(53), 30539-30549.
[http://dx.doi.org/10.1039/C8RA06045B] [PMID: 35546813]
[82]
Zhang, Y.; Hai, J.; Cao, M.; Zhang, Y.; Pei, S.; Wang, J.; Zhang, Q. Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int. Immunopharmacol., 2013, 17(3), 714-720.
[http://dx.doi.org/10.1016/j.intimp.2013.08.019] [PMID: 24036369]
[83]
Zheng, X.; Zhao, M.G.; Jiang, C.H.; Sheng, X.P.; Yang, H.M.; Liu, Y.; Yao, X.M.; Zhang, J.; Yin, Z.Q. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates insulin resistance and hepatic steatosis via PI3K/Akt/GSK3β pathway. Phytomedicine, 2020, 66, 153130.
[http://dx.doi.org/10.1016/j.phymed.2019.153130] [PMID: 31790897]
[84]
Liu, Y.; Liao, L.; Chen, Y.; Han, F. Effects of daphnetin on lipid metabolism, insulin resistance and oxidative stress in OA treated HepG2 cells. Mol. Med. Rep., 2019, 19(6), 4673-4684.
[http://dx.doi.org/10.3892/mmr.2019.10139] [PMID: 30957185]
[85]
Yu, Q.; Liu, Y.; Wu, Y.; Chen, Y. Dihydrocurcumin ameliorates the lipid accumulation, oxidative stress and insulin resistance in oleic acid-induced L02 and HepG2 cells. Biomed. Pharmacother., 2018, 103, 1327-1336.
[http://dx.doi.org/10.1016/j.biopha.2018.04.143] [PMID: 29864915]
[86]
Bao, L.; Hu, L.; Zhang, Y.; Wang, Y. Hypolipidemic effects of flavonoids extracted from Lomatogonium rotatum. Exp. Ther. Med., 2016, 11(4), 1417-1424.
[http://dx.doi.org/10.3892/etm.2016.3038] [PMID: 27073459]
[87]
Yong, Z.; Ruiqi, W.; Hongji, Y.; Ning, M.; Chenzuo, J.; Yu, Z.; Zhixuan, X.; Qiang, L.; Qibing, L.; Weiying, L.; Xiaopo, Z. Mangiferin Ameliorates HFD-Induced NAFLD through Regulation of the AMPK and NLRP3 Inflammasome Signal Pathways. J. Immunol. Res., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/4084566] [PMID: 34734090]
[88]
Yang, S.; Cao, S.; Li, C.; Zhang, J.; Liu, C.; Qiu, F.; Kang, N. Berberrubine, a main metabolite of berberine, alleviates non-alcoholic fatty liver disease via modulating glucose and lipid metabolism and restoring gut microbiota. Front. Pharmacol., 2022, 13, 913378.
[http://dx.doi.org/10.3389/fphar.2022.913378] [PMID: 35873595]
[89]
Qiao, Z.; Du, X.; Zhuang, W.; Yang, S.; Li, H.; Sun, J.; Chen, J.; Wang, C. Schisandra Chinensis acidic polysaccharide improves the insulin resistance in type 2 diabetic rats by inhibiting inflammation. J. Med. Food, 2020, 23(4), 358-366.
[http://dx.doi.org/10.1089/jmf.2019.4469] [PMID: 32181695]
[90]
Jung, S.; Son, H.; Hwang, C.E.; Cho, K.M.; Park, S.W.; Kim, H.; Kim, H.J. The root of Polygonum multiflorum thunb. Alleviates non-alcoholic steatosis and insulin resistance in high fat diet-fed mice. Nutrients, 2020, 12(8), 2353.
[http://dx.doi.org/10.3390/nu12082353] [PMID: 32781739]
[91]
Mathur, R.; Dutta, S.; Velpandian, T.; Mathur, S.R. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study. Pharmacognosy Res., 2015, 7(2), 166-175.
[92]
Ke, W.; Wang, P.; Wang, X.; Zhou, X.; Hu, X.; Chen, F. Dietary Platycodon grandiflorus attenuates hepatic insulin resistance and oxidative stress in high-fat-diet induced non-alcoholic fatty liver disease. Nutrients, 2020, 12(2), 480.
[http://dx.doi.org/10.3390/nu12020480] [PMID: 32074961]
[93]
Yeh, W.J.; Ko, J.; Huang, W.C.; Cheng, W.Y.; Yang, H.Y. Crude extract of Camellia oleifera pomace ameliorates the progression of non-alcoholic fatty liver disease via decreasing fat accumulation, insulin resistance and inflammation. Br. J. Nutr., 2020, 123(5), 508-515.
[http://dx.doi.org/10.1017/S0007114519003027] [PMID: 31771682]
[94]
Chen, Y.M.; Lian, C.F.; Sun, Q.W.; Wang, T.T.; Liu, Y.Y.; Ye, J.; Gao, L.L.; Yang, Y.F.; Liu, S.N.; Shen, Z.F.; Liu, Y.L. Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice. Antioxidants, 2022, 11(5), 905.
[http://dx.doi.org/10.3390/antiox11050905] [PMID: 35624769]
[95]
Huang, R.; Wang, B.; He, J.; Zhang, Z.; Xie, R.; Li, S.; Li, Q.; Tian, C.; Tuo, Y.; Zheng, R.; Chen, W.; Xiang, M. Lian-Qu formula treats metabolic syndrome via reducing fat synthesis, insulin resistance and inflammation. J. Ethnopharmacol., 2023, 306, 116060.
[http://dx.doi.org/10.1016/j.jep.2022.116060] [PMID: 36535333]
[96]
Zhang, L.; Xu, J.; Song, H.; Yao, Z.; Ji, G. Extracts from Salvia-Nelumbinis naturalis alleviate hepatosteatosis via improving hepatic insulin sensitivity. J. Transl. Med., 2014, 12(1), 236.
[http://dx.doi.org/10.1186/s12967-014-0236-8] [PMID: 25160038]
[97]
Li, Y.; Liu, Y.; Yang, M.; Wang, Q.; Zheng, Y.; Xu, J.; Zheng, P.; Song, H. A study on the therapeutic efficacy of San Zi Yang Qin decoction for non-alcoholic fatty liver disease and the underlying mechanism based on network pharmacology. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/8819245] [PMID: 33505505]
[98]
Lim, D.W.; Kim, H.; Lee, S.J.; Yu, G.R.; Kim, J.E.; Park, W.H. Jwa kum whan attenuates nonalcoholic fatty liver disease by modulating glucose metabolism and the insulin signaling pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/4589810] [PMID: 30881473]
[99]
Mohamed, W.S.; Mostafa, A.M.; Mohamed, K.M.; Serwah, A.H. Effects of fenugreek, Nigella, and termis seeds in nonalcoholic fatty liver in obese diabetic albino rats. Arab J. Gastroenterol., 2015, 16(1), 1-9.
[http://dx.doi.org/10.1016/j.ajg.2014.12.003] [PMID: 25670619]
[100]
Fan, Z.; Wang, C.; Yang, T.; Gao, T.; Wang, D.; Zhao, X.; Guo, X.; Li, D. Coffee peel extracts ameliorate non-alcoholic fatty liver disease via a fibroblast growth factor 21–adiponectin signaling pathway. Food Funct., 2022, 13(13), 7251-7259.
[http://dx.doi.org/10.1039/D2FO00081D] [PMID: 35723052]
[101]
Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414(6865), 799-806.
[http://dx.doi.org/10.1038/414799a] [PMID: 11742412]
[102]
Youngren, J.F. Regulation of insulin receptor function. Cell. Mol. Life Sci., 2007, 64(7-8), 873-891.
[http://dx.doi.org/10.1007/s00018-007-6359-9] [PMID: 17347799]
[103]
Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol., 2014, 6(1), a009191.
[http://dx.doi.org/10.1101/cshperspect.a009191] [PMID: 24384568]
[104]
Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 85-96.
[http://dx.doi.org/10.1038/nrm1837] [PMID: 16493415]
[105]
Harris, T.E.; Lawrence, J.C.; Jr, T.O.R. Signaling. Sci. STKE, 2003, 2003(212), re15.
[http://dx.doi.org/10.1126/stke.2122003re15] [PMID: 14668532]
[106]
Cohen, P.; Frame, S. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol., 2001, 2(10), 769-776.
[http://dx.doi.org/10.1038/35096075] [PMID: 11584304]
[107]
Accili, D.; Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 2004, 117(4), 421-426.
[http://dx.doi.org/10.1016/S0092-8674(04)00452-0] [PMID: 15137936]
[108]
Sano, H.; Kane, S.; Sano, E.; Mîinea, C.P.; Asara, J.M.; Lane, W.S.; Garner, C.W.; Lienhard, G.E. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J. Biol. Chem., 2003, 278(17), 14599-14602.
[http://dx.doi.org/10.1074/jbc.C300063200] [PMID: 12637568]
[109]
Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab., 2007, 5(4), 237-252.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
[110]
Chen, Y.; Lippincott-Schwartz, J. Selective visualization of GLUT4 storage vesicles and associated Rab proteins using IRAP-pHluorin. Methods Mol. Biol., 2015, 1298, 173-179.
[http://dx.doi.org/10.1007/978-1-4939-2569-8_14] [PMID: 25800841]
[111]
Khonsary, S. Guyton and Hall: Textbook of Medical Physiology. Surg. Neurol. Int., 2017, 8(1), 275. [Internet]
[http://dx.doi.org/10.4103/sni.sni_327_17]
[112]
Fain, J.N.; Madan, A.K.; Hiler, M.L.; Cheema, P.; Bahouth, S.W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology, 2004, 145(5), 2273-2282.
[http://dx.doi.org/10.1210/en.2003-1336] [PMID: 14726444]
[113]
Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, 116(7), 1793-1801.
[http://dx.doi.org/10.1172/JCI29069] [PMID: 16823477]
[114]
Paz, K.; Hemi, R.; LeRoith, D.; Karasik, A.; Elhanany, E.; Kanety, H.; Zick, Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J. Biol. Chem., 1997, 272(47), 29911-29918.
[http://dx.doi.org/10.1074/jbc.272.47.29911] [PMID: 9368067]
[115]
Qiao, L.; Goldberg, J.L.; Russell, J.C.; Sun, X.J. Identification of enhanced serine kinase activity in insulin resistance. J. Biol. Chem., 1999, 274(15), 10625-10632.
[http://dx.doi.org/10.1074/jbc.274.15.10625] [PMID: 10187859]
[116]
Song, X.; Lichti, C.F.; Townsend, R.R.; Mueckler, M. Single point mutations result in the miss-sorting of Glut4 to a novel membrane compartment associated with stress granule proteins. PLoS One, 2013, 8(7), e68516.
[http://dx.doi.org/10.1371/journal.pone.0068516] [PMID: 23874650]
[117]
Abeyrathna, P.; Su, Y. The critical role of Akt in cardiovascular function. Vascul. Pharmacol., 2015, 74, 38-48.
[http://dx.doi.org/10.1016/j.vph.2015.05.008] [PMID: 26025205]
[118]
Hwang. Differential regulation of the biosynthesis of glucose transporters by the PI3-K and MAPK pathways of insulin signaling by treatment with novel compounds from Liriope platyphylla. Int. J. Mol. Med., 2011, 27(3) [Internet]
[119]
Viollet, B.; Lantier, L.; Devin-Leclerc, J.; Hebrard, S.; Amouyal, C.; Mounier, R.; Foretz, M.; Andreelli, F. Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front. Biosci., 2009, Volume(14), 3380-3400.
[http://dx.doi.org/10.2741/3460] [PMID: 19273282]
[120]
Coughlan, K.A.; Valentine, R.J.; Ruderman, N.B.; Saha, A.K. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab. Syndr. Obes., 2014, 7, 241-253.
[PMID: 25018645]
[121]
Joshi, T.; Singh, A.K.; Haratipour, P.; Sah, A.N.; Pandey, A.K.; Naseri, R.; Juyal, V.; Farzaei, M.H. Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. J. Cell. Physiol., 2019, 234(10), 17212-17231.
[http://dx.doi.org/10.1002/jcp.28528] [PMID: 30916407]
[122]
Zhang, Y.; Yang, Y.; Yan, C.; Li, J.; Zhang, P.; Liu, R.; He, J.; Chang, Y. A review of the ethnopharmacology, phytochemistry and pharmacology of Cynanchum atratum. J. Ethnopharmacol., 2022, 284, 114748.
[http://dx.doi.org/10.1016/j.jep.2021.114748] [PMID: 34662666]
[123]
Stewart, A.F.; Hussain, M.A.; García-Ocaña, A.; Vasavada, R.C.; Bhushan, A.; Bernal-Mizrachi, E.; Kulkarni, R.N. Human β-cell proliferation and intracellular signaling: part 3. Diabetes, 2015, 64(6), 1872-1885.
[http://dx.doi.org/10.2337/db14-1843] [PMID: 25999530]
[124]
Ben-Othman, N.; Vieira, A.; Courtney, M.; Record, F.; Gjernes, E.; Avolio, F.; Hadzic, B.; Druelle, N.; Napolitano, T.; Navarro-Sanz, S.; Silvano, S.; Al-Hasani, K.; Pfeifer, A.; Lacas-Gervais, S.; Leuckx, G.; Marroquí, L.; Thévenet, J.; Madsen, O.D.; Eizirik, D.L.; Heimberg, H.; Kerr-Conte, J.; Pattou, F.; Mansouri, A.; Collombat, P. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell, 2017, 168(1-2), 73-85.e11.
[http://dx.doi.org/10.1016/j.cell.2016.11.002] [PMID: 27916274]
[125]
Li, J.; Casteels, T.; Frogne, T.; Ingvorsen, C.; Honoré, C.; Courtney, M.; Huber, K.V.M.; Schmitner, N.; Kimmel, R.A.; Romanov, R.A.; Sturtzel, C.; Lardeau, C.H.; Klughammer, J.; Farlik, M.; Sdelci, S.; Vieira, A.; Avolio, F.; Briand, F.; Baburin, I.; Májek, P.; Pauler, F.M.; Penz, T.; Stukalov, A.; Gridling, M.; Parapatics, K.; Barbieux, C.; Berishvili, E.; Spittler, A.; Colinge, J.; Bennett, K.L.; Hering, S.; Sulpice, T.; Bock, C.; Distel, M.; Harkany, T.; Meyer, D.; Superti-Furga, G.; Collombat, P.; Hecksher-Sørensen, J.; Kubicek, S. Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity. Cell, 2017, 168(1-2), 86-100.e15.
[http://dx.doi.org/10.1016/j.cell.2016.11.010] [PMID: 27916275]
[126]
Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Invest., 2000, 106(4), 473-481.
[http://dx.doi.org/10.1172/JCI10842] [PMID: 10953022]
[127]
Montague, C.T.; Farooqi, I.S.; Whitehead, J.P.; Soos, M.A.; Rau, H.; Wareham, N.J.; Sewter, C.P.; Digby, J.E.; Mohammed, S.N.; Hurst, J.A.; Cheetham, C.H.; Earley, A.R.; Barnett, A.H.; Prins, J.B.; O’Rahilly, S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 1997, 387(6636), 903-908.
[http://dx.doi.org/10.1038/43185] [PMID: 9202122]
[128]
Moon, B.; Kwan, J.J.M.; Duddy, N.; Sweeney, G.; Begum, N. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab., 2003, 285(1), E106-E115.
[http://dx.doi.org/10.1152/ajpendo.00457.2002] [PMID: 12618360]
[129]
Maciag, T.; Mehlman, T.; Friesel, R.; Schreiber, A.B. Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science, 1984, 225(4665), 932-935.
[http://dx.doi.org/10.1126/science.6382607] [PMID: 6382607]
[130]
Sancar, G.; Liu, S.; Gasser, E.; Alvarez, J.G.; Moutos, C.; Kim, K.; van Zutphen, T.; Wang, Y.; Huddy, T.F.; Ross, B.; Dai, Y.; Zepeda, D.; Collins, B.; Tilley, E.; Kolar, M.J.; Yu, R.T.; Atkins, A.R.; van Dijk, T.H.; Saghatelian, A.; Jonker, J.W.; Downes, M.; Evans, R.M. FGF1 and insulin control lipolysis by convergent pathways. Cell Metab., 2022, 34(1), 171-183.e6.
[http://dx.doi.org/10.1016/j.cmet.2021.12.004] [PMID: 34986332]
[131]
Suh, J.M.; Jonker, J.W.; Ahmadian, M.; Goetz, R.; Lackey, D.; Osborn, O.; Huang, Z.; Liu, W.; Yoshihara, E.; van Dijk, T.H.; Havinga, R.; Fan, W.; Yin, Y.Q.; Yu, R.T.; Liddle, C.; Atkins, A.R.; Olefsky, J.M.; Mohammadi, M.; Downes, M.; Evans, R.M. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 2014, 513(7518), 436-439.
[http://dx.doi.org/10.1038/nature13540] [PMID: 25043058]
[132]
Lin, Q.; Huang, Z.; Cai, G.; Fan, X.; Yan, X.; Liu, Z.; Zhao, Z.; Li, J.; Li, J.; Shi, H.; Kong, M.; Zheng, M.H.; Conklin, D.J.; Epstein, P.N.; Wintergerst, K.A.; Mohammadi, M.; Cai, L.; Li, X.; Li, Y.; Tan, Y. Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice. Hepatology, 2021, 73(6), 2206-2222.
[http://dx.doi.org/10.1002/hep.31568] [PMID: 32965675]
[133]
Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol., 2015, 4(3), 215-266.
[http://dx.doi.org/10.1002/wdev.176] [PMID: 25772309]
[134]
Ying, L.; Wang, L.; Guo, K.; Hou, Y.; Li, N.; Wang, S.; Liu, X.; Zhao, Q.; Zhou, J.; Zhao, L.; Niu, J.; Chen, C.; Song, L.; Hou, S.; Kong, L.; Li, X.; Ren, J.; Li, P.; Mohammadi, M.; Huang, Z. Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects. Nat. Commun., 2021, 12(1), 7256.
[http://dx.doi.org/10.1038/s41467-021-27584-y] [PMID: 34907199]
[135]
Shapiro, A.M.J.; Lakey, J.R.T.; Ryan, E.A.; Korbutt, G.S.; Toth, E.; Warnock, G.L.; Kneteman, N.M.; Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med., 2000, 343(4), 230-238.
[http://dx.doi.org/10.1056/NEJM200007273430401] [PMID: 10911004]