Nanomaterials in Wound Healing: Mechanisms, Applications, and Future Prospects
  • * (Excluding Mailing and Handling)

Abstract

Background: Poor wound healing poses a significant global health challenge, leading to increased mortality rates and considerable healthcare expenses. Nanotechnology has emerged as a promising approach to address the complexities associated with wound healing, offering potential solutions to enhance the wound microenvironment and promote efficient tissue repair.

Aim: This review aims to comprehensively summarize recent advancements in the application of nanomaterials for wound healing, with a focus on their mechanisms of action. The review also explores the prospects and challenges of using nanomaterials in wound dressings, specifically in the context of antimicrobial, anti-inflammatory, and angiogenic effects.

Results: The integration of nanomaterials in wound healing has demonstrated significant progress in addressing key challenges, such as providing a suitable environment for cell migration, controlling microbial infections, and managing inflammation. Nanomaterials have been found to stimulate cellular and molecular processes, promoting hemostasis, immune regulation, and tissue proliferation, thereby accelerating wound closure and tissue regeneration.

Conclusion: Nanotechnology-based wound healing has shown great promise in revolutionizing wound care. Nanomaterials offer unique physicochemical and biological properties that can be harnessed to develop advanced wound dressings capable of sustained therapeutic agent delivery and targeted bacterial detection and treatment. Despite these promising advancements, challenges such as reproducibility, stability, toxicity, and histocompatibility must be addressed to ensure successful translation from laboratory research to clinical applications. Further research is required to better understand the in-vivo behaviour of nanomaterial-based wound dressings and to explore innovative approaches, such as intelligent wound dressings that detect and treat infections synergistically, to enhance wound healing outcomes. Overall, nanomaterials hold tremendous potential for future wound healing strategies, paving the way for improved patient outcomes and reduced healthcare burdens.

[1]
Gonzalez ACO, Costa TF, Andrade ZA, Medrado ARAP. Wound healing - A literature review. An Bras Dermatol 2016; 91(5): 614-20.
[http://dx.doi.org/10.1590/abd1806-4841.20164741] [PMID: 27828635]
[2]
Schultz GS, Sibbald RG, Falanga V, et al. Wound bed preparation: A systematic approach to wound management. Wound Repair Regen 2003; 11(S1): S1-S28.
[http://dx.doi.org/10.1046/j.1524-475X.11.s2.1.x] [PMID: 12654015]
[3]
Sornberger MJ, Heath NL, Toste JR, McLouth R. Nonsuicidal self-injury and gender: Patterns of prevalence, methods, and locations among adolescents. Suicide Life Threat Behav 2012; 42(3): 266-78.
[http://dx.doi.org/10.1111/j.1943-278X.2012.0088.x] [PMID: 22435988]
[4]
Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis 2014; 59(2): e10-52.
[http://dx.doi.org/10.1093/cid/ciu296] [PMID: 24973422]
[5]
De Luca I, Pedram P, Moeini A, et al. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl Sci 2021; 11(4): 1713.
[http://dx.doi.org/10.3390/app11041713]
[6]
Makrantonaki E, Meinhard W, Karin SK. Pathogenesis of wound healing disorders in the elderly. J Dtsch Dermatol Ges 2017; 15(3): 255-75.
[7]
Wicke C, Bachinger A, Coerper S, Beckert S, Witte MB, Königsrainer A. Aging influences wound healing in patients with chronic lower extremity wounds treated in a specialized wound care center. Wound Repair Regen 2009; 17(1): 25-33.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00438.x] [PMID: 19152648]
[8]
Ferreira MC, Tuma P Jr, Carvalho VF, Kamamoto F. Complex wounds. Clinics 2006; 61(6): 571-8.
[http://dx.doi.org/10.1590/S1807-59322006000600014] [PMID: 17187095]
[9]
Harding K, Queen D. Chronic wounds and their management and prevention is a significiant public health issue. Int Wound J 2010; 7(3): 125-6.
[http://dx.doi.org/10.1111/j.1742-481X.2010.00693.x] [PMID: 20602642]
[10]
Sen CK. Human wound and its burden: Updated 2020 compendium of estimates. Adv Wound Care 2021; 10(5): 281-92.
[http://dx.doi.org/10.1089/wound.2021.0026] [PMID: 33733885]
[11]
Telichowska SK, Czemplik M, Kulma A, Szopa J. The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol 2013; 68(4): e117-26.
[http://dx.doi.org/10.1016/j.jaad.2011.06.028] [PMID: 21982060]
[12]
Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements. Cells 2022; 11(15): 2439.
[http://dx.doi.org/10.3390/cells11152439] [PMID: 35954282]
[13]
Korting HC, Schöllmann C, White RJ. Management of minor acute cutaneous wounds: Importance of wound healing in a moist environment. J Eur Acad Dermatol Venereol 2011; 25(2): 130-7.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03775.x] [PMID: 20626534]
[14]
Obagi Z, Damiani G, Grada A, Falanga V. Principles of wound dressings: A review. Surg Technol Int 2019; 35: 50-7.
[PMID: 31480092]
[15]
Wolcott R, Cutting K, Dowd SE, Percival SL. Types of wounds and infections. In: Percival S, Cutting K, Eds. Microbiology of Wounds. CRC Press 2010; pp. 219-32.
[http://dx.doi.org/10.1201/9781420079944-c7]
[16]
Shi C, Wang C, Liu H, et al. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol 2020; 8: 182.
[http://dx.doi.org/10.3389/fbioe.2020.00182] [PMID: 32266224]
[17]
Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL. Bacterial contribution in chronicity of wounds. Microb Ecol 2017; 73(3): 710-21.
[http://dx.doi.org/10.1007/s00248-016-0867-9] [PMID: 27742997]
[18]
Falanga V, Isseroff RR, Soulika AM, et al. Chronic wounds. Nat Rev Dis Primers 2022; 8(1): 50.
[http://dx.doi.org/10.1038/s41572-022-00377-3] [PMID: 35864184]
[19]
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123: 82-106.
[http://dx.doi.org/10.1016/j.addr.2017.10.012] [PMID: 29106911]
[20]
Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol 2007; 25(1): 19-25.
[http://dx.doi.org/10.1016/j.clindermatol.2006.12.005] [PMID: 17276197]
[21]
Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur Surg Res 2017; 58(1-2): 81-94.
[http://dx.doi.org/10.1159/000454919] [PMID: 27974711]
[22]
Flanagan M. The physiology of wound healing. J Wound Care 2000; 9(6): 299-300.
[http://dx.doi.org/10.12968/jowc.2000.9.6.25994] [PMID: 11933346]
[23]
Hansen BH. Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res 1993; 28(7): 500-10.
[http://dx.doi.org/10.1111/j.1600-0765.1993.tb02113.x] [PMID: 8263720]
[24]
Rozman P, Bolta Z. Use of platelet growth factors in treating wounds and soft-tissue injuries. Acta Dermatovenerol Alp Panonica Adriat 2007; 16(4): 156-65.
[PMID: 18204746]
[25]
Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones 2007; 39(2): 86-93.
[PMID: 17933075]
[26]
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care 2015; 4(9): 560-82.
[http://dx.doi.org/10.1089/wound.2015.0635] [PMID: 26339534]
[27]
Moghaddam SA, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233(9): 6425-40.
[http://dx.doi.org/10.1002/jcp.26429] [PMID: 29319160]
[28]
Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes TE. Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol 2009; 69(6): 479-91.
[http://dx.doi.org/10.1111/j.1365-3083.2009.02255.x] [PMID: 19439008]
[29]
Childress BB, Stechmiller JK. Role of nitric oxide in wound healing. Biol Res Nurs 2002; 4(1): 5-15.
[http://dx.doi.org/10.1177/1099800402004001002] [PMID: 12363282]
[30]
de Brás CLE, Frangogiannis NG. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol 2020; 91-92: 176-87.
[http://dx.doi.org/10.1016/j.matbio.2020.04.006] [PMID: 32438055]
[31]
Orgill D, Demling RH. Current concepts and approaches to wound healing. Crit Care Med 1988; 16(9): 899-908.
[http://dx.doi.org/10.1097/00003246-198809000-00016] [PMID: 2456894]
[32]
Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int 2015; 2015: 1-35.
[http://dx.doi.org/10.1155/2015/167025] [PMID: 26351461]
[33]
Tavelli L, Barootchi S, Stefanini M, Zucchelli G, Giannobile WV, Wang HL. Wound healing dynamics, morbidity, and complications of palatal soft-tissue harvesting. Periodontol 2000 2023; 92(1): 90-119.
[http://dx.doi.org/10.1111/prd.12466] [PMID: 36583690]
[34]
Akershoek JJ, Vlig M, Talhout W, et al. Cell therapy for full-thickness wounds: are fetal dermal cells a potential source? Cell Tissue Res 2016; 364(1): 83-94.
[http://dx.doi.org/10.1007/s00441-015-2293-6] [PMID: 26453400]
[35]
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 2002; 192(1): 1-15.
[http://dx.doi.org/10.1002/jcp.10119] [PMID: 12115731]
[36]
Bennett SP, Griffiths GD, Schor AM, Leese GP, Schor SL. Growth factors in the treatment of diabetic foot ulcers. Br J Surg 2003; 90(2): 133-46.
[http://dx.doi.org/10.1002/bjs.4019] [PMID: 12555288]
[37]
Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000; 7(3): 165-97.
[http://dx.doi.org/10.1677/erc.0.0070165] [PMID: 11021964]
[38]
Singer AJ, Clark RAF. Cutaneous wound healing. N Engl J Med 1999; 341(10): 738-46.
[http://dx.doi.org/10.1056/NEJM199909023411006] [PMID: 10471461]
[39]
Lederle W, Stark HJ, Skobe M, Fusenig NE, Mueller MM. Platelet-derived growth factor-BB controls epithelial tumor phenotype by differential growth factor regulation in stromal cells. Am J Pathol 2006; 169(5): 1767-83.
[http://dx.doi.org/10.2353/ajpath.2006.060120] [PMID: 17071599]
[40]
Robson MC. The role of growth factors in the healing of chronic wounds. Wound Repair Regen 1997; 5(1): 12-7.
[http://dx.doi.org/10.1046/j.1524-475X.1997.50106.x] [PMID: 16984452]
[41]
Trengove NJ, Ohmann BH, Stacey MC. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen 2000; 8(1): 13-25.
[http://dx.doi.org/10.1046/j.1524-475x.2000.00013.x] [PMID: 10760211]
[42]
Uutela M, Wirzenius M, Paavonen K, et al. PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 2004; 104(10): 3198-204.
[http://dx.doi.org/10.1182/blood-2004-04-1485] [PMID: 15271796]
[43]
Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79(4): 1283-316.
[http://dx.doi.org/10.1152/physrev.1999.79.4.1283] [PMID: 10508235]
[44]
Shiraha H, Glading A, Gupta K, Wells A. IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. J Cell Biol 1999; 146(1): 243-54.
[http://dx.doi.org/10.1083/jcb.146.1.243] [PMID: 10402474]
[45]
Schultz G, Clark W, Rotatori DS. EGF and TGF-α in wound healing and repair. J Cell Biochem 1991; 45(4): 346-52.
[http://dx.doi.org/10.1002/jcb.240450407] [PMID: 2045428]
[46]
Brown GL, Curtsinger L III, Brightwell JR, et al. Enhancement of epidermal regeneration by biosynthetic epidermal growth factor. J Exp Med 1986; 163(5): 1319-24.
[http://dx.doi.org/10.1084/jem.163.5.1319] [PMID: 3486247]
[47]
Brown GL, Curtsinger LJ, White M, et al. Acceleration of tensile strength of incisions treated with EGF and TGF-beta. Ann Surg 1988; 208(6): 788-94.
[http://dx.doi.org/10.1097/00000658-198812000-00019] [PMID: 3264140]
[48]
Jiang CK, Magnaldo T, Ohtsuki M, Freedberg IM, Bernerd F, Blumenberg M. Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16. Proc Natl Acad Sci 1993; 90(14): 6786-90.
[http://dx.doi.org/10.1073/pnas.90.14.6786] [PMID: 7688128]
[49]
Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 1996; 4(4): 411-20.
[http://dx.doi.org/10.1046/j.1524-475X.1996.40404.x] [PMID: 17309691]
[50]
Lee HST, Kooshesh F, Saunder DN, Kondo S. Modulation of TGF-β1 production from human keratinocytes by UVB. Exp Dermatol 1997; 6(2): 105-10.
[http://dx.doi.org/10.1111/j.1600-0625.1997.tb00155.x] [PMID: 9209893]
[51]
Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: Implications for wound healing. Plast Reconstr Surg 2004; 114(6): 1502-8.
[http://dx.doi.org/10.1097/01.PRS.0000138251.07040.51] [PMID: 15509939]
[52]
Kopecki Z, Luchetti MM, Adams DH, et al. Collagen loss and impaired wound healing is associated with c-Myb deficiency. J Pathol 2007; 211(3): 351-61.
[http://dx.doi.org/10.1002/path.2113] [PMID: 17152050]
[53]
Frank S, Hübner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 1995; 270(21): 12607-13.
[http://dx.doi.org/10.1074/jbc.270.21.12607] [PMID: 7759509]
[54]
Yebra M, Parry GCN, Strömblad S, et al. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration. J Biol Chem 1996; 271(46): 29393-9.
[http://dx.doi.org/10.1074/jbc.271.46.29393] [PMID: 8910604]
[55]
Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 1996; 270(1 Pt 2): H411-5.
[PMID: 8769777]
[56]
Finnerty CC, Herndon DN, Przkora R, et al. Cytokine expression profile over time in severely burned pediatric patients. Shock 2006; 26(1): 13-9.
[http://dx.doi.org/10.1097/01.shk.0000223120.26394.7d] [PMID: 16783192]
[57]
Gallucci RM, Sloan DK, Heck JM, Murray AR, O’Dell SJ. Interleukin 6 indirectly induces keratinocyte migration. J Invest Dermatol 2004; 122(3): 764-72.
[http://dx.doi.org/10.1111/j.0022-202X.2004.22323.x] [PMID: 15086564]
[58]
Sato M, Sawamura D, Ina S, Yaguchi T, Hanada K, Hashimoto I. in vivo introduction of the interleukin 6 gene into human keratinocytes: Induction of epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form. Arch Dermatol Res 1999; 291(7-8): 400-4.
[http://dx.doi.org/10.1007/s004030050429] [PMID: 10482009]
[59]
Rappolee DA, Mark D, Banda MJ, Werb Z. Wound macrophages express TGF-alpha and other growth factors in vivo: Analysis by mRNA phenotyping. Science 1988; 241(4866): 708-12.
[http://dx.doi.org/10.1126/science.3041594] [PMID: 3041594]
[60]
Raja R, Sivamani K, Garcia MS, Isseroff RR. Wound re-epithelialization: Modulating kerationcyte migration in wound healing. Front Biosci 2007; 12(8-12): 2849-68.
[http://dx.doi.org/10.2741/2277] [PMID: 17485264]
[61]
Tang A, Gilchrest BA. Regulation of keratinocyte growth factor gene expression in human skin fibroblasts. J Dermatol Sci 1996; 11(1): 41-50.
[http://dx.doi.org/10.1016/0923-1811(95)00418-1] [PMID: 8867766]
[62]
Macedo L, Enfield PG, Alshits V, Elson G, Cronstein BN, Leibovich SJ. Wound healing is impaired in MyD88-deficient mice: A role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am J Pathol 2007; 171(6): 1774-88.
[http://dx.doi.org/10.2353/ajpath.2007.061048] [PMID: 17974599]
[63]
Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 ( TRAF 6) regulation of development, function, and homeostasis of the immune system. Immunol Rev 2015; 266(1): 72-92.
[http://dx.doi.org/10.1111/imr.12302] [PMID: 26085208]
[64]
Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9(6): 7204-18.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[65]
Piipponen M, Li D, Landén NX. The immune functions of keratinocytes in skin wound healing. Int J Mol Sci 2020; 21(22): 8790.
[http://dx.doi.org/10.3390/ijms21228790] [PMID: 33233704]
[66]
Hildebrand JM, Yi Z, Buchta CM, Poovassery J, Stunz LL, Bishop GA. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol Rev 2011; 244(1): 55-74.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01055.x] [PMID: 22017431]
[67]
Pilehvar-Soltanahmadi Y, Dadashpour M, Mohajeri A, Fattahi A, Sheervalilou R, Zarghami N. An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini Rev Med Chem 2018; 18(5): 414-27.
[http://dx.doi.org/10.2174/1389557517666170308112147] [PMID: 28271816]
[68]
Farahani M, Shafiee A. Wound healing: From passive to smart dressings. Adv Healthc Mater 2021; 10(16): 2100477.
[http://dx.doi.org/10.1002/adhm.202100477] [PMID: 34174163]
[69]
Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing—A review. J Pharm Sci 2015; 104(11): 3653-80.
[http://dx.doi.org/10.1002/jps.24610] [PMID: 26308473]
[70]
Felgueiras HP, Amorim MTP. Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf B Biointerfaces 2017; 156: 133-48.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.001] [PMID: 28527357]
[71]
Moura LIF, Dias AMA, Carvalho E, de Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomater 2013; 9(7): 7093-114.
[http://dx.doi.org/10.1016/j.actbio.2013.03.033] [PMID: 23542233]
[72]
Rezvani Ghomi E, Niazi M, Ramakrishna S. The evolution of wound dressings: From traditional to smart dressings. Polym Adv Technol 2023; 34(2): 520-30.
[http://dx.doi.org/10.1002/pat.5929]
[73]
Singh P, Garg A, Pandit S, Mokkapati V, Mijakovic I. Antimicrobial effects of biogenic nanoparticles. Nanomaterials 2018; 8(12): 1009.
[http://dx.doi.org/10.3390/nano8121009] [PMID: 30563095]
[74]
Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm 2018; 127: 130-41.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.022] [PMID: 29462687]
[75]
Alves PJ, Barreto RT, Barrois BM, Gryson LG, Meaume S, Monstrey SJ. Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. Int Wound J 2021; 18(3): 342-58.
[http://dx.doi.org/10.1111/iwj.13537] [PMID: 33314723]
[76]
Howell-Jones RS, Wilson MJ, Hill KE, Howard AJ, Price PE, Thomas DW. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J Antimicrob Chemother 2005; 55(2): 143-9.
[http://dx.doi.org/10.1093/jac/dkh513] [PMID: 15649989]
[77]
Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for wound healing and infection control. Materials 2019; 12(13): 2176.
[http://dx.doi.org/10.3390/ma12132176] [PMID: 31284587]
[78]
Negut I, Grumezescu V, Grumezescu A. Treatment strategies for infected wounds. Molecules 2018; 23(9): 2392.
[http://dx.doi.org/10.3390/molecules23092392] [PMID: 30231567]
[79]
Aljaafari MN, AlAli AO, Baqais L, et al. An overview of the potential therapeutic applications of essential oils. Molecules 2021; 26(3): 628.
[http://dx.doi.org/10.3390/molecules26030628] [PMID: 33530290]
[80]
Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils—present status and future perspectives. Medicines 2017; 4(3): 58.
[http://dx.doi.org/10.3390/medicines4030058] [PMID: 28930272]
[81]
Scepankova H, Combarros-Fuertes P, Fresno JM, et al. Role of honey in advanced wound care. Molecules 2021; 26(16): 4784.
[http://dx.doi.org/10.3390/molecules26164784] [PMID: 34443372]
[82]
Mostafavi E, Soltantabar P, Webster TJ. Nanotechnology and picotechnology: A new arena for translational medicine. Biomaterials in Translational Medicine. Academic Press 2019; pp. 191-212.
[http://dx.doi.org/10.1016/B978-0-12-813477-1.00009-8]
[83]
Madkour LH. Introduction to nanotechnology (NT) and nanomaterials (NMs). Nanoelectronic Materials. Springer 2019; pp. 1-47.
[84]
Owen A, Dufès C, Moscatelli D, et al. The application of nanotechnology in medicine: treatment and diagnostics. Nanomedicine 2014; 9(9): 1291-4.
[http://dx.doi.org/10.2217/nnm.14.93] [PMID: 25204820]
[85]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[86]
Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem Int Ed 2001; 40(22): 4128-58.
[http://dx.doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S] [PMID: 29712109]
[87]
Vijayakumar G, Kim HJ, Rangarajulu SK. in vitro antibacterial and wound healing activities evoked by silver nanoparticles synthesized through probiotic bacteria. Antibiotics 2023; 12(1): 141.
[http://dx.doi.org/10.3390/antibiotics12010141] [PMID: 36671342]
[88]
Abdelhakiem MAH, Hussein A, Seleim SM, Abdelbaset AE, Elkareem AM. Silver nanoparticles and platelet-rich fibrin accelerate tendon healing in donkey. Sci Rep 2023; 13(1): 3421.
[http://dx.doi.org/10.1038/s41598-023-30543-w] [PMID: 36854886]
[89]
Dutt Y, Pandey RP, Dutt M, et al. Silver nanoparticles phytofabricated through Azadirachta indica: Anticancer, apoptotic, and wound-healing properties. Antibiotics 2023; 12(1): 121.
[http://dx.doi.org/10.3390/antibiotics12010121] [PMID: 36671322]
[90]
Manikandan R, Anjali R, Beulaja M, et al. Synthesis, characterization, anti-proliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelliformis. Process Biochem 2019; 79: 135-41.
[http://dx.doi.org/10.1016/j.procbio.2019.01.013]
[91]
Sajjad A, Zia M, Xiao X, Olsson RT, Capezza AJ, Rasheed F. Wheat gluten hydrolysates with embedded Ag-nanoparticles; a structure-function assessment for potential applications as wound sorbents with antimicrobial properties. Polym Test 2023; 118: 107896.
[http://dx.doi.org/10.1016/j.polymertesting.2022.107896]
[92]
Francisco P, Neves Amaral M, Neves A, et al. Pluronic® F127 hydrogel containing silver nanoparticles in skin burn regeneration: An experimental approach from fundamental to translational research. Gels 2023; 9(3): 200.
[http://dx.doi.org/10.3390/gels9030200] [PMID: 36975649]
[93]
Capek I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interface Sci 2017; 249: 386-99.
[http://dx.doi.org/10.1016/j.cis.2017.01.007] [PMID: 28259207]
[94]
Odongo SA, Fredrick OO, Lugasi SO. Onani Mo, Agong SG. Biogenic Synthesis of Gold Nanoparticles from Physalis peruviana and Application in Wound Healing. J Chem 2022; 2022: 9034840.
[95]
Batool Z, Muhammad G, Iqbal MM, et al. Hydrogel assisted synthesis of gold nanoparticles with enhanced microbicidal and in vivo wound healing potential. Sci Rep 2022; 12(1): 6575.
[http://dx.doi.org/10.1038/s41598-022-10495-3] [PMID: 35449438]
[96]
Schwartz VB, Thétiot F, Ritz S, et al. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (n-isopropylacrylamide) hydrogel surface layers. Adv Funct Mater 2012; 22(11): 2376-86.
[http://dx.doi.org/10.1002/adfm.201102980]
[97]
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharmaceut Sci 2022; 17(3): 353-84.
[http://dx.doi.org/10.1016/j.ajps.2022.01.001] [PMID: 35782328]
[98]
Bapat RA, Chaubal TV, Joshi CP, et al. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C 2018; 91: 881-98.
[http://dx.doi.org/10.1016/j.msec.2018.05.069] [PMID: 30033323]
[99]
Singh M, Thakur V, Kumar V, et al. Silver nanoparticles and its mechanistic insight for chronic wound healing: Review on recent progress. Molecules 2022; 27(17): 5587.
[http://dx.doi.org/10.3390/molecules27175587] [PMID: 36080353]
[100]
Salatin S, Lotfipour F, Jelvehgari M. A brief overview on nano- sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin Drug Deliv 2019; 16(12): 1313-31.
[http://dx.doi.org/10.1080/17425247.2020.1693998] [PMID: 31738622]
[101]
Ivask A, Voelcker NH, Seabrook SA, et al. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem Res Toxicol 2015; 28(5): 1023-35.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00052] [PMID: 25781053]
[102]
Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials 2019; 12(16): 2540.
[http://dx.doi.org/10.3390/ma12162540] [PMID: 31404974]
[103]
Khundkar R, Malic C, Burge T. Use of acticoat™ dressings in burns: What is the evidence? Burns 2010; 36(6): 751-8.
[http://dx.doi.org/10.1016/j.burns.2009.04.008] [PMID: 20346592]
[104]
Kurup M, Kumar M, Chandra M, Venkateswarlu B, Ramanathan S. in-vitro and in-vivo wound healing activity of biogenically synthesised S. Alternata methanolic extract silver nanoparticle transdermal patches. Pak Heart J 2023; 56(1): 39-46.
[105]
Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ, Andronescu E. Inorganic nanoparticles and composite films for antimicrobial therapies. Int J Mol Sci 2021; 22(9): 4595.
[http://dx.doi.org/10.3390/ijms22094595] [PMID: 33925617]
[106]
Kumari A, Raina N, Wahi A, et al. Wound-healing effects of curcumin and its nanoformulations: A comprehensive review. Pharmaceutics 2022; 14(11): 2288.
[http://dx.doi.org/10.3390/pharmaceutics14112288] [PMID: 36365107]
[107]
Blinov AV, Kachanov MD, Gvozdenko AA, et al. Synthesis and characterization of zinc oxide nanoparticles stabilized with biopolymers for application in wound-healing mixed gels. Gels 2023; 9(1): 57.
[http://dx.doi.org/10.3390/gels9010057] [PMID: 36661823]
[108]
Saddik MS, Elsayed MMA, El-Mokhtar MA, et al. Tailoring of novel azithromycin-loaded zinc oxide nanoparticles for wound healing. Pharmaceutics 2022; 14(1): 111.
[http://dx.doi.org/10.3390/pharmaceutics14010111] [PMID: 35057019]
[109]
Nandhini SN, Sisubalan N, Vijayan A, et al. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon 2023; 9(2): e13128.
[http://dx.doi.org/10.1016/j.heliyon.2023.e13128] [PMID: 36747553]
[110]
Zangeneh MM, Ghaneialvar H, Akbaribazm M, et al. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J Photochem Photobiol B 2019; 197: 111556.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111556] [PMID: 31326842]
[111]
Taheri M, Arabestani MZ, Asl SS, Kalhori F, Asgari M, Hosseini SM. Co-delivery of vancomycin, ampicillin nano-antibiotics by solid lipid nanoparticles on wound infection caused by Staphylococcus aureus: in vitro and in vivo study. Res Square 2023.
[http://dx.doi.org/10.21203/rs.3.rs-2530181/v1]
[112]
Fatima F, Aleemuddin M, Ahmed MM, et al. Design and evaluation of solid lipid nanoparticles loaded topical gels: Repurpose of fluoxetine in diabetic wound healing. Gels 2022; 9(1): 21.
[http://dx.doi.org/10.3390/gels9010021] [PMID: 36661789]
[113]
Zhou Y, Cai CY, Wang C, et al. Ferric-loaded lipid nanoparticles inducing ferroptosis-like cell death for antibacterial wound healing. Drug Deliv 2023; 30(1): 1-8.
[http://dx.doi.org/10.1080/10717544.2022.2152134] [PMID: 36453025]
[114]
Awad M, Barnes TJ, Joyce P, Thomas N, Prestidge CA. Liquid crystalline lipid nanoparticle promotes the photodynamic activity of gallium protoporphyrin against S. aureus biofilms. J Photochem Photobiol B 2022; 232: 112474.
[http://dx.doi.org/10.1016/j.jphotobiol.2022.112474] [PMID: 35644068]
[115]
Gawande MB, Monga Y, Zboril R, Sharma RK. Silica-decorated magnetic nanocomposites for catalytic applications. Coord Chem Rev 2015; 288: 118-43.
[http://dx.doi.org/10.1016/j.ccr.2015.01.001]
[116]
Gao G, Jiang YW, Jia HR, Wu FG. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials 2019; 188: 83-95.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.045] [PMID: 30339942]
[117]
Martínez HSP, González RTI, Molina FMA, et al. A novel gold calreticulin nanocomposite based on chitosan for wound healing in a diabetic mice model. Nanomaterials 2019; 9(1): 75.
[http://dx.doi.org/10.3390/nano9010075] [PMID: 30625974]
[118]
Zou P, Lee WH, Gao Z, et al. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH- CATH30 nanoparticles. Carbohydr Polym 2020; 232: 115786.
[http://dx.doi.org/10.1016/j.carbpol.2019.115786] [PMID: 31952594]
[119]
Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007; 59(14): 1413-33.
[http://dx.doi.org/10.1016/j.addr.2007.04.022] [PMID: 17916396]
[120]
Liu D, Zhao S, Jiang Y, Gao C, Wu Y, Liu Y. Biocompatible dual network bovine serum albumin-loaded hydrogel-accelerates wound healing. Eur Polym J 2023; 185: 111820.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.111820]
[121]
Cao H, Xiang D, Zhou X, et al. High-strength, antibacterial, antioxidant, hemostatic, and biocompatible chitin/PEGDE-tannic acid hydrogels for wound healing. Carbohydr Polym 2023; 307: 120609.
[http://dx.doi.org/10.1016/j.carbpol.2023.120609] [PMID: 36781272]
[122]
Wang X, Wu J, Wang M, et al. Substance P&dimethyloxallyl glycine-loaded carboxymethyl chitosan/gelatin hydrogel for wound healing. J Biomed Mater Res A 2023; 111(3): 404-14.
[http://dx.doi.org/10.1002/jbm.a.37475] [PMID: 36479810]
[123]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[124]
Aktas B, Das R, Acikgoz A, et al. DLP 3D printing of TiO2- doped Al2O3 bioceramics: Manufacturing, mechanical properties, and biological evaluation. Mater Today Commun 2024; 38: 107872.
[http://dx.doi.org/10.1016/j.mtcomm.2023.107872]
[125]
Yang Y, Wang F, Yin D, Fang Z, Huang L. Astragulus polysaccharide-loaded fibrous mats promote the restoration of microcirculation in/around skin wounds to accelerate wound healing in a diabetic rat model. Colloids Surf B Biointerfaces 2015; 136: 111-8.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.006] [PMID: 26370325]
[126]
Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C 2016; 69: 1183-91.
[http://dx.doi.org/10.1016/j.msec.2016.08.032] [PMID: 27612816]
[127]
Vargas EAT, do Baracho VNC, de Brito J, de Queiroz AAA. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater 2010; 6(3): 1069-78.
[http://dx.doi.org/10.1016/j.actbio.2009.09.018] [PMID: 19788943]
[128]
Yousefi I, Pakravan M, Rahimi H, Bahador A, Farshadzadeh Z, Haririan I. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater Sci Eng C 2017; 75: 433-44.
[http://dx.doi.org/10.1016/j.msec.2017.02.076] [PMID: 28415483]
[129]
Selvaraj S, Fathima NN. Fenugreek incorporated silk fibroin nanofibers—A potential antioxidant scaffold for enhanced wound healing. ACS Appl Mater Interfaces 2017; 9(7): 5916-26.
[http://dx.doi.org/10.1021/acsami.6b16306] [PMID: 28125204]
[130]
Lin L, Perets A, Har-el Y, et al. Alimentary ‘green’ proteins as electrospun scaffolds for skin regenerative engineering. J Tissue Eng Regen Med 2013; 7(12): 994-1008.
[http://dx.doi.org/10.1002/term.1493] [PMID: 22499248]
[131]
Cerchiara T, Abruzzo A, Palomino NRA, et al. Spanish broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity. Eur J Pharm Sci 2017; 99: 105-12.
[http://dx.doi.org/10.1016/j.ejps.2016.11.028] [PMID: 27931851]
[132]
Suganya S, Ram ST, Lakshmi BS, Giridev VR. Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings. J Appl Polym Sci 2011; 121(5): 2893-9.
[http://dx.doi.org/10.1002/app.33915]
[133]
Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 2007; 48(26): 7546-57.
[http://dx.doi.org/10.1016/j.polymer.2007.11.019]
[134]
Pannerselvam B, Dharmalingam Jothinathan MK, Rajenderan M, et al. An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats. Eur J Pharm Sci 2017; 100: 187-96.
[http://dx.doi.org/10.1016/j.ejps.2017.01.015] [PMID: 28108362]
[135]
Garg S, Chandra A, Mazumder A, Mazumder R. Green synthesis of silver nanoparticles using Arnebia nobilis root extract and wound healing potential of its hydrogel. Asian J Pharm 2014; 8(2): 95-101.
[http://dx.doi.org/10.4103/0973-8398.134925]
[136]
Kim JE, Lee J, Jang M, et al. Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes. Biomater Sci 2015; 3(3): 509-19.
[http://dx.doi.org/10.1039/C4BM00390J] [PMID: 26222294]
[137]
Naraginti S, Kumari PL, Das RK, Sivakumar A, Patil SH, Andhalkar VV. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater Sci Eng C 2016; 62: 293-300.
[http://dx.doi.org/10.1016/j.msec.2016.01.069] [PMID: 26952426]
[138]
Krychowiak M, Grinholc M, Banasiuk R, et al. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One 2014; 9(12): e115727.
[http://dx.doi.org/10.1371/journal.pone.0115727] [PMID: 25551660]
[139]
Sankar R, Baskaran A, Shivashangari KS, Ravikumar V. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats. J Mater Sci Mater Med 2015; 26(7): 214.
[http://dx.doi.org/10.1007/s10856-015-5543-y] [PMID: 26194977]
[140]
Bhuvaneswari T, Thiyagarajan M, Geetha N, Venkatachalam P. Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model. Acta Trop 2014; 135: 55-61.
[http://dx.doi.org/10.1016/j.actatropica.2014.03.009] [PMID: 24681224]
[141]
Hajialyani M, Tewari D, Sobarzo-Sánchez E, Nabavi SM, Farzaei MH, Abdollahi M. Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems. Int J Nanomedicine 2018; 13: 5023-43.
[http://dx.doi.org/10.2147/IJN.S174072] [PMID: 30214204]
[142]
Sivaranjani V, Philominathan P. Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Medicine 2016; 12: 1-5.
[http://dx.doi.org/10.1016/j.wndm.2015.11.002]
[143]
Sarwer Q, Amjad MS, Mehmood A, et al. Green synthesis and characterization of silver nanoparticles using Myrsine africana Leaf extract for their antibacterial, antioxidant and phytotoxic activities. Molecules 2022; 27(21): 7612.
[http://dx.doi.org/10.3390/molecules27217612] [PMID: 36364438]
[144]
Bajpai SK, Ahuja S, Chand N, Bajpai M. Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: An in vivo study on Albino Rats for wound dressing. Int J Biol Macromol 2017; 104(Pt A): 1012-9.
[145]
Dhapte V, Kadam S, Moghe A, Pokharkar V. Probing the wound healing potential of biogenic silver nanoparticles. J Wound Care 2014; 23(9): 431-441, 434, 436 passim.
[http://dx.doi.org/10.12968/jowc.2014.23.9.431] [PMID: 25284295]
[146]
Sugumar S, Ghosh V, Nirmala MJ, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason Sonochem 2014; 21(3): 1044-9.
[http://dx.doi.org/10.1016/j.ultsonch.2013.10.021] [PMID: 24262758]
[147]
Ghayempour S, Montazer M, Rad MM. Encapsulation of aloe vera extract into natural Tragacanth Gum as a novel green wound healing product. Int J Biol Macromol 2016; 93(Pt A): 344-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.076]
[148]
Arana L, Salado C, Vega S, et al. Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids Surf B Biointerfaces 2015; 135: 18-26.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.020] [PMID: 26231862]
[149]
Singla R, Soni S, Kulurkar PM, et al. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym 2017; 155: 152-62.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.065] [PMID: 27702499]
[150]
Singla R, Soni S, Patial V, et al. in vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int J Biol Macromol 2017; 105(Pt 1): 45-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.109] [PMID: 28669805]
[151]
Gumus ZP, Guler E, Demir B, et al. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions. Colloids Surf B Biointerfaces 2015; 133: 73-80.
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.044] [PMID: 26087391]
[152]
Buranasukhon W, Athikomkulchai S, Tadtong S, Chittasupho C. Wound healing activity of Pluchea indica leaf extract in oral mucosal cell line and oral spray formulation containing nanoparticles of the extract. Pharm Biol 2017; 55(1): 1767-74.
[http://dx.doi.org/10.1080/13880209.2017.1326511] [PMID: 28534695]
[153]
Faezizadeh Z, Gharib A, Godarzee M. in-vitro and in-vivo evaluation of silymarin nanoliposomes against isolated methicillin-resistant Staphylococcus aureus. Iran J Pharm Res 2015; 14(2): 627-33.
[PMID: 25901172]
[154]
Moulaoui K, Caddeo C, Manca ML, et al. Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: in vitro and in vivo wound healing potential. Eur J Med Chem 2015; 89: 179-88.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.047] [PMID: 25462238]