Microwave Thermal Treatment for the Recovery of Re in Copper and Molybdenum Concentrates
  • * (Excluding Mailing and Handling)

Abstract

Background: Rhenium [Re] is obtained as a by-product during the extraction of copper and molybdenum ores. In current extractive metallurgy, Re extraction involves a heat treatment that causes Re losses by volatilization and release of toxic gases into the environment.

Objective: This research proposes a novel microwave heat treatment [MWHT] to enhance Re ex-traction avoiding Re losses and toxic gas release into the environment.

Method: A novel MWHT and traditional thermal processes used in mining were applied to Cu-Mo concentrates. The elemental composition analysis of the concentrate was performed by atomic spec-trometry. The crystalline phase was identified by X-ray diffraction. Particle structure observations were performed with an optical microscopy [OM] and scanning electron microscopy [SEM] with a Field Emission, including semiquantitative analysis [EDS]. Thermal behavior and non-isothermal reduction processes were studied using Thermogravimetry Differential Thermal Analysis [TG-DTA].

Result: Re, S and As release decreased 5% during MWHT, compared to 34% of traditional meth-ods. Molybdenite [MoS2] and Chalcopyrite [CuFeS2] were the crystalline phases in the ore after MWHT. Rhenium was found as an oxide [ReO3] and metallic Re. Samples under MWHT showed structural transformations in the mineral particles, with minimal mass losses and high Re and Mo concentrations. The structural transformation of the ore involved microcracks formation.

Conclusion: The MWHT induces a combination of particle degradation mechanisms and lower temperature requirements that prevent Re losses. Lower gas emissions turn this technology into an environmentally friendly one. Crystalline transformation of the Re-chalcopyrite phase enhances Re release during leaching, the next step after MWHT in the hydrometallurgical extraction.

[1]
McNulty, BA; Jowitt, SM. Barriers to and uncertainties in understanding and quantifying global critical mineral and element supply. iScience, 2021, 24(7)
[http://dx.doi.org/10.1016/j.isci.2021.102809]
[2]
John, D.A. Rhenium: a rare metal critical in modern transportation; US Geological Survey, 2015, pp. 2327-6932.
[http://dx.doi.org/10.3133/fs20143101]
[3]
Werner, T.T.; Mudd, G.M.; Jowitt, S.M.; Huston, D. Rhenium mineral resources: A global assessment. Resour. Policy, 2023, 82, 103441.
[http://dx.doi.org/10.1016/j.resourpol.2023.103441]
[4]
Lee, J.D.; Park, K.K.; Lee, M-G.; Kim, E-H.; Rhim, K.J.; Lee, J.T.; Yoo, H.S.; Kim, Y.M.; Park, K.B.; Kim, J.R. Radionuclide therapy of skin cancers and Bowen’s disease using a specially designed skin patch. J. Nucl. Med., 1997, 38(5), 697-702.
[PMID: 9170430]
[5]
Diksha; Kaur, M.; Megha; Reenu; Kaur, H.; Yempally, V. Rhenium (I) tricarbonyl complex with thiosemicarbazone ligand derived from Indole-2-carboxaldehyde: Synthesis, crystal structure, computational investigations, antimicrobial activity, and molecular docking studies. J. Mol. Struct., 2024, 1301, 137319.
[http://dx.doi.org/10.1016/j.molstruc.2023.137319]
[6]
Hu, J.; Liu, Y.; Zhou, Y.; Zhao, H.; Xu, Z.; Li, H. Recent advances in rhenium-based nanostructures for enhanced electrocatalysis. Appl. Catal. A Gen., 2023, 663, 119304.
[http://dx.doi.org/10.1016/j.apcata.2023.119304]
[7]
Pyczak, F.; Neumeier, S.; Göken, M. Temperature dependence of element partitioning in rhenium and ruthenium bearing nickel-base superalloys. Mater. Sci. Eng. A, 2010, 527(29-30), 7939-7943.
[http://dx.doi.org/10.1016/j.msea.2010.08.091]
[8]
Yan, L.; Fan, Y.; Huang, J.; Li, Y.; Zhou, T.; Zuo, T.; Zhang, Y.; Xu, G. Occurrence state and enrichment mechanism of rhenium in molybdenite from Merlin Deposit, Australia. Ore Geol. Rev., 2023, 162, 105693.
[http://dx.doi.org/10.1016/j.oregeorev.2023.105693]
[9]
Zhao, H.; Huang, F.; Zhong, S.; Li, C.; Feng, C.; Hu, Z. The Wuliping ion-adsorption deposit, Guizhou Province, South China: A new type of rhenium (Re) deposit. Ore Geol. Rev., 2023, 160, 105615.
[http://dx.doi.org/10.1016/j.oregeorev.2023.105615]
[10]
Schulz, K.J. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply; 1st; Geological Survey, 2017.
[http://dx.doi.org/10.3133/pp1802]
[11]
Barra, F.; Deditius, A.; Reich, M.; Kilburn, M.R.; Guagliardo, P.; Roberts, M.P. Dissecting the Re-Os molybdenite geochronometer. Sci. Rep., 2017, 7(1), 16054.
[http://dx.doi.org/10.1038/s41598-017-16380-8] [PMID: 29167505]
[12]
Bazan, V.; Brandaleze, E.; Santini, L.; Sarquis, P. Argentinean copper concentrates: structural aspects and thermal behaviour. Int. J. Nonferrous Metall., 2013, 2(4), 128-135.
[http://dx.doi.org/10.4236/ijnm.2013.24019]
[13]
Brandaleze, E.; Valentini, M.; Santini, L.; Benavidez, E. Study on fluoride evaporation from casting powders. J. Therm. Anal. Calorim., 2018, 133(1), 271-277.
[http://dx.doi.org/10.1007/s10973-018-7227-6]
[14]
Fan, X.; Deng, Q.; Gan, M.; Chen, X. Roasting oxidation behaviors of ReS2 and MoS2 in powdery rhenium-bearing, low-grade molybdenum concentrate. Trans. Nonferrous Met. Soc. China, 2019, 29(4), 840-848.
[http://dx.doi.org/10.1016/S1003-6326(19)64994-0]
[15]
Cui, L.; Lou, F.; Li, Y.; Hou, J.; He, J.L.; Jia, Z.T.; Liu, J-Q.; Zhang, B-T.; Yang, K-J.; Wang, Z-W.; Tao, X-T. Graphene oxide mode-locked Yb:GAGG bulk laser operating in the femtosecond regime. Opt. Mater., 2015, 42, 309-312.
[http://dx.doi.org/10.1016/j.optmat.2015.01.019]
[16]
Cheema, H.A.; Ilyas, S.; Masud, S.; Muhsan, M.A.; Mahmood, I.; Lee, J. Selective recovery of rhenium from molybdenite flue-dust leach liquor using solvent extraction with TBP. Separ. Purif. Tech., 2018, 191, 116-121.
[http://dx.doi.org/10.1016/j.seppur.2017.09.021]
[17]
Li, G.; You, Z.; Sun, H.; Sun, R.; Peng, Z.; Zhang, Y.; Jiang, T. Separation of rhenium from lead-rich molybdenite concentrate via hydrochloric acid leaching followed by oxidative roasting. Metals, 2016, 6(11), 282.
[http://dx.doi.org/10.3390/met6110282]
[18]
Zhang, B.; Liu, H.Z.; Wang, W.; Gao, Z.G.; Cao, Y.H. Recovery of rhenium from copper leach solutions using ion exchange with weak base resins. Hydrometallurgy, 2017, 173, 50-56.
[http://dx.doi.org/10.1016/j.hydromet.2017.08.002]
[19]
Sun, H.; Li, G.; Bu, Q.; Fu, Z.; Liu, H.; Zhang, X.; Luo, J.; Rao, M.; Jiang, T. Features and mechanisms of self-sintering of molybdenite during oxidative roasting. Trans. Nonferrous Met. Soc. China, 2022, 32(1), 307-318.
[http://dx.doi.org/10.1016/S1003-6326(22)65796-0]
[20]
Shen, L.; Tesfaye, F.; Li, X.; Lindberg, D.; Taskinen, P. Review of rhenium extraction and recycling technologies from primary and secondary resources. Miner. Eng., 2021, 161, 106719.
[http://dx.doi.org/10.1016/j.mineng.2020.106719]
[21]
Liu, B.; Zhang, B.; Han, G.; Wang, M.; Huang, Y.; Su, S.; Xue, Y.; Wang, Y. Clean separation and purification for strategic metals of molybdenum and rhenium from minerals and waste alloy scraps–A review. Resour. Conserv. Recycling, 2022, 181, 106232.
[http://dx.doi.org/10.1016/j.resconrec.2022.106232]
[22]
Kesieme, U.; Chrysanthou, A.; Catulli, M.; Materials, H. Assessment of supply interruption of rhenium, recycling, processing sources and technologies. Int. J. Refract. Hard Met., 2019, 82, 150-158.
[http://dx.doi.org/10.1016/j.ijrmhm.2019.04.006]
[23]
Juneja, J.M.; Singh, S.; Bose, D.K. Investigations on the extraction of molybdenum and rhenium values from low grade molybdenite concentrate. Hydrometallurgy, 1996, 41(2-3), 201-209.
[http://dx.doi.org/10.1016/0304-386X(95)00056-M]
[24]
Xiao, C.; Zeng, L.; Xiao, L.; Zhang, G. Thermodynamic analysis of Mo(VI)-Fe(III)-S(VI)-H 2 O system for separation of molybdenum and iron. Metall. Res. Technol., 2018, 115(1), 106.
[http://dx.doi.org/10.1051/metal/2017069]
[25]
Azadi, M.; Northey, S.A.; Ali, S.H.; Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci., 2020, 13(2), 100-104.
[http://dx.doi.org/10.1038/s41561-020-0531-3]
[26]
Lessard, J.D.; Gribbin, D.G.; Shekhter, L.N.; Materials, H. Recovery of rhenium from molybdenum and copper concentrates during the Looping Sulfide Oxidation process. Int. J. Refract. Hard Met., 2014, 44, 1-6.
[http://dx.doi.org/10.1016/j.ijrmhm.2014.01.003]
[27]
Sheybani, K.; Javadpour, S.; Materials, H. Mechano-thermal reduction of molybdenite (MoS2) in the presence of Sulfur scavenger: New method for production of molybdenum carbide. Int. J. Refract. Hard Met., 2020, 92, 105277.
[http://dx.doi.org/10.1016/j.ijrmhm.2020.105277]
[28]
Rafiei, R.; Javadpour, S.; Shariat, M.H.; Ostovari Moghaddam, A.; Materials, H. Effect of processing parameters on the microwave assisted aluminothermic reduction of molybdenite. Int. J. Refract. Hard Met., 2022, 109, 105984.
[http://dx.doi.org/10.1016/j.ijrmhm.2022.105984]
[29]
Joo, S.H.; Kim, Y.U.; Kang, J.G.; Kumar, J.R.; Yoon, H.S.; Parhi, P.K.; Shin, S.M. Recovery of rhenium and molybdenum from molybdenite roasting dust leaching solution by ion exchange resins. Mater. Trans., 2012, 53(11), 2034-2037.
[http://dx.doi.org/10.2320/matertrans.M2012208]
[30]
Koleini, S.J.; Barani, K. Microwave heating applications in mineral processing, 1st; InTec: Croatia, 2012.
[http://dx.doi.org/10.5772/45750]
[31]
Kingman, S.W. Recent developments in microwave processing of minerals. Int. Mater. Rev., 2006, 51(1), 1-12.
[http://dx.doi.org/10.1179/174328006X79472]
[32]
Vorster, W. The effect of microwave radiation on mineral processing; PhD dissertation. University of Birmingham, 2001.
[33]
Gerasimov, A.M.; Eremina, O.V. Application microwave radiation for directional changes of layered silicates properties. Eurasian Mining, 2021, (1), 55-60.
[http://dx.doi.org/10.17580/em.2021.01.11]
[34]
Chen, T.T.; Dutrizac, J.E.; Haque, K.E.; Wyslouzil, W.; Kashyap, S. The relative transparency of minerals to microwave radiation. Can. Metall. Q., 1984, 23(3), 349-351.
[http://dx.doi.org/10.1179/cmq.1984.23.3.349]
[35]
Huang, J.; Xu, G.; Liang, Y.; Hu, G.; Chang, P. Improving coal permeability using microwave heating technology—A review. Fuel, 2020, 266, 117022.
[http://dx.doi.org/10.1016/j.fuel.2020.117022]
[36]
Mushtaq, F.; Mat, R.; Ani, F.N. Fuel production from microwave assisted pyrolysis of coal with carbon surfaces. Energy Convers. Manage., 2016, 110, 142-153.
[http://dx.doi.org/10.1016/j.enconman.2015.12.008]
[37]
Yang, P.; Shan, P. xu, H.; Chen, J.; Li, Z.; Sun, H. Experimental study on mechanical damage characteristics of water-bearing tar-rich coal under microwave radiation. Geomech. Geophys., 2023, 10(1), 3.
[http://dx.doi.org/10.21203/rs.3.rs-3063964/v1]
[38]
Lu, G.; Zhou, J.; Li, Y.; Zhang, X.; Gao, W. The influence of minerals on the mechanism of microwave-induced fracturing of rocks. J. Appl. Geophys., 2020, 180, 104123.
[http://dx.doi.org/10.1016/j.jappgeo.2020.104123]
[39]
Bhattacharya, M.; Basak, T. A review on the susceptor assisted microwave processing of materials. Energy, 2016, 97, 306-338.
[http://dx.doi.org/10.1016/j.energy.2015.11.034]
[40]
Marland, S.; Merchant, A.; Rowson, N. Dielectric properties of coal. Fuel, 2001, 80(13), 1839-1849.
[http://dx.doi.org/10.1016/S0016-2361(01)00050-3]
[41]
Cui, G.; Chen, T.; Feng, X.; Chen, Z.; Elsworth, D.; Yu, H.; Zheng, X.; Pan, Z. Coupled multiscale-modeling of microwave-heating-induced fracturing in shales. Int. J. Rock Mech. Min. Sci., 2020, 136, 104520.
[http://dx.doi.org/10.1016/j.ijrmms.2020.104520]
[42]
Peng, Z.; Hwang, J.Y. Microwave-assisted metallurgy. Int. Mater. Rev., 2015, 60(1), 30-63.
[http://dx.doi.org/10.1179/1743280414Y.0000000042]
[43]
Kitchen, H.J.; Vallance, S.R.; Kennedy, J.L.; Tapia-Ruiz, N.; Carassiti, L.; Harrison, A.; Whittaker, A.G.; Drysdale, T.D.; Kingman, S.W.; Gregory, D.H. Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. Chem. Rev., 2014, 114(2), 1170-1206.
[http://dx.doi.org/10.1021/cr4002353] [PMID: 24261861]
[44]
Ali, A.Y.; Bradshaw, S.M. Confined particle bed breakage of microwave treated and untreated ores. Miner. Eng., 2011, 24(14), 1625-1630.
[http://dx.doi.org/10.1016/j.mineng.2011.08.020]
[45]
Toifl, M.; Hartlieb, P.; Meisels, R.; Antretter, T.; Kuchar, F. Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite. Miner. Eng., 2017, 103-104, 78-92.
[http://dx.doi.org/10.1016/j.mineng.2016.09.011]
[46]
Kingman, S.W.; Jackson, K.; Bradshaw, S.M.; Rowson, N.A.; Greenwood, R. An investigation into the influence of microwave treatment on mineral ore comminution. Powder Technol., 2004, 146(3), 176-184.
[http://dx.doi.org/10.1016/j.powtec.2004.08.006]
[47]
Monti, T.; Tselev, A.; Udoudo, O.; Ivanov, I.N.; Dodds, C.; Kingman, S.W. High-resolution dielectric characterization of minerals: A step towards understanding the basic interactions between microwaves and rocks. Int. J. Miner. Process., 2016, 151, 8-21.
[http://dx.doi.org/10.1016/j.minpro.2016.04.003]
[48]
Chen, G.; Li, L.; Tao, C.; Liu, Z.; Chen, N.; Peng, J. Effects of microwave heating on microstructures and structure properties of the manganese ore. J. Alloys Compd., 2016, 657, 515-518.
[http://dx.doi.org/10.1016/j.jallcom.2015.10.147]
[49]
Lu, G.M.; Feng, X.T.; Li, Y.H.; Hassani, F.; Zhang, X.; Engineering, R. Experimental investigation on the effects of microwave treatment on basalt heating, mechanical strength, and fragmentation. Rock Mech. Rock Eng., 2019, 52(8), 2535-2549.
[http://dx.doi.org/10.1007/s00603-019-1743-y]
[50]
Zheng, Y.; Ma, Z.; Zhao, X.; He, L.; Engineering, R. Experimental investigation on the thermal, mechanical and cracking behaviours of three igneous rocks under microwave treatment. Rock Mech. Rock Eng., 2020, 53(8), 3657-3671.
[http://dx.doi.org/10.1007/s00603-020-02135-x]
[51]
Li, Q.; Li, X.; Yin, T. Effect of microwave heating on fracture behavior of granite: An experimental investigation. Eng. Fract. Mech., 2021, 250, 107758.
[http://dx.doi.org/10.1016/j.engfracmech.2021.107758]
[52]
Adewuyi, S.O.; Ahmed, H.A.M.; Ahmed, H.M.A. Methods of ore pretreatment for comminution energy reduction. Minerals, 2020, 10(5), 423.
[http://dx.doi.org/10.3390/min10050423]
[53]
Chunpeng, L.; Yousheng, X.; Yixin, H. Application of microwave radiation to extractive metallurgy. JMST, 1990, (2), 121-124.
[54]
Gholami, H.; Rezai, B. Mehdilo; Hassanzadeh, A.; Yarahmadi, M. Effect of microwave system location on floatability of chalcopyrite and pyrite in a copper ore processing circuit. Physicochem. Probl. Miner. Proces., 2020, 56(3), 432-448.
[http://dx.doi.org/10.37190/ppmp/118799]
[55]
Brandaleze, E.; Bazán, V.; Orozco, I.; Valentini, M.; Gomez, G. Application of thermal analysis to the rhenium recovery process from copper and molybdenum sulphides minerals. J. Therm. Anal. Calorim., 2018, 133(1), 435-441.
[http://dx.doi.org/10.1007/s10973-018-7104-3]
[56]
Bale, C.W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Ben Mahfoud, R.; Melançon, J.; Pelton, A.D.; Petersen, S. FactSage thermochemical software and databases. Calphad, 2002, 26(2), 189-228.
[http://dx.doi.org/10.1016/S0364-5916(02)00035-4]
[57]
Cabri, L.J. New data on phase relations in the Cu-Fe-S system. Econ. Geol., 1973, 68(4), 443-454.
[http://dx.doi.org/10.2113/gsecongeo.68.4.443]
[58]
Aydinyan, S.; Kirakosyan, H.; Niazyan, O.; Kharatyan, S. DTA/TGA study of copper molybdate carbothermal reduction. Chem. J. Armenia, 2015, 68(2), 196-206.
[59]
Haber, J.; Machej, T.; Ungier, L.; Ziółkowski, J. ESCA studies of copper oxides and copper molybdates. J. Solid State Chem., 1978, 25(3), 207-218.
[http://dx.doi.org/10.1016/0022-4596(78)90105-6]
[60]
Wang, L.Y.; Dong, J.L.; Cai, J.J. Study on mechanism of molybdenum concentrate roasting. Adv. Mat. Res., 2012, 455-456, 60-64.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.455-456.60]
[61]
Kar, B.B. Carbothermic reduction of hydro-refining spent catalyst to extract molybdenum. Int. J. Miner. Process., 2005, 75(3-4), 249-253.
[http://dx.doi.org/10.1016/j.minpro.2004.08.018]
[62]
Horikoshi, S.; Serpone, N. Role of microwaves in heterogeneous catalytic systems. Catal. Sci. Technol., 2014, 4(5), 1197-1210.
[http://dx.doi.org/10.1039/c3cy00753g]
[63]
Drábek, M.; Stein, H. Molybdenite Re-Os dating of Mo-Th-Nb-REE rich marbles: pre-Variscan processes in Moldanubian Variegated Group (Czech Republic). Geol. Carpath., 2015, 66(3), 173-179.
[http://dx.doi.org/10.1515/geoca-2015-0018]
[64]
Zhang, M.; Liu, C.; Zhu, X.; Xiong, H.; Zhang, L.; Gao, J.; Liu, M. Preparation of ammonium molybdate by oxidation roasting of molybdenum concentrate: A comparison of microwave roasting and conventional roasting. Chem. Eng. Process., 2021, 167, 108550.
[http://dx.doi.org/10.1016/j.cep.2021.108550]
[65]
Chen, J.; Tang, D.; Zhong, S.; Zhong, W.; Li, B. The influence of micro-cracks on copper extraction by bioleaching. Hydrometallurgy, 2020, 191, 105243.
[http://dx.doi.org/10.1016/j.hydromet.2019.105243]
[66]
Charikinya, E.; Bradshaw, S.M. An experimental study of the effect of microwave treatment on long term bioleaching of coarse, massive zinc sulphide ore particles. Hydrometallurgy, 2017, 173, 106-114.
[http://dx.doi.org/10.1016/j.hydromet.2017.08.001]
[67]
Li, H.; Shi, S.; Lu, J.; Ye, Q.; Lu, Y.; Zhu, X. Pore structure and multifractal analysis of coal subjected to microwave heating. Powder Technol., 2019, 346, 97-108.
[http://dx.doi.org/10.1016/j.powtec.2019.02.009]
[68]
Yang, K.; Li, S.; Zhang, L.; Peng, J.; Chen, W.; Xie, F.; Ma, A. Microwave roasting and leaching of an oxide-sulphide zinc ore. Hydrometallurgy, 2016, 166, 243-251.
[http://dx.doi.org/10.1016/j.hydromet.2016.07.012]
[69]
Walkiewicz, J.; Kazonich, G.; McGill, S. processing m. Microwave heating characteristics of selected minerals and compounds. Min. Metall. Explor., 1988, 5, 39-42.
[http://dx.doi.org/10.1007/BF03449501]
[70]
Lovás, M.; Znamenáčková, I.; Zubrik, A.; Kováčová, M.; Dolinská, S. The application of microwave energy in mineral processing–a review. Acta Montan. Slovaca, 2011, 16(2), 137.