Current Diabetes Reviews

Author(s): Bhanupriya Bhrigu, Shikha Sharma*, Nitin Kumar and Bimal Krishna Banik

DOI: 10.2174/0115733998290606240521113832

DownloadDownload PDF Flyer Cite As
Assessment for Diabetic Neuropathy: Treatment and Neurobiological Perspective

Article ID: e240524230300 Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Diabetic neuropathy, also known as diabetic peripheral sensorimotor neuropathy (DPN), is a consequential complexity of diabetes, alongside diabetic nephropathy, diabetic cardiomyopathy, and diabetic retinopathy. It is characterized by signs and symptoms of peripheral nerve damage in diabetes patients after ruling out other causes. Approximately 20% of people with diabetes are affected by this painful and severe condition. The development of diabetic neuropathy is influenced by factors such as impaired blood flow to the peripheral nerves and metabolic issues, including increased polyol pathway activation, myo-inositol loss, and nonenzymatic glycation. The present review article provides a brief overview of the pathological changes in diabetic neuropathy and the mechanisms and types of DPN. Various diagnostic tests and biomarkers are available to assess nerve damage and its severity. Pharmacotherapy for neuropathic pain in diabetic neuropathy is complex. This review will explore current treatment options and potential future developments to improve the quality of life for patients suffering from diabetic neuropathy.

Keywords: Diabetic neuropathy, mechanism of diabetic neuropathy development, pharmacotherapy polyol pathway, retinopathy, sepsis complications, diabetes mellitus.

[1]
Corriere M, Rooparinesingh N, Kalyani RR. Epidemiology of diabetes and diabetes complications in the elderly: An emerging public health burden. Curr Diab Rep 2013; 13(6): 805-13.
[http://dx.doi.org/10.1007/s11892-013-0425-5] [PMID: 24018732]
[2]
Sherr D, Lipman RD. The Diabetes Educator and the Diabetes Self-management Education Engagement. Diabetes Educ 2015; 41(5): 616-24.
[http://dx.doi.org/10.1177/0145721715599268] [PMID: 26306525]
[3]
Ostenson C G. The pathophysiology of type 2 diabetes mellitus: An overview. Acta Physiol Scand 2001; 171(3): 241-7.
[4]
Dong S, Lau H, Chavarria C, Alexander M, Cimler A, Elliott J P. Effects of periodic intensive insulin therapy: An updated review. Curr Ther Res Clin Exp 2019; 90: 61-7.
[5]
Uno S, Imagawa A, Kozawa J, Fukui K, Iwahashi H, Shimomura I. Complete loss of insulin secretion capacity in type 1A diabetes patients during long‐term follow up. J Diabetes Investig 2018; 9(4): 806-12.
[http://dx.doi.org/10.1111/jdi.12763] [PMID: 29034607]
[6]
Porte D. Clinical importance of insulin secretion and its interaction with insulin resistance in the treatment of type 2 diabetes mellitus and its complications. Diabetes Metab Res Rev 2001; 17(3): 181.183)
[7]
Reinehr T. Pathophysiologie und Spätfolgen des Diabetes mellitus Typ 2. Monatsschr Kinderheilkd 2005; 153(10): 927-35.
[http://dx.doi.org/10.1007/s00112-005-1224-0]
[8]
Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population‐based cohort. Neurology 1993; 43(4): 817-24.
[http://dx.doi.org/10.1212/WNL.43.4.817] [PMID: 8469345]
[9]
Albers JW, Pop-Busui R. Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep 2014; 14(8): 473.
[http://dx.doi.org/10.1007/s11910-014-0473-5] [PMID: 24954624]
[10]
Dietrich I, Braga GA, de Melo FG, da Costa Silva Silva ACC. The diabetic foot as a proxy for cardiovascular events and mortality review. Curr Atheroscler Rep 2017; 19(11): 44.
[http://dx.doi.org/10.1007/s11883-017-0680-z] [PMID: 28971322]
[11]
Vadiveloo T, Jeffcoate W, Donnan PT, et al. Amputation-free survival in 17,353 people at high risk for foot ulceration in diabetes: a national observational study. Diabetologia 2018; 61(12): 2590-7.
[http://dx.doi.org/10.1007/s00125-018-4723-y] [PMID: 30171278]
[12]
Alleman CJM, Westerhout KY, Hensen M, et al. Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: A review of the literature. Diabetes Res Clin Pract 2015; 109(2): 215-25.
[http://dx.doi.org/10.1016/j.diabres.2015.04.031] [PMID: 26008721]
[13]
Armstrong D G, Boulton A J M, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med 2017; 376(24): 2367-75.
[http://dx.doi.org/10.1056/NEJMra1615439]
[14]
Sloan G, Shillo P, Selvarajah D, et al. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 2018; 144: 177-91.
[http://dx.doi.org/10.1016/j.diabres.2018.08.020] [PMID: 30201394]
[15]
Sadosky A, Mardekian J, Parsons B, Hopps M, Bienen EJ, Markman J. Healthcare utilization and costs in diabetes relative to the clinical spectrum of painful diabetic peripheral neuropathy. J Diabetes Complications 2015; 29(2): 212-7.
[http://dx.doi.org/10.1016/j.jdiacomp.2014.10.013] [PMID: 25498300]
[16]
Kioskli K, Scott W, Winkley K, Kylakos S, McCracken LM. Psychosocial factors in painful diabetic neuropathy: a systematic review of treatment trials and survey studies. Pain Med 2019; 20(9): 1756-73.
[http://dx.doi.org/10.1093/pm/pnz071] [PMID: 30980660]
[17]
Yang QQ, Sun JW, Shao D, Zhang HH, Bai CF, Cao FL. The association between diabetes complications, diabetes distress, and depressive symptoms in patients with type 2 diabetes mellitus. Clin Nurs Res 2021; 30(3): 293-301.
[http://dx.doi.org/10.1177/1054773820951933] [PMID: 32799656]
[18]
Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic neuropathy: A position statement by the american diabetes association. Diabetes Care 2017; 40(1): 136-54.
[http://dx.doi.org/10.2337/dc16-2042]
[19]
Tesfaye S, Boulton AJM, Dickenson AH. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care 2013; 36(9): 2456-65.
[http://dx.doi.org/10.2337/dc12-1964] [PMID: 23970715]
[20]
Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015; 14(2): 162-73.
[http://dx.doi.org/10.1016/S1474-4422(14)70251-0] [PMID: 25575710]
[21]
Thomas P K. Classification, differential diagnosis, and staging of diabetic peripheral neuropathy. Diabetes 1997; 46(Suppl 2): S54-7.
[http://dx.doi.org/10.2337/diab.46.2.S54]
[22]
Tesfaye S, Boulton AJM, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33(10): 2285-93.
[http://dx.doi.org/10.2337/dc10-1303] [PMID: 20876709]
[23]
Chong MS, Hester J. Diabetic painful neuropathy: current and future treatment options. Drugs 2007; 67(4): 569-85.
[http://dx.doi.org/10.2165/00003495-200767040-00006] [PMID: 17352515]
[24]
Tesfaye S, Selvarajah D, Gandhi R, et al. Diabetic peripheral neuropathy may not be as its name suggests. Pain 2016; 157 (Suppl. 1): S72-80.
[http://dx.doi.org/10.1097/j.pain.0000000000000465] [PMID: 26785159]
[25]
Kennedy WR, Wendelschafer-Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology 1996; 47(4): 1042-8.
[http://dx.doi.org/10.1212/WNL.47.4.1042] [PMID: 8857742]
[26]
Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans: A review. J Neuropathol Exp Neurol 1996; 55(12): 1181-93.
[http://dx.doi.org/10.1097/00005072-199612000-00001] [PMID: 8957441]
[27]
Reske-Nielsen E, Lundbæk K, Rafaelsen OJ. Pathological changes in the central and peripheral nervous system of young long-term diabetics : I. Diabetic encephalopathy. Diabetologia 1966; 1(3-4): 233-41.
[http://dx.doi.org/10.1007/BF01257917] [PMID: 24173307]
[28]
Reske-Nielsen E, Lundbaek K. Pathological changes in the central and peripheral nervous system of young long-term diabetics. II. The spinal cord and peripheral nerves. Diabetologia 1968; 4(1): 34-43.
[http://dx.doi.org/10.1007/BF01241031] [PMID: 4190608]
[29]
Selvarajah D, Wilkinson ID, Emery CJ, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care 2006; 29(12): 2664-9.
[http://dx.doi.org/10.2337/dc06-0650] [PMID: 17130202]
[30]
Selvarajah D, Wilkinson ID, Maxwell M, et al. Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy. Diabetes Care 2014; 37(6): 1681-8.
[http://dx.doi.org/10.2337/dc13-2610] [PMID: 24658391]
[31]
Cameron NE, Eaton SEM, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001; 44(11): 1973-88.
[http://dx.doi.org/10.1007/s001250100001] [PMID: 11719828]
[32]
Feldman EL, Nave KA, Jensen TS, Bennett DLH. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron 2017; 93(6): 1296-313.
[http://dx.doi.org/10.1016/j.neuron.2017.02.005] [PMID: 28334605]
[33]
Hey-Mogensen M, Højlund K, Vind BF, et al. Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia 2010; 53(9): 1976-85.
[http://dx.doi.org/10.1007/s00125-010-1813-x] [PMID: 20526759]
[34]
Anthonsen S, Larsen J, Pedersen P, Dalgaard L, Kvetny J. Basal and T3-induced ROS production in lymphocyte mitochondria is increased in type 2 diabetic patients. Horm Metab Res 2012; 45(4): 261-6.
[http://dx.doi.org/10.1055/s-0032-1327590] [PMID: 23015613]
[35]
Kassan M, Choi S K, Galán M, Lee Y H. Enhanced P22phox expression impairs vascular function through P38 and ERK1/2 MAP kinase-dependent mechanisms in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2014; 306(7): H972-80.
[36]
Manoharan B, Bobby Z, Dorairajan G, et al. Increased placental expressions of nuclear factor erythroid 2–related factor 2 and antioxidant enzymes in gestational diabetes: Protective mechanisms against the placental oxidative stress? Eur J Obstet Gynecol Reprod Biol 2019; 238: 78-85.
[http://dx.doi.org/10.1016/j.ejogrb.2019.05.016] [PMID: 31121342]
[37]
Chen J P, Xu H Y, Liao L. Resolvin D2 prevents inflammation and oxidative stress in the retina of streptozocin-induced diabetic mice. Int J Clin Exp Pathol 2020; 13(8): 1986-94.
[38]
Nogueira-Machado JA, Lima e Silva FC, Cunha EP, et al. Modulation of the production of Reactive Oxygen Species (ROS) by cAMP-elevating agents in granulocytes from diabetic patients: an Akt/PKB-dependent phenomenon. Diabetes Metab 2006; 32(4): 331-5.
[http://dx.doi.org/10.1016/S1262-3636(07)70287-2] [PMID: 16977260]
[39]
Turecký L, Kupčová V, Uhlíková E. Peroxisomal Enzymes in the Liver of Rats with Experimental Diabetes Mellitus Type 2. Physiol Res 2014; 63: S585-91.
[40]
Sharifzadeh M, Ranjbar A, Hosseini A. The effect of green tea extract on oxidative stress and spatial learning in streptozotocin diabetic rats. Iran J Pharm Res 2017; 16(1): 201-9.
[41]
Ghouini A, Rahal L. Screening of insulin resistance in subjects at risk for type 2 diabetes. Acta Physiol 2016; 217: 109.
[42]
Yang ZH, Peng XD. Insulin resistance and heart injury in rats with insulin resistance or type 2 diabetes mellitus. Acta Cardiol 2010; 65(3): 329-35.
[http://dx.doi.org/10.2143/AC.65.3.2050350] [PMID: 20666272]
[43]
Zhao Y, Ye W, Boye K S. Healthcare charges and utilization associated with diabetic neuropathy: Impact of type 1 diabetes and presence of other diabetes-related complications and comorbidities. Diabet Med 2009; 26(1): 61-9.
[44]
Schofield CJ, Sutherland C. Disordered insulin secretion in the development of insulin resistance and Type 2 diabetes. Diabet Med 2012; 29(8): 972-9.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03655.x] [PMID: 22443306]
[45]
Fagundes-Netto FS, Anjos PMF, Volpe CMO, Nogueira-Machado JA. The production of reactive oxygen species in TLR-stimulated granulocytes is not enhanced by hyperglycemia in diabetes. Int Immunopharmacol 2013; 17(3): 924-9.
[http://dx.doi.org/10.1016/j.intimp.2013.09.018] [PMID: 24121038]
[46]
Shi. L. L.; Yang. J.; Jiang. H. Y.; Effects of Sitagliptin Phosphate/ metformin Hydrochloride Tablets on Insulin Resistance in Obese Patients with Type 2 Diabetes and NAFLD.Diabetes-Metabolism Res. Rev. 2016, 32 (2), 45–46.
[47]
Elzinga S, Murdock B J, Guo K, Hayes J M. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol 2019; 320: 112967.
[48]
Tian J, Song T, Wang H, Wang W, Ma X, Hu Y. Toll-like receptor 2 antagonist ameliorates type 2 diabetes mellitus associated neuropathic pain by repolarizing pro-inflammatory macrophages. Neurochem Res 2021; 46(9): 2276-84.
[http://dx.doi.org/10.1007/s11064-021-03365-3] [PMID: 34081245]
[49]
Barutta F, Piscitelli F, Pinach S, et al. Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 2011; 60(9): 2386-96.
[http://dx.doi.org/10.2337/db10-1809] [PMID: 21810593]
[50]
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Majidinia M. SIRT1: A promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2021; 1: 1-16.
[51]
Kaneto H, Katakami N, Matsuhisa M, Matsuoka T. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010; 2010: 1-11.
[http://dx.doi.org/10.1155/2010/453892] [PMID: 20182627]
[52]
Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly A, Mukhopadhyay S, Chakrabarti S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem 2015; 399(1-2): 95-103.
[http://dx.doi.org/10.1007/s11010-014-2236-7] [PMID: 25312902]
[53]
Burgos-Morón E, Abad-Jiménez Z, Marañón AM, et al. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med 2019; 8(9): 1385.
[http://dx.doi.org/10.3390/jcm8091385] [PMID: 31487953]
[54]
De Marañón A M, Díaz-Pozo P, Iannantuoni F, Canet F. Good glycaemic control reduces carotid-intimamedia thickness, inflammation markers and ROS production in type 2 diabetes. Free Radic Biol Med 2020; 159: S89.
[55]
Wright. E.; Scism-Bacon. J. L.; Glass. L. C.; Oxidative Stress in Type 2 Diabetes: the Role of Fasting and Postprandial Glycaemia. Int. J. Clin. Pract. 2006, 60 (3), 308–314.
[56]
Opara E C. Role of oxidative stress in the etiology of type 2 diabetes and the effect of antioxidant supplementation on glycemic control. J Investig Med 2004; 52(1): 19-23.
[http://dx.doi.org/10.1136/jim-52-01-22]
[57]
Belia S, Santilli F, Beccafico S, et al. Oxidative-induced membrane damage in diabetes lymphocytes: Effects on intracellular Ca 2 + homeostasis. Free Radic Res 2009; 43(2): 138-48.
[http://dx.doi.org/10.1080/10715760802629588] [PMID: 19115119]
[58]
Gonzalez CD, Lee MS, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 2011; 7(1): 2-11.
[http://dx.doi.org/10.4161/auto.7.1.13044] [PMID: 20935516]
[59]
Yanagi K, Monden T, Ikeda S, Matsumura M, Kasai K. A crossover study of rosuvastatin and pitavastatin in patients with type 2 diabetes. Adv Ther 2011; 28(2): 160-71.
[http://dx.doi.org/10.1007/s12325-010-0098-2] [PMID: 21222064]
[60]
Chao W C, Yen C L, Wu Y H, Chen S Y. Increased resistin may suppress reactive oxygen species production and inflammasome activation in type 2 diabetic patients with pulmonary tuberculosis infection. Microbes Infect 2015; 17(3): 195-204.
[61]
Dave GS, Kalia K. Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy. Cell Mol Biol 2007; 53(5): 68-78.
[http://dx.doi.org/10.1170/t820] [PMID: 17543235]
[62]
Hirao. K.; Maruyama. T.; Ohno. Y.; Hirose. H.; Shimada. A.; Takei. I.; Association of Increased Reactive Oxygen Species Production with Abdominal Obesity in Type 2 Diabetes. Obes. Res. Clin. Pract. 2010, 4 (2), E83–E90. doi:10.1016/j. orcp.2009.09.004.
[63]
Khan MWA, Banga K, Mashal SN, Khan WA. Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications. BMC Immunol 2011; 12(1): 19.
[http://dx.doi.org/10.1186/1471-2172-12-19] [PMID: 21385406]
[64]
Petropoulos IN, Ponirakis G, Khan A, Almuhannadi H, Gad H, Malik RA. Diagnosing diabetic neuropathy: Something old, something new. Diabetes Metab J 2018; 42(4): 255-69.
[http://dx.doi.org/10.4093/dmj.2018.0056] [PMID: 30136449]
[65]
Boulton AJM, Gries FA, Jervell JA. Guidelines for the diagnosis and outpatient management of diabetic peripheral neuropathy. Diabet Med 1998; 15(6): 508-14.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199806)15:6<508::AID-DIA613>3.0.CO;2-L] [PMID: 9632127]
[66]
England JD, Gronseth GS, Franklin G, et al. Distal symmetric polyneuropathy: A definition for clinical research. Neurology 2005; 64(2): 199-207.
[http://dx.doi.org/10.1212/01.WNL.0000149522.32823.EA] [PMID: 15668414]
[67]
Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 2011; 7(10): 573-83.
[http://dx.doi.org/10.1038/nrneurol.2011.137] [PMID: 21912405]
[68]
Malik RA, Veves A, Tesfaye S, et al. Small fibre neuropathy: Role in the diagnosis of diabetic sensorimotor polyneuropathy. Diabetes Metab Res Rev 2011; 27(7): 678-84.
[http://dx.doi.org/10.1002/dmrr.1222] [PMID: 21695760]
[69]
Adki KM, Kulkarni YA. Biomarkers in diabetic neuropathy. Arch Physiol Biochem 2023; 129(2): 460-75.
[http://dx.doi.org/10.1080/13813455.2020.1837183] [PMID: 33186087]
[70]
Angst DBM, Pinheiro RO, Vieira JSS, et al. Cytokine levels in neural pain in leprosy. Front Immunol 2020; 11: 23.
[http://dx.doi.org/10.3389/fimmu.2020.00023] [PMID: 32038662]
[71]
Mert T, Sahin E, Yaman S, Sahin M. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(7): 1293-302.
[http://dx.doi.org/10.1007/s00210-020-01871-9] [PMID: 32361779]
[72]
Kallinikou D, Soldatou A, Tsentidis C, et al. Diabetic neuropathy in children and adolescents with type 1 diabetes mellitus: Diagnosis, pathogenesis, and associated genetic markers. Diabetes Metab Res Rev 2019; 35(7): e3178.
[http://dx.doi.org/10.1002/dmrr.3178] [PMID: 31083769]
[73]
Sugimoto K, Murakami H, Deguchi T, et al. Cutaneous microangiopathy in patients with type 2 diabetes: Impaired vascular endothelial growth factor expression and its correlation with neuropathy, retinopathy and nephropathy. J Diabetes Investig 2019; 10(5): 1318-31.
[http://dx.doi.org/10.1111/jdi.13020] [PMID: 30719863]
[74]
Düll MM, Riegel K, Tappenbeck J, et al. Methylglyoxal causes pain and hyperalgesia in human through C-fiber activation. Pain 2019; 160(11): 2497-507.
[http://dx.doi.org/10.1097/j.pain.0000000000001644] [PMID: 31219946]
[75]
Agarwal N, Taberner FJ, Rangel Rojas D, et al. SUMOylation of enzymes and ion channels in sensory neurons protects against metabolic dysfunction, neuropathy, and sensory loss in diabetes. Neuron 2020; 107(6): 1141-1159.e7.
[http://dx.doi.org/10.1016/j.neuron.2020.06.037] [PMID: 32735781]
[76]
Yang X, Cao Z, Wu P, Li Z. Effect and mechanism of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib on rat model of diabetic foot ulcers. Med Sci Monit 2019; 25: 7951-7.
[http://dx.doi.org/10.12659/MSM.916950] [PMID: 31644524]
[77]
Liu Y, Shao S, Guo H. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sci 2020; 248: 117459.
[http://dx.doi.org/10.1016/j.lfs.2020.117459] [PMID: 32092332]
[78]
Gupte AA, Lyon CJ, Hsueh WA. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis. Curr Diab Rep 2013; 13(3): 362-71.
[http://dx.doi.org/10.1007/s11892-013-0372-1] [PMID: 23475581]
[79]
Li J, Hu X, Liang F, et al. Therapeutic effects of moxibustion simultaneously targeting Nrf2 and NF-κB in diabetic peripheral neuropathy. Appl Biochem Biotechnol 2019; 189(4): 1167-82.
[http://dx.doi.org/10.1007/s12010-019-03052-8] [PMID: 31209719]
[80]
Cha JJ, Min HS, Kim K, et al. Long-term study of the association of adipokines and glucose variability with diabetic complications. Korean J Intern Med 2018; 33(2): 367-82.
[http://dx.doi.org/10.3904/kjim.2016.114] [PMID: 27809453]
[81]
Gray SP, Jha JC, Di Marco E, Jandeleit-Dahm KAM. NAD(P)H oxidase isoforms as therapeutic targets for diabetic complications. Expert Rev Endocrinol Metab 2014; 9(2): 111-22.
[http://dx.doi.org/10.1586/17446651.2014.887984] [PMID: 30743754]
[82]
Samokyszyn VM, Miller DM, Reif DW, Aust SD. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. J Biol Chem 1989; 264(1): 21-6.
[http://dx.doi.org/10.1016/S0021-9258(17)31218-8] [PMID: 2535839]
[83]
Leng J. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the nrf2/ho-1 pathway. BMC complementary medicine and therapies 2020; 20(1): 1-6.
[84]
Chen J, Li Q. Lipoic acid decreases the expression of poly ADP-ribose polymerase and inhibits apoptosis in diabetic rats. Diabetes Metab Syndr Obes 2020; 13: 1725-31.
[http://dx.doi.org/10.2147/DMSO.S241678] [PMID: 32547134]
[85]
Ostan R, Lanzarini C, Pini E, et al. Inflammaging and cancer: A challenge for the Mediterranean diet. Nutrients 2015; 7(4): 2589-621.
[http://dx.doi.org/10.3390/nu7042589] [PMID: 25859884]
[86]
Oza MJ, Kulkarni YA. Formononetin ameliorates diabetic neuropathy by increasing expression of SIRT1 and NGF. Chem Biodivers 2020; 17(6): e2000162.
[http://dx.doi.org/10.1002/cbdv.202000162] [PMID: 32459048]
[87]
Jia GL, Huang Q, Cao YN, et al. Cav‐1 participates in the development of diabetic neuropathy pain through the TLR4 signaling pathway. J Cell Physiol 2020; 235(3): 2060-70.
[http://dx.doi.org/10.1002/jcp.29106] [PMID: 31318049]
[88]
Zhou L, Xu D, Sha W, Shen L, Lu G. Long non-coding RNA MALAT1 interacts with transcription factor Foxo1 to regulate SIRT1 transcription in high glucose-induced HK-2 cells injury. Biochem Biophys Res Commun 2018; 503(2): 849-55.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.086] [PMID: 29928873]
[89]
Xourgia E, Papazafiropoulou A, Melidonis A. Circulating microRNAs as biomarkers for diabetic neuropathy: A novel approach. World J Exp Med 2018; 8(3): 18-23.
[http://dx.doi.org/10.5493/wjem.v8.i3.18] [PMID: 30596030]
[90]
Chen J, Li C, Liu W, Yan B, Hu X, Yang F. miRNA-155 silencing reduces sciatic nerve injury in diabetic peripheral neuropathy. J Mol Endocrinol 2019; 63(3): 227-38.
[http://dx.doi.org/10.1530/JME-19-0067] [PMID: 31404910]
[91]
Kenneth H, Gabbay N S, Sherry L, Harry J H, Albert A A. Aldose reductase inhibition: studies with alrestatin. Metabolism 1979; 28(1): 471-6.
[http://dx.doi.org/10.1016/0026-0495(79)90059-3]
[92]
Max MB. Endogenous monoamine analgesic systems: amitriptyline in painful diabetic neuropathy. Anesth Prog 1987; 34(4): 123-7.
[PMID: 19598699]
[93]
Max MB, Kishore-Kumar R, Schafer SC, et al. Efficacy of desipramine in painful diabetic neuropathy: A placebo-controlled trial. Pain 1991; 45(1): 3-9.
[http://dx.doi.org/10.1016/0304-3959(91)90157-S]
[94]
Ward WHJ, Sennitt CM, Ross H, et al. Ponalrestat: A potent and specific inhibitor of aldose reductase. Biochem Pharmacol 1990; 39(2): 337-46.
[http://dx.doi.org/10.1016/0006-2952(90)90033-H] [PMID: 2105733]
[95]
Masson EA, Boulton AJM. Aldose reductase inhibitors in the treatment of diabetic neuropathy. A review of the rationale and clinical evidence. Drugs 1990; 39(2): 190-202.
[http://dx.doi.org/10.2165/00003495-199039020-00003] [PMID: 2109678]
[96]
Simons FER. Mizolastine: antihistaminic activity from preclinical data to clinical evaluation. Clin Exp Allergy 1999; 29(s1) (Suppl. 1): 3-8, 3-8.
[http://dx.doi.org/10.1046/j.1365-2222.1999.00002.x] [PMID: 10209699]
[97]
Mylari BL, Larson ER, Beyer TA, et al. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J Med Chem 1991; 34(1): 108-22.
[http://dx.doi.org/10.1021/jm00105a018] [PMID: 1899452]
[98]
Nelson KA, Park KM, Robinovitz E, Tsigos C, Max MB. High‐dose oral dextromethorphan versus placebo in painful diabetic neuropathy and postherpetic neuralgia. Neurology 1997; 48(5): 1212-8.
[http://dx.doi.org/10.1212/WNL.48.5.1212] [PMID: 9153445]
[99]
Backonja M, Beydoun A, Edwards KR, et al. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 1998; 280(21): 1831-6.
[http://dx.doi.org/10.1001/jama.280.21.1831] [PMID: 9846777]
[100]
di Vadi P P, Hamann W. The use of lamotrigine in neuropathic pain, Anaesthesia. Case report 1998; 53: 804-9.
[101]
Wiffen P J, Derry S R, Moore A. Lamotrigine for acute and chronic pain. Cochrane Database Syst Rev 2014; 2014(2): CD006044.
[102]
Wiffen P J, Derry S, Moore R A. Lamotrigine for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev 2013; 2013(12): CD006044.
[http://dx.doi.org/10.1002/14651858.CD006044.pub4]
[103]
Harati Y, Gooch C, Swenson M, et al. Double‐blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology 1998; 50(6): 1842-6.
[http://dx.doi.org/10.1212/WNL.50.6.1842] [PMID: 9633738]
[104]
Davis JL, Smith RL. Painful peripheral diabetic neuropathy treated with venlafaxine HCl extended release capsules. Diabetes Care 1999; 22(11): 1909-10.
[http://dx.doi.org/10.2337/diacare.22.11.1909] [PMID: 10546032]
[105]
Da Settimo F, Primofiore G, Da Settimo A, et al. [1,2,4]Triazino[4,3-a]benzimidazole acetic acid derivatives: A new class of selective aldose reductase inhibitors. J Med Chem 2001; 44(25): 4359-69.
[http://dx.doi.org/10.1021/jm0109210] [PMID: 11728182]
[106]
Akamine EH, Hohman TC, Nigro D, Carvalho MHC, Tostes RC, Fortes ZB. Minalrestat, an aldose reductase inhibitor, corrects the impaired microvascular reactivity in diabetes. J Pharmacol Exp Ther 2003; 304(3): 1236-42.
[http://dx.doi.org/10.1124/jpet.102.044693] [PMID: 12604701]
[107]
Watson PCN, Moulin D, Watt-Watson J, Gordon A, Eisenhoffer J. Controlled-release oxycodone relieves neuropathic pain: A randomized controlled trial in painful diabetic neuropathy. Pain 2003; 105(1): 71-8.
[http://dx.doi.org/10.1016/S0304-3959(03)00160-X] [PMID: 14499422]
[108]
Kochar DK, Rawat N, Agrawal RP, et al. Sodium valproate for painful diabetic neuropathy: A randomized double-blind placebo-controlled study. QJM 2004; 97(1): 33-8.
[http://dx.doi.org/10.1093/qjmed/hch007] [PMID: 14702509]
[109]
Kochar DK, Jain N, Agarwal RP, Srivastava T, Agarwal P, Gupta S. Sodium valproate in the management of painful neuropathy in type 2 diabetes a randomized placebo controlled study. Acta Neurol Scand 2002; 106(5): 248-52.
[http://dx.doi.org/10.1034/j.1600-0404.2002.01229.x] [PMID: 12371916]
[110]
Raskin J, Pritchett YL, Wang F, et al. A double-blind, randomized multicenter trial comparing duloxetine with placebo in the management of diabetic peripheral neuropathic pain. Pain Med 2005; 6(5): 346-56.
[http://dx.doi.org/10.1111/j.1526-4637.2005.00061.x] [PMID: 16266355]
[111]
Cymbalta (duloxetine) prescribing information. Indianapolis, Indiana: Eli Lilly and Company; December 2014. Available at: http://pi.lilly.com/us/ cymbalta-pi.pdf (Accessed March 18, 2015).
[112]
Zin CS, Nissen LM, Smith MT, O’Callaghan JP, Moore BJ. An update on the pharmacological management of post-herpetic neuralgia and painful diabetic neuropathy. CNS Drugs 2008; 22(5): 417-42.
[http://dx.doi.org/10.2165/00023210-200822050-00005] [PMID: 18399710]
[113]
The Capsaicin Study Group. Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. Arch Intern Med 1991; 151(11): 2225-9.
[http://dx.doi.org/10.1001/archinte.1991.00400110079017] [PMID: 1953227]
[114]
American Academy of Neurology. AAN summary of evidence-based guidelines for clinicians: treatment of painful diabetic neuropathy., 2011. Available at: https://www.aan.com/Guidelines/home/GetGuidelineContent/480 (Accessed March 13, 2015).
[115]
Ho KY, Huh BK, White WD, Yeh CC, Miller EJ. Topical amitriptyline versus lidocaine in the treatment of neuropathic pain. Clin J Pain 2008; 24(1): 51-5.
[http://dx.doi.org/10.1097/AJP.0b013e318156db26] [PMID: 18180637]
[116]
Lynch ME, Clark AJ, Sawynok J, Sullivan MJL. Topical 2% amitriptyline and 1% ketamine in neuropathic pain syndromes: A randomized, double-blind, placebo-controlled trial. Anesthesiology 2005; 103(1): 140-6.
[http://dx.doi.org/10.1097/00000542-200507000-00021] [PMID: 15983466]
[117]
Kopsky DJ, Keppel Hesselink JM. High doses of topical amitriptyline in neuropathic pain: two cases and literature review. Pain Pract 2012; 12(2): 148-53.
[http://dx.doi.org/10.1111/j.1533-2500.2011.00477.x] [PMID: 21676162]
[118]
Sharma SR, Sharma N. RETRACTED: Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: An Indian perspective. Ann Indian Acad Neurol 2008; 11(4): 231-5.
[http://dx.doi.org/10.4103/0972-2327.44558] [PMID: 19893679]
[119]
Ramirez MA, Borja NL. Epalrestat: An aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy 2008; 28(5): 646-55.
[http://dx.doi.org/10.1592/phco.28.5.646] [PMID: 18447661]
[120]
Hotta N, Sakamoto N, Shigeta Y, Kikkawa R, Goto Y. Clinical investigation of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy in Japan: Multicenter study. J Diabetes Complications 1996; 10(3): 168-72.
[http://dx.doi.org/10.1016/1056-8727(96)00113-4] [PMID: 8807467]
[121]
Baron R, Mayoral V, Leijon G, Binder A, Steigerwald I, Serpell M. 5% lidocaine medicated plaster versus pregabalin in post-herpetic neuralgia and diabetic polyneuropathy: An open-label, non-inferiority two-stage RCT study. Curr Med Res Opin 2009; 25(7): 1663-76.
[http://dx.doi.org/10.1185/03007990903047880] [PMID: 19485723]
[122]
Noh HL, Hu Y, Park TS, et al. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat. J Pharmacol Exp Ther 2009; 328(2): 496-503.
[http://dx.doi.org/10.1124/jpet.108.136283] [PMID: 18974362]
[123]
Van Zandt MC, Jones ML, Gunn DE, et al. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J Med Chem 2005; 48(9): 3141-52.
[http://dx.doi.org/10.1021/jm0492094] [PMID: 15857120]
[124]
Hearn L, Derry S, Moore R A. Lacosamide for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev 2012; 2012(2): CD009318.
[http://dx.doi.org/10.1002/14651858.CD009318.pub2]
[125]
Zhou M, Chen N, He L, Yang M, Zhu C, Wu F. Oxcarbazepine for neuropathic pain. Cochrane Libr 2013; 3(3): CD007963.
[http://dx.doi.org/10.1002/14651858] [PMID: 23543558]
[126]
Wiffen P J, Derry S, Lunn M P T. Topiramate for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev 2013; 2013(8): CD008314.
[http://dx.doi.org/10.1002/14651858.CD008314.pub2]
[127]
Changjin Z. Aldose Reductase Inhibitors as Potential Therapeutic Drugs of Diabetic Complications. Diabetes Mellitus Insights and Perspectives 2013; pp. 17-46.
[128]
Huang Q, Liu Q, Ouyang D. Sorbinil, an aldose reductase inhibitor, in fighting against diabetic complications. Med Chem 2019; 15(1): 3-7.
[http://dx.doi.org/10.2174/1573406414666180524082445] [PMID: 29792152]
[129]
O’Brien MM, Schofield PJ, Edwards MR. Inhibition of human brain aldose reductase and hexonate dehydrogenase by alrestatin and sorbinil. J Neurochem 1982; 39(3): 810-4.
[http://dx.doi.org/10.1111/j.1471-4159.1982.tb07964.x] [PMID: 6808090]
[130]
Kinoshita JH, Fukushi S, Kador P, Merola LO. Aldose reductase in diabetic complications of the eye. Metabolism 1979; 28(4) (Suppl. 1): 462-9.
[http://dx.doi.org/10.1016/0026-0495(79)90057-X] [PMID: 45423]
[131]
Peterson M J. A novel aldose reductase inhibitor that inhibits polyol pathway activity in diabetic and galactosemic rats Metabolism 1979; 28: 456-61.
[http://dx.doi.org/10.1016/0026-0495(79)90056-8]
[132]
Singh M, Kapoor A, Bhatnagar A. Physiological and pathological roles of aldose reductase. Metabolites 2021; 11(10): 655.
[http://dx.doi.org/10.3390/metabo11100655] [PMID: 34677370]
[133]
Bril V, Hirose T, Tomioka S, Buchanan R. Ranirestat for the management of diabetic sensorimotor polyneuropathy. Diabetes Care 2009; 32(7): 1256-60.
[http://dx.doi.org/10.2337/dc08-2110]
[134]
Sestanj K, Bellini F, Fung S, et al. N-[[5-(Trifluoromethyl)-6-methoxy-1-naphthalenyl]thioxomethyl]-N-methylglycine (Tolrestat), a potent, orally active aldose reductase inhibitor. J Med Chem 1984; 27(3): 255-6.
[http://dx.doi.org/10.1021/jm00369a003] [PMID: 6422042]
[135]
Asano T, Saito Y, Kawakami M, Yamada N. Fidarestat (SNK-860), a potent aldose reductase inhibitor, normalizes the elevated sorbitol accumulation in erythrocytes of diabetic patients. J Diabetes Complications 2002; 16(2): 133-8.
[http://dx.doi.org/10.1016/S1056-8727(01)00175-1] [PMID: 12039395]
[136]
Shimoshige Y, Ikuma K, Yamamoto T, et al. The effects of zenarestat, an aldose reductase inhibitor, on peripheral neuropathy in Zucker diabetic fatty rats. Metabolism 2000; 49(11): 1395-9.
[http://dx.doi.org/10.1053/meta.2000.17723] [PMID: 11092500]
[137]
Wiffen PJ, Derry S, Moore RA, Kalso EA. Carbamazepine for chronic neuropathic pain and fibromyalgia in adults. Cochrane Libr 2014; 2019(5): CD005451.
[http://dx.doi.org/10.1002/14651858.CD005451.pub3] [PMID: 24719027]
[138]
Wang Y, Yang H, Shen C, Luo J I. Morphine and pregabalin in the treatment of neuropathic pain. Exp Ther Med 2017; 13: 1393-7.
[139]
Freo U, Romualdi P, Kress HG. Tapentadol for neuropathic pain: A review of clinical studies. J Pain Res 2019; 12: 1537-51.
[http://dx.doi.org/10.2147/JPR.S190162] [PMID: 31190965]
[140]
American Diabetes Association. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021; 44 (Suppl. 1): S151-67.
[http://dx.doi.org/10.2337/dc21-S011]
[141]
Verma V, Singh N, Jaggi A. Pregabalin in neuropathic pain: Evidences and possible mechanisms. Curr Neuropharmacol 2014; 12(1): 44-56.
[http://dx.doi.org/10.2174/1570159X1201140117162802] [PMID: 24533015]
[142]
Sharma U, Griesing T, Emir B, Young JP Jr. Time to onset of neuropathic pain reduction: A retrospective analysis of data from nine controlled trials of pregabalin for painful diabetic peripheral neuropathy and postherpetic neuralgia. Am J Ther 2010; 17(6): 577-85.
[http://dx.doi.org/10.1097/MJT.0b013e3181d5e4f3] [PMID: 20393345]
[143]
Schwartz S, Etropolski M, Shapiro DY, et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial. Curr Med Res Opin 2011; 27(1): 151-62.
[http://dx.doi.org/10.1185/03007995.2010.537589] [PMID: 21162697]
[144]
Cruz JWCM, Soto-Suazo MW, Hohman TC, Akamine EH, Zorn TT, Fortes ZB. Minalrestat and leukocyte migration in diabetes mellitus. Diabetes Metab Res Rev 2003; 19(3): 223-31.
[http://dx.doi.org/10.1002/dmrr.376] [PMID: 12789656]
[145]
Albers JW, Herman WH, Pop-Busui R, et al. Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Diabetes Care 2010; 33(5): 1090-6.
[http://dx.doi.org/10.2337/dc09-1941] [PMID: 20150297]
[146]
Callaghan BC, Little AA, Feldman EL, Hughes RAC. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Libr 2012; 6(6): CD007543.
[http://dx.doi.org/10.1002/14651858.CD007543.pub2] [PMID: 22696371]
[147]
Han T, Bai J, Liu W, Hu Y. THERAPY OF ENDOCRINE DISEASE: A systematic review and meta-analysis of α-lipoic acid in the treatment of diabetic peripheral neuropathy. Eur J Endocrinol 2012; 167(4): 465-71.
[http://dx.doi.org/10.1530/EJE-12-0555] [PMID: 22837391]
[148]
Winkler G, Pál B, Nagybéganyi E, Ory I, Porochnavec M, Kempler P. Effectiveness of different benfotiamine dosage regimens in the treatment of painful diabetic neuropathy. Arzneimittelforschung 1999; 49(3): 220-4.
[PMID: 10219465]
[149]
Fraser D A, Diep LM, Hovden IA. The effects of long-term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes. Diabetes Care 2012; 35(5): 1095-7.
[150]
Khanna S, Roy S, Packer L, Sen CK. Cytokine-induced glucose uptake in skeletal muscle: redox regulation and the role of alpha-lipoic acid. Am J Physiol 1999; 276(5): R1327-33.
[PMID: 10233023]
[151]
Ametov AS, Barinov A, Dyck PJ. The Sensory Symptoms of Diabetic Polyneuropathy Are Improved With α-Lipoic Acid 2003.http://care.diabetesjournals.org/content/26/3/770
[152]
Ziegler D, Ametov A, Barinov A. The Sensory Symptoms of Diabetic Polyneuropathy Are Improved With α-Lipoic Acid. Diabetes Care 2003. Available from: http://care.diabetesjournals.org/content/ 29/11/2365
[153]
Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α‐lipoic acid: A meta‐analysis. Diabet Med 2004; 21(2): 114-21.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01109.x] [PMID: 14984445]
[154]
Mijnhout GS, Kollen BJ, Alkhalaf A, Kleefstra N, Bilo HJG. Alpha lipoic Acid for symptomatic peripheral neuropathy in patients with diabetes: A meta-analysis of randomized controlled trials. Int J Endocrinol 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/456279] [PMID: 22331979]
[155]
El-Kabbani O, Darmanin C, Schneider TR, et al. Ultrahigh resolution drug design. atomic resolution structures of human aldose reductase holoenzyme complexed with fidarestat and minalrestat: Implications for the binding of cyclic imide inhibitors. Proteins 2004; 55(4): 805-13.
[http://dx.doi.org/10.1002/prot.20001] [PMID: 15146479]
[156]
Syed O, Jancic P, Knezevic NN. A review of recent pharmacological advances in the management of diabetes-associated peripheral neuropathy. Pharmaceuticals 2023; 16(6): 801.
[http://dx.doi.org/10.3390/ph16060801] [PMID: 37375749]
[157]
U.S. National Library Of Medicine. Available from: https://classic.clinicaltrials.gov/ct2/home