Bioinformatics Characteristics and Genomic Patterns of the Envelope Glycoproteins of the Crimean-congo Hemorrhagic Fever Viruses

Page: [106 - 123] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Rodents and many wild and domestic animals, including cattle, donkeys, goats, hares, ostriches, and sheep, spread the Crimean-Congo Hemorrhagic Fever Virus (CCHFV), acting as hosts for infected ticks primarily of the Hyalomma genus, which serve as vectors and reservoirs of the virus. CCHF is a severe, potentially lethal, and widespread disease, making it a serious public health issue. Environmental changes impacting rodent populations affect their global distribution and, therefore, play a role in the spread of CCHFV.

Objective: This study aims togain a deeper understanding of the envelope glycoproteins expressed by the CCHFV.

Methods: Multiple computational algorithms determined the Intrinsic Disorder Predisposition (PIDP), Polarity Index, and genomic profiles of each sequence of the glycoproteins.

Results: When examining the Polarity Index Method Profile, 3.0v profile, and the PIDP profile, the envelope glycoproteins of the CCHFV showed different patterns. With these patterns, it was possible to identify structural and morphological similarities.

Conclusion: With the PIM 3.0v profile, our computer programs were able to identify isolated CCHFV envelope glycoproteins. We believe that this research provides a deeper understanding of this virus.

Keywords: Crimean-congo hemorrhagic fever virus, envelope glycoproteins, hemorrhagic disease, intrinsic disorder predisposition, mutant glycoproteins, polarity index method, polarity index method 2.0v profile, structural proteomics.

Graphical Abstract

[1]
Shanmugam, J.; Smirnova, S.E.; Chumakov, M.P. Presence of antibody to arboviruses of the Crimean Haemorrhagic Fever-Congo (CHF-Congo) group in human beings and domestic animals in India. Indian J. Med. Res., 1976, 64(10), 1403-1413.
[PMID: 828146]
[2]
Butenko, A.M.; Chumakov, M.P.; Rubin, V.N.; Stolbov, D.N. Isolation and Investigation of Astrakhan Strain ('Drozdov') of Crimean Hemorrhagic Fever Virus and Data on Serodiagnosis of this Infection. Mater. 15 Nauchn. Sess. Inst. Polio Virus Entsefalitov (Moscow)., 1968, 3, 88–90 (in Russian; in English, NAMRU3- T866). In: Whitehouse CA. Crimean-Congo hemorrhagic fever. Antivir Res.,, 2004, 145-160.
[3]
Mishra, B.; Appannanavar, S.B. An update on crimean congo hemorrhagic fever. J. Glob. Infect. Dis., 2011, 3(3), 285-292.
[http://dx.doi.org/10.4103/0974-777X.83537] [PMID: 21887063]
[4]
Hoogstraal, H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J. Med. Entomol., 1979, 15(4), 307-417.
[http://dx.doi.org/10.1093/jmedent/15.4.307] [PMID: 113533]
[5]
Bairoch, A.; Apweiler, R.; Wu, C. H.; Barker, W. C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M. J.; Natale, D. A.; O'Donovan, C.; Redaschi, N.; Yeh, L. S. The universal protein resource (uniprot). Nucl. acid. res., 2005, 33(database issue), 2005, D154-D159.
[6]
Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence complexity of disordered protein. Proteins, 2001, 42(1), 38-48.
[http://dx.doi.org/10.1002/1097-0134(20010101)42:1<38:AID-PROT50>3.0.CO;2-3] [PMID: 11093259]
[7]
Obradovic, Z.; Peng, K.; Vucetic, S.; Radivojac, P.; Dunker, A.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 2005, 61(S7)(Suppl. 7), 176-182.
[http://dx.doi.org/10.1002/prot.20735] [PMID: 16187360]
[8]
Peng, K.; Radivojac, P.; Vucetic, S.; Dunker, A.K.; Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 2006, 7(1), 208.
[http://dx.doi.org/10.1186/1471-2105-7-208] [PMID: 16618368]
[9]
Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(4), 996-1010.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.011] [PMID: 20100603]
[10]
Mészáros, B.; Erdős, G.; Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res., 2018, 46(W1), W329-W337.
[http://dx.doi.org/10.1093/nar/gky384] [PMID: 29860432]
[11]
Dayhoff, G.W., II; Uversky, V.N. Rapid prediction and analysis of protein intrinsic disorder. Protein Sci., 2022, 31(12), e4496.
[http://dx.doi.org/10.1002/pro.4496] [PMID: 36334049]
[12]
Zhou, J.; Oldfield, C.J.; Yan, W.; Shen, B.; Dunker, A.K. Identification of intrinsic disorder in complexes from the protein data bank. ACS Omega, 2020, 5(29), 17883-17891.
[http://dx.doi.org/10.1021/acsomega.9b03927] [PMID: 32743159]
[13]
Gautam, A.; Singh, H.; Tyagi, A.; Chaudhary, K.; Kumar, R.; Kapoor, P.; Raghava, G.P.S. CPPsite: A curated database of cell penetrating peptides. Database , 2012, 2012(0), bas015.
[http://dx.doi.org/10.1093/database/bas015] [PMID: 22403286]
[14]
Polanco, C.; Castañón-González, J.A.; Uversky, V.N.; Buhse, T.; Samaniego Mendoza, J.L.; Calva, J.J. Electronegativity and intrinsic disorder of preeclampsia-related proteins. Acta Biochim. Pol., 2017, 64(1), 99-111.
[PMID: 27824362]
[15]
Polanco, C.; Huberman, A.; Hernández-Lemus, E.; Uversky, V.N.; Rios Castro, M.; Martínez-Garcia, M.; Vargas-Alarcón, G.; Buhse, T.; Pimentel Hernández, C.; Zazueta, C.; Roldan Gomez, F.R.; López Oliva, E.J. Bioinformatics-based characterization of the variability of MPOX virus proteins. Lett. Drug Des. Discov., 2023.
[16]
Mishra, A.K.; Hellert, J.; Freitas, N.; Guardado-Calvo, P.; Haouz, A.; Fels, J.M.; Maurer, D.P.; Abelson, D.M.; Bornholdt, Z.A.; Walker, L.M.; Chandran, K.; Cosset, F.L.; McLellan, J.S.; Rey, F.A. Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies. Science, 2022, 375(6576), 104-109.
[http://dx.doi.org/10.1126/science.abl6502] [PMID: 34793197]
[17]
Simon, M.; Johansson, C.; Mirazimi, A. Crimean-Congo hemorrhagic fever virus entry and replication is clathrin, pH- and cholesterol-dependent. J. Gen. Virol., 2009, 90(1), 210-215.
[http://dx.doi.org/10.1099/vir.0.006387-0] [PMID: 19088291]
[18]
Li, N.; Rao, G.; Li, Z.; Yin, J.; Chong, T.; Tian, K.; Fu, Y.; Cao, S. Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus. Virol. Sin., 2022, 37(1), 127-137.
[http://dx.doi.org/10.1016/j.virs.2022.01.015] [PMID: 35234630]
[19]
Carter, S.D.; Surtees, R.; Walter, C.T.; Ariza, A.; Bergeron, É.; Nichol, S.T.; Hiscox, J.A.; Edwards, T.A.; Barr, J.N. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J. Virol., 2012, 86(20), 10914-10923.
[http://dx.doi.org/10.1128/JVI.01555-12] [PMID: 22875964]
[20]
Carroll, S.A.; Bird, B.H.; Rollin, P.E.; Nichol, S.T. Ancient common ancestry of Crimean-Congo hemorrhagic fever virus. Mol. Phylogenet. Evol., 2010, 55(3), 1103-1110.
[http://dx.doi.org/10.1016/j.ympev.2010.01.006] [PMID: 20074652]
[21]
Sanchez, A.J.; Vincent, M.J.; Nichol, S.T. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J. Virol., 2002, 76(14), 7263-7275.
[http://dx.doi.org/10.1128/JVI.76.14.7263-7275.2002] [PMID: 12072526]
[22]
Jeeva, S.; Cheng, E.; Ganaie, S.S.; Mir, M.A. Crimean-Congo hemorrhagic fever virus nucleocapsid protein augments mRNA translation. J. Virol., 2017, 91(15), e00636-17.
[http://dx.doi.org/10.1128/JVI.00636-17] [PMID: 28515298]
[23]
Erickson, B.R.; Deyde, V.; Sanchez, A.J.; Vincent, M.J.; Nichol, S.T. N-linked glycosylation of Gn (but not Gc) is important for Crimean Congo hemorrhagic fever virus glycoprotein localization and transport. Virology, 2007, 361(2), 348-355.
[http://dx.doi.org/10.1016/j.virol.2006.11.023] [PMID: 17197010]
[24]
Shalitanati, A.; Yu, H.; Liu, D.; Xu, W.X.; Yue, X.; Guo, R.; Li, Y.; Deng, F.; Yang, J.; Zhang, Y.; Sun, S. Fine mapping epitope on glycoprotein-Gn from Crimean-Congo hemorrhagic fever virus. Comp. Immunol. Microbiol. Infect. Dis., 2018, 59, 24-31.
[http://dx.doi.org/10.1016/j.cimid.2018.09.003] [PMID: 30290884]
[25]
Zivcec, M.; Scholte, F.; Spiropoulou, C.; Spengler, J.; Bergeron, É. Molecular insights into Crimean-Congo hemorrhagic fever virus. Viruses, 2016, 8(4), 106.
[http://dx.doi.org/10.3390/v8040106] [PMID: 27110812]
[26]
Rahman, S.U.; Yao, X.; Li, X.; Chen, D.; Tao, S. Analysis of codon usage bias of Crimean-Congo hemorrhagic fever virus and its adaptation to hosts. Infect. Genet. Evol., 2018, 58, 1-16.
[http://dx.doi.org/10.1016/j.meegid.2017.11.027] [PMID: 29198972]
[27]
Polanco, C.; Samaniego, J.L.; Buhse, T.; Castañón González, J.A. Discrete dynamic system oriented on the formation of prebiotic dipeptides from Rode’s experiment. Acta Biochim. Pol., 2014, 61(4), 717-726.
[http://dx.doi.org/10.18388/abp.2014_1836] [PMID: 25520962]
[28]
Polanco, C.; Buhse, T.; Uversky, V.; Vizcaino, G.; Picciotto, J.L. The polar profile of ancient proteins: A computational extrapolation from prebiotics to paleobiochemistry. Acta Biochim. Pol., 2017, 64(1), 117-122.
[http://dx.doi.org/10.18388/abp.2016_1311] [PMID: 28284023]
[29]
Dai, S.; Min, Y.Q.; Li, Q.; Feng, K.; Jiang, Z.; Wang, Z.; Zhang, C.; Ren, F.; Fang, Y.; Zhang, J.; Zhu, Q.; Wang, M.; Wang, H.; Deng, F.; Ning, Y.J. Interactome profiling of Crimean-Congo hemorrhagic fever virus glycoproteins. Nat. Commun., 2023, 14(1), 7365.
[http://dx.doi.org/10.1038/s41467-023-43206-1] [PMID: 37963884]
[30]
Rodriguez, S.E.; Hawman, D.W.; Sorvillo, T.E.; O’Neal, T.J.; Bird, B.H.; Rodriguez, L.L.; Bergeron, É.; Nichol, S.T.; Montgomery, J.M.; Spiropoulou, C.F.; Spengler, J.R. Immunobiology of crimean-congo hemorrhagic fever. Antiviral Res., 2022, 199, 105244.
[http://dx.doi.org/10.1016/j.antiviral.2022.105244] [PMID: 35026307]
[31]
Zhang, J.; Simayi, A.; Wang, M.; Moming, A.; Xu, W.; Wang, C.; Li, Y.; Ding, J.; Deng, F.; Zhang, Y.; Sun, S. Fine mapping epitope on glycoprotein Gc from crimean-congo hemorrhagic fever virus. Comp. Immunol. Microbiol. Infect. Dis., 2019, 67, 101371.
[http://dx.doi.org/10.1016/j.cimid.2019.101371] [PMID: 31627038]
[32]
Nasirian, H. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: A global systematic review and meta-analysis. Comp. Immunol. Microbiol. Infect. Dis., 2020, 69, 101429.
[http://dx.doi.org/10.1016/j.cimid.2020.101429] [PMID: 32062190]
[33]
Gazi, U.; Yapar, D.; Karasartova, D.; Gureser, A.S.; Akdogan, O.; Unal, O.; Baykam, N.; Taylan Ozkan, A. The role of Treg population in pathogenesis of Crimean Congo hemorrhagic fever. Virus Res., 2018, 250, 1-6.
[http://dx.doi.org/10.1016/j.virusres.2018.04.003] [PMID: 29625147]
[34]
Hawman, D.W.; Feldmann, H. Crimean–Congo haemorrhagic fever virus. Nat. Rev. Microbiol., 2023, 21(7), 463-477.
[http://dx.doi.org/10.1038/s41579-023-00871-9] [PMID: 36918725]
[35]
Lorenzo Juanes, H.M.; Carbonell, C.; Sendra, B.F.; López-Bernus, A.; Bahamonde, A.; Orfao, A.; Lista, C.V.; Ledesma, M.S.; Negredo, A.I.; Rodríguez-Alonso, B.; Bua, B.R.; Sánchez-Seco, M.P.; Muñoz Bellido, J.L.; Muro, A.; Belhassen-García, M. Crimean-congo hemorrhagic fever, Spain, 2013–2021. Emerg. Infect. Dis., 2023, 29(2), 252-259.
[http://dx.doi.org/10.3201/eid2902.220677] [PMID: 36692301]
[36]
Ergonul, O.; Celikbas, A.; Baykam, N.; Eren, S.; Dokuzoguz, B. Analysis of risk-factors among patients with Crimean-Congo haemorrhagic fever virus infection: Severity criteria revisited. Clin. Microbiol. Infect., 2006, 12(6), 551-554.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01445.x]
[37]
Goedhals, D.; Paweska, J.T.; Burt, F.J. Long-lived CD8+ T cell responses following Crimean-Congo haemorrhagic fever virus infection. PLoS Negl. Trop. Dis., 2017, 11(12), e0006149.
[http://dx.doi.org/10.1371/journal.pntd.0006149] [PMID: 29261651]
[38]
Wang, Q.; Cao, R.; Li, L.; Liu, J.; Yang, J.; Li, W.; Yan, L.; Wang, Y.; Yan, Y.; Li, J.; Deng, F.; Zhou, Y.; Wang, M.; Zhong, W.; Hu, Z. in vitro and in vivo efficacy of a novel nucleoside analog H44 against Crimean–Congo hemorrhagic fever virus. Antiviral Res., 2022, 199, 105273.
[http://dx.doi.org/10.1016/j.antiviral.2022.105273] [PMID: 35257725]
[39]
Tuygun, N.; Tanir, G.; Caglayik, D.Y.; Uyar, Y.; Korukluoglu, G.; Cenesiz, F. Pediatric cases of Crimean‐Congo hemorrhagic fever in Turkey. Pediatr. Int., 2012, 54(3), 402-406.
[http://dx.doi.org/10.1111/j.1442-200X.2011.03549.x] [PMID: 22192531]
[40]
Dilber, E.; Cakir, M.; Acar, E.A.; Orhan, F.; Yaris, N.; Bahat, E.; Okten, A.; Erduran, E. Crimean–Congo haemorrhagic fever among children in north-eastern Turkey. Ann. Trop. Paediatr., 2009, 29(1), 23-28.
[http://dx.doi.org/10.1179/146532809X401999] [PMID: 19222930]
[41]
Tezer, H.; Sucaklı, I.A.; Saylı, T.R.; Celikel, E.; Yakut, I.; Kara, A.; Tunc, B.; Ergonul, O. Crimean-Congo hemorrhagic fever in children. J. Clin. Virol., 2010, 48(3), 184-186.
[http://dx.doi.org/10.1016/j.jcv.2010.04.001] [PMID: 20444644]
[42]
Ozkurt, Z.; Kiki, I.; Erol, S.; Erdem, F.; Yilmaz, N.; Parlak, M.; Gundogdu, M.; Tasyaran, M. Crimean–Congo hemorrhagic fever in Eastern Turkey: clinical features, risk factors and efficacy of ribavirin therapy. J. Infect., 2006, 52(3), 207-215.
[http://dx.doi.org/10.1016/j.jinf.2005.05.003] [PMID: 15953646]
[43]
Çevik, M.A.; Erbay, A.; Bodur, H.; Gülderen, E.; Baştuğ, A.; Kubar, A.; Akıncı, E. Clinical and laboratory features of Crimean-Congo hemorrhagic fever: Predictors of fatality. Int. J. Infect. Dis., 2008, 12(4), 374-379.
[http://dx.doi.org/10.1016/j.ijid.2007.09.010] [PMID: 18063402]
[44]
Gürbüz, E.; Ekıcı, A.; Ünlü, A.H.; Yilmaz, H. Evaluation of seroprevalence and clinical and laboratory findings of patients admitted to health institutions in Gümüşhane with suspicion of Crimean-Congo hemorrhagic fever. Turk. J. Med. Sci., 2021, 51(4), 1825-1832.
[http://dx.doi.org/10.3906/sag-2001-82] [PMID: 33754650]
[45]
Yalçinkaya, R.; Polat, M.; Gümüşer Cinni, R.; Öz, F.N.; Tanir, G.; Uysal Yazici, M. Crimean-Congo hemorrhagic fever mimicking multisystem inflammatory syndrome in children associated with COVID-19: A diagnostic challenge. Pediatr. Infect. Dis. J., 2021, 40(12), e524-e525.
[http://dx.doi.org/10.1097/INF.0000000000003269] [PMID: 34292265]
[46]
Oygar, P.D.; Gürlevik, S.L.; Sağ, E.; İlbay, S.; Aksu, T.; Demir, O.O.; Coşgun, Y.; Eyüpoğlu, S.A.; Karakaya, J.; Cangül, Ş.Ü.; Cengiz, A.B.; Özsürekci, Y. Changing disease course of crimean-congo hemorrhagic fever in children, Turkey. Emerg. Infect. Dis., 2023, 29(2), 268-277.
[http://dx.doi.org/10.3201/eid2902.220976] [PMID: 36692327]
[47]
Papa, A.; Bino, S.; Velo, E.; Harxhi, A.; Kota, M.; Antoniadis, A. Cytokine levels in Crimean-Congo hemorrhagic fever. J. Clin. Virol., 2006, 36(4), 272-276.
[http://dx.doi.org/10.1016/j.jcv.2006.04.007] [PMID: 16765637]
[48]
Bente, D.A.; Alimonti, J.B.; Shieh, W.J.; Camus, G.; Ströher, U.; Zaki, S.; Jones, S.M. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J. Virol., 2010, 84(21), 11089-11100.
[http://dx.doi.org/10.1128/JVI.01383-10] [PMID: 20739514]
[49]
Mardani, M.; Rahnavardi, M.; Sharifi-Mood, B. Current treatment of Crimean–Congo hemorrhagic fever in children. Expert Rev. Anti Infect. Ther., 2010, 8(8), 911-918.
[http://dx.doi.org/10.1586/eri.10.67] [PMID: 20695747]
[50]
Kurnaz, F.; Metan, G.; Coskun, R.; Kaynar, L.; Eser, B.; Doğanay, M. A case of Crimean-Congo haemorrhagic fever successfully treated with therapeutic plasma exchange and ribavirin. Trop. Doct., 2011, 41(3), 181-182.
[http://dx.doi.org/10.1258/td.2011.100470] [PMID: 21565949]
[51]
Tahir Ul Qamar, M.; Ismail, S.; Ahmad, S.; Mirza, M.U.; Abbasi, S.W.; Ashfaq, U.A.; Chen, L.L. Development of a novel multi-epitope vaccine against crimean-Congo hemorrhagic fever virus: An integrated reverse vaccinology, vaccine informatics and biophysics approach. Front. Immunol., 2021, 12, 669812.
[http://dx.doi.org/10.3389/fimmu.2021.669812] [PMID: 34220816]