Current Stem Cell Research & Therapy

Author(s): Bindhu Jayaprakash, Maya Savira, Ammar Abdul Razzak Mahmood and Muthu Prasanna*

DOI: 10.2174/011574888X313112240510160102

DownloadDownload PDF Flyer Cite As
The Role of Stem Cell Therapies in the Treatment of Neurodegenerative Diseases

Page: [146 - 165] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Cellular replacement therapy and genetic transfer in injured brains provide new pathways for treating human neurological illnesses. Current progress in the field focuses on the production of neurons and glial cells from many types of stem cells, such as embryonic, induced pluripotent, mesenchymal, and neural stem cells. This has led to a significant increase in research on brain transplantation treatments. Extended neurodegeneration results in the progressive decline of certain neuronal subtypes or whole neuronal cells. An analysis of the progress made in induced pluripotent and mesenchymal stem cells reveals their significant promise in disease modeling, regeneration, and medication screening. The requirement for stem cells in neurodegenerative disease studies has been crucial in recent years. Stem cells provide the potential for replacing impaired neurons, comprehending disease needs modeling, and creating efficient treatments, but they have many challenges in culturing and acceptability to the host immune cells. The need to use their potential in discovering novel therapies for diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis leads to promising therapy. This review examines the function of stem cells in the pathogenesis and treatment of Huntington's disease, Parkinson's disease, Alzheimer's disease, and multiple sclerosis. This review further examines hurdles such as immunological reactions and delivery systems intending to overcome these problems. This article offers a detailed viewpoint on the use of stem cell-based nanotherapies as revolutionary treatments for various neurological illnesses.

Keywords: Neurodegenerative diseases, stem cell, stem cell therapy, huntington's disease, parkinsons disease, alzheimer’s disease.

Graphical Abstract

[1]
Bhartiya, M.; Kumar, A.; Singh, R.K.; Radhakrishnan, D.M.; Rajan, R.; Srivastava, A.K. Mesenchymal stem cell therapy in the treatment of neurodegenerative cerebellar ataxias: A systematic review and meta-analysis. Cerebellum, 2022, 22(3), 363-369.
[http://dx.doi.org/10.1007/s12311-022-01403-6] [PMID: 35451803]
[2]
Marsili, L.; Sharma, J.; Outeiro, T.F.; Colosimo, C. Stem cell therapies in movement disorders: Lessons from clinical trials. Biomedicines, 2023, 11(2), 505.
[http://dx.doi.org/10.3390/biomedicines11020505] [PMID: 36831041]
[3]
Unnisa, A.; Dua, K.; Kamal, M.A. Mechanism of mesenchymal stem cells as a multitarget disease- modifying therapy for Parkinson’s disease. Curr. Neuropharmacol., 2023, 21(4), 988-1000.
[http://dx.doi.org/10.2174/1570159X20666220327212414] [PMID: 35339180]
[4]
Bhatti, J.S.; Khullar, N.; Mishra, J.; Kaur, S.; Sehrawat, A.; Sharma, E.; Bhatti, G.K.; Selman, A.; Reddy, P.H. Stem cells in the treatment of Alzheimer’s disease – Promises and pitfalls. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(6), 166712.
[http://dx.doi.org/10.1016/j.bbadis.2023.166712] [PMID: 37030521]
[5]
Mandai, M. Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: A review. Regen. Ther., 2023, 22, 59-67.
[http://dx.doi.org/10.1016/j.reth.2022.12.005] [PMID: 36712956]
[6]
Bowlby, B. Cradle cultures: Growing stem cell-derived developmental cell models in vitro. Biotechniques, 2023, 75(6), 227-230.
[http://dx.doi.org/10.2144/btn-2023-0100] [PMID: 37968924]
[7]
Abdolmohammadi, K.; Mahmoudi, T.; Alimohammadi, M.; Tahmasebi, S.; Zavvar, M.; Hashemi, S.M. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci., 2023, 312, 121206.
[http://dx.doi.org/10.1016/j.lfs.2022.121206] [PMID: 36403645]
[8]
García-Bonilla, M.; Ojeda-Pérez, B.; Shumilov, K.; Rodríguez-Pérez, L.M.; Domínguez-Pinos, D.; Vitorica, J.; Jiménez, S.; Ramírez-Lorca, R.; Echevarría, M.; Cárdenas-García, C.; Iglesias, T.; Gutiérrez, A.; McAllister, J.P., II; Limbrick, D.D., Jr; Páez-González, P.; Jiménez, A.J. Generation of periventricular reactive astrocytes overexpressing aquaporin 4 is stimulated by mesenchymal stem cell therapy. Int. J. Mol. Sci., 2023, 24(6), 5640.
[http://dx.doi.org/10.3390/ijms24065640] [PMID: 36982724]
[9]
Ito, D.; Morimoto, S.; Takahashi, S.; Okada, K.; Nakahara, J.; Okano, H. Maiden voyage: Induced pluripotent stem cell-based drug screening for amyotrophic lateral sclerosis. Brain, 2023, 146(1), 13-19.
[http://dx.doi.org/10.1093/brain/awac306] [PMID: 36004509]
[10]
Fukushima, S.; Miyashita, A.; Kuriyama, H.; Kimura, T.; Mizuhashi, S.; Kubo, Y.; Nakahara, S.; Kanemaru, H.; Tsuchiya, N.; Mashima, H.; Zhang, R.; Uemura, Y. Future prospects for cancer immunotherapy using induced pluripotent stem cell-derived dendritic cells or macrophages. Exp. Dermatol., 2023, 32(3), 290-296.
[http://dx.doi.org/10.1111/exd.14729] [PMID: 36529534]
[11]
Chehelgerdi, M.; Behdarvand Dehkordi, F.; Chehelgerdi, M.; Kabiri, H.; Salehian-Dehkordi, H.; Abdolvand, M.; Salmanizadeh, S.; Rashidi, M.; Niazmand, A.; Ahmadi, S.; Feizbakhshan, S.; Kabiri, S.; Vatandoost, N.; Ranjbarnejad, T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol. Cancer, 2023, 22(1), 189.
[http://dx.doi.org/10.1186/s12943-023-01873-0] [PMID: 38017433]
[12]
Yoshida, K.; Chambers, J.K.; Nibe, K.; Kagawa, Y.; Uchida, K. Immunohistochemical analyses of neural stem cell lineage markers in normal feline brains and glial tumors. Vet. Pathol., 2024, 61(1), 46-57.
[http://dx.doi.org/10.1177/03009858231182337] [PMID: 37358305]
[13]
Radoszkiewicz, K.; Hribljan, V.; Isakovic, J.; Mitrecic, D.; Sarnowska, A. Critical points for optimizing long-term culture and neural differentiation capacity of rodent and human neural stem cells to facilitate translation into clinical settings. Exp. Neurol., 2023, 363, 114353.
[http://dx.doi.org/10.1016/j.expneurol.2023.114353] [PMID: 36841464]
[14]
Boonmuen, N.; Suksen, K.; Kaewkittikhun, M.; Ruknarong, L.; Silalai, P.; Saeeng, R.; Chairoungdua, A.; Soodvilai, S.; Tantikanlayaporn, D. Genipin analogue (G300) inhibits adipogenic differentiation of human bone marrow-derived mesenchymal stem cells through the suppression of adipogenic promoting factors. J. Nat. Prod., 2023, 86(5), 1335-1344.
[http://dx.doi.org/10.1021/acs.jnatprod.3c00143] [PMID: 37137165]
[15]
Biglari, N.; Mehdizadeh, A.; Vafaei Mastanabad, M.; Gharaeikhezri, M.H.; Gol Mohammad Pour Afrakoti, L.; Pourbala, H.; Yousefi, M.; Soltani-Zangbar, M.S. Application of mesenchymal stem cells (MSCs) in neurodegenerative disorders: History, findings, and prospective challenges. Pathol. Res. Pract., 2023, 247, 154541.
[http://dx.doi.org/10.1016/j.prp.2023.154541] [PMID: 37245265]
[16]
Litwiniuk, A.; Juszczak, G.R.; Stankiewicz, A.M.; Urbańska, K. The role of glial autophagy in Alzheimer’s disease. Mol. Psychiatry, 2023, 28(11), 4528-4539.
[http://dx.doi.org/10.1038/s41380-023-02242-5] [PMID: 37679471]
[17]
Castelli, V.; Alfonsetti, M.; d’Angelo, M. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen. Res., 2023, 18(6), 1220-1228.
[http://dx.doi.org/10.4103/1673-5374.358619] [PMID: 36453397]
[18]
Kelly, C.M.; Dunnett, S.B.; Rosser, A.E. Medium spiny neurons for transplantation in Huntington’s disease. Biochem. Soc. Trans., 2009, 37(1), 323-328.
[http://dx.doi.org/10.1042/BST0370323] [PMID: 19143656]
[19]
Kendall, A.L.; Rayment, F.D.; Torres, E.M.; Baker, H.F.; Ridley, R.M.; Dunnett, S.B. Functional integration of striatal allografts in a primate model of Huntington’s disease. Nat. Med., 1998, 4(6), 727-729.
[http://dx.doi.org/10.1038/nm0698-727] [PMID: 9623985]
[20]
Isacson, O.; Deacon, T.W.; Pakzaban, P.; Galpern, W.R.; Dinsmore, J.; Burns, L.H. Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat. Med., 1995, 1(11), 1189-1194.
[http://dx.doi.org/10.1038/nm1195-1189] [PMID: 7584993]
[21]
Keene, C.D.; Sonnen, J.A.; Swanson, P.D.; Kopyov, O.; Leverenz, J.B.; Bird, T.D.; Montine, T.J. Neural transplantation in Huntington disease: Long-term grafts in two patients. Neurology, 2007, 68(24), 2093-2098.
[http://dx.doi.org/10.1212/01.wnl.0000264504.14301.f5] [PMID: 17562830]
[22]
Nayeem, U. Role of stem cells as a protective agent against neurological complications. In: Applications of Stem Cells and Derived Exosomes in Neurodegenerative Disorders; Jahan, S.; Siddiqui, A.J., Eds.; Springer: Berlin, 2023.
[http://dx.doi.org/10.1007/978-981-99-3848-3_4]
[23]
Bemelmans, A.P.; Horellou, P.; Pradier, L.; Brunet, I.; Colin, P.; Mallet, J. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum. Gene Ther., 1999, 10(18), 2987-2997.
[http://dx.doi.org/10.1089/10430349950016393] [PMID: 10609659]
[24]
Brondani, M.; Roginski, A.C.; Ribeiro, R.T.; de Medeiros, M.P.; Hoffmann, C.I.H.; Wajner, M.; Leipnitz, G.; Seminotti, B. Mitochondrial dysfunction, oxidative stress, ER stress and mitochondria-ER crosstalk alterations in a chemical rat model of Huntington’s disease: Potential benefits of bezafibrate. Toxicol. Lett., 2023, 381, 48-59.
[http://dx.doi.org/10.1016/j.toxlet.2023.04.011] [PMID: 37116597]
[25]
Kumar, A.; Gandhi, A. Alterations of brain neurotransmitters and metabolites in a rat model of Huntington’s disease. Parkinsonism Relat. Disord., 2023, 113, 105735.
[http://dx.doi.org/10.1016/j.parkreldis.2023.105735]
[26]
McBride, JL Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. J. Comp. Neurol., 2004, 475(2), 211-219.
[http://dx.doi.org/10.1002/cne.20176]
[27]
Ryu, J.K.; Kim, J.; Cho, S.J.; Hatori, K.; Nagai, A.; Choi, H.B.; Lee, M.C.; McLarnon, J.G.; Kim, S.U. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiol. Dis., 2004, 16(1), 68-77.
[http://dx.doi.org/10.1016/j.nbd.2004.01.016] [PMID: 15207263]
[28]
Bantubungi, K.; Blum, D.; Cuvelier, L.; Wislet-Gendebien, S.; Rogister, B.; Brouillet, E.; Schiffmann, S.N. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington’s disease. Mol. Cell. Neurosci., 2008, 37(3), 454-470.
[http://dx.doi.org/10.1016/j.mcn.2007.11.001] [PMID: 18083596]
[29]
Zayed, M.A.; Sultan, S.; Alsaab, H.O.; Yousof, S.M.; Alrefaei, G.I.; Alsubhi, N.H.; Alkarim, S.; Al Ghamdi, K.S.; Bagabir, S.A.; Jana, A.; Alghamdi, B.S.; Atta, H.M.; Ashraf, G.M. Stem-cell-based therapy: The celestial weapon against neurological disorders. Cells, 2022, 11(21), 3476.
[http://dx.doi.org/10.3390/cells11213476] [PMID: 36359871]
[30]
Johann, V.; Schiefer, J.; Sass, C.; Mey, J.; Brook, G.; Krüttgen, A.; Schlangen, C.; Bernreuther, C.; Schachner, M.; Dihné, M.; Kosinski, C.M. Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington’s disease. Exp. Brain Res., 2007, 177(4), 458-470.
[http://dx.doi.org/10.1007/s00221-006-0689-y] [PMID: 17013619]
[31]
Vazey, E.M.; Chen, K.; Hughes, S.M.; Connor, B. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp. Neurol., 2006, 199(2), 384-396.
[http://dx.doi.org/10.1016/j.expneurol.2006.01.034] [PMID: 16626705]
[32]
Saberi, M.; Woods, N.B.; de Luca, C.; Schenk, S.; Lu, J.C.; Bandyopadhyay, G.; Verma, I.M.; Olefsky, J.M. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab., 2009, 10(5), 419-429.
[http://dx.doi.org/10.1016/j.cmet.2009.09.006] [PMID: 19883619]
[33]
Gasteratos, K.; Kouzounis, K.; Goverman, J. Autologous stem cell-derived therapies for androgenetic alopecia: A systematic review of randomized control trials on efficacy, safety, and outcomes. Plast. Reconstr. Surg. Glob. Open, 2024, 12(2), e5606.
[http://dx.doi.org/10.1097/GOX.0000000000005606] [PMID: 38352219]
[34]
Zhang, Y.; Huang, P.; Wang, X.; Xu, Q.; Liu, Y.; Jin, Z.; Li, Y.; Cheng, Z.; Tang, R.; Chen, S.; He, N.; Yan, F.; Haacke, E.M. Visualizing the deep cerebellar nuclei using quantitative susceptibility mapping: An application in healthy controls, Parkinson’s disease patients and essential tremor patients. Hum. Brain Mapp., 2023, 44(4), 1810-1824.
[http://dx.doi.org/10.1002/hbm.26178] [PMID: 36502376]
[35]
Schweitzer, J.S.; Song, B.; Herrington, T.M.; Park, T.Y.; Lee, N.; Ko, S.; Jeon, J.; Cha, Y.; Kim, K.; Li, Q.; Henchcliffe, C.; Kaplitt, M.; Neff, C.; Rapalino, O.; Seo, H.; Lee, I.H.; Kim, J.; Kim, T.; Petsko, G.A.; Ritz, J.; Cohen, B.M.; Kong, S.W.; Leblanc, P.; Carter, B.S.; Kim, K.S. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med., 2020, 382(20), 1926-1932.
[http://dx.doi.org/10.1056/NEJMoa1915872] [PMID: 32402162]
[36]
Mahmood, R. Precision medicine: Personalizing the fight against cancer. Int. J. Tre. Onc. Sci, 2024, 2(1), 10-18.
[http://dx.doi.org/10.22376/ijtos.2023.2.1.10-18]
[37]
Masukawa, D.; Kitamura, S.; Tajika, R.; Uchimura, H.; Arai, M.; Takada, Y.; Arisawa, T.; Otaki, M.; Kanai, K.; Kobayashi, K.; Miyazaki, T.; Goshima, Y. Coupling between GPR143 and dopamine D2 receptor is required for selective potentiation of dopamine D2 receptor function by L-3,4-dihydroxyphenylalanine in the dorsal striatum. J. Neurochem., 2023, 165(2), 177-195.
[http://dx.doi.org/10.1111/jnc.15789] [PMID: 36807226]
[38]
Mottin M, Klegeris A. Protective effects of Auranofin on the 6-hydroxydopamine model of Parkinson’s disease in rats. WJBPHS 2023; 13(3): 106-19.
[http://dx.doi.org/10.30574/wjbphs.2023.13.3.0111]
[39]
Maheshwari, S Dopaminergic cell replacement for parkinson’s disease: Addressing the intracranial delivery hurdle. J Parkinsons Dis, 2024, 1-21.
[http://dx.doi.org/10.3233/JPD-230328]
[40]
Hamamah, S.; Hajnal, A.; Covasa, M. Influence of bariatric surgery on gut microbiota composition and its implication on brain and peripheral targets. Nutrients, 2024, 16(7), 1071.
[http://dx.doi.org/10.3390/nu16071071] [PMID: 38613104]
[41]
Barker, R.A.; Björklund, A. Restorative cell and gene therapies for Parkinson’s disease. Handb. Clin. Neurol., 2023, 193, 211-226.
[http://dx.doi.org/10.1016/B978-0-323-85555-6.00012-6] [PMID: 36803812]
[42]
Nagatsu, T. Catecholamines and Parkinson’s disease: Tyrosine hydroxylase (TH) over tetrahydrobiopterin (BH4) and GTP cyclohydrolase I (GCH1) to cytokines, neuromelanin, and gene therapy: A historical overview. J. Neural Transm., 2024; 131(6): 617-630.
[http://dx.doi.org/10.1007/s00702-023-02673-y] [PMID: 37638996]
[43]
Shastry, S.; Hu, J.; Ying, M.; Mao, X. Cell therapy for parkinson’s disease. Pharmaceutics, 2023, 15(12), 2656.
[http://dx.doi.org/10.3390/pharmaceutics15122656] [PMID: 38139997]
[44]
Kikuchi, T.; Morizane, A.; Doi, D.; Onoe, H.; Hayashi, T.; Kawasaki, T.; Saiki, H.; Miyamoto, S.; Takahashi, J. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J. Parkinsons Dis., 2011, 1(4), 395-412.
[http://dx.doi.org/10.3233/JPD-2011-11070] [PMID: 23933658]
[45]
Devito, L.G.; Zanjani, Z.S.; Evans, J.R.; Scardamaglia, A.; Houlden, H.; Gandhi, S.; Healy, L. Generation of TWO G51D SNCA missense mutation iPSC lines (CRICKi011-A, CRICKi012-A) from two individuals at risk of Parkinson’s disease. Stem Cell Res., 2023, 71, 103134.
[http://dx.doi.org/10.1016/j.scr.2023.103134] [PMID: 37336145]
[46]
Mohamed, Y.T.; Salama, A.; Rabie, M.A.; Abd El Fattah, M.A. Neuroprotective effect of secukinumab against rotenone induced Parkinson’s disease in rat model: Involvement of IL-17, HMGB-1/TLR4 axis and BDNF/TrKB cascade. Int. Immunopharmacol., 2023, 114, 109571.
[http://dx.doi.org/10.1016/j.intimp.2022.109571] [PMID: 36527875]
[47]
Ye, P.; Bi, L.; Yang, M.; Qiu, Y.; Huang, G.; Liu, Y.; Hou, Y.; Li, Z.; Yee Tong, H.H.; Cui, M.; Jin, H. Activated microglia in the early stage of a rat model of parkinson’s disease: Revealed by PET-MRI imaging by [ 18 F]DPA-714 targeting TSPO. ACS Chem. Neurosci., 2023, 14(11), 2183-2192.
[http://dx.doi.org/10.1021/acschemneuro.3c00202] [PMID: 37134001]
[48]
Thakral, S.; Yadav, A.; Singh, V.; Kumar, M.; Kumar, P.; Narang, R.; Sudhakar, K.; Verma, A.; Khalilullah, H.; Jaremko, M.; Emwas, A.H. Alzheimer’s disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res. Rev., 2023, 88, 101960.
[http://dx.doi.org/10.1016/j.arr.2023.101960] [PMID: 37224884]
[49]
Kantayeva, G.; Lima, J.; Pereira, A.I. Application of machine learning in dementia diagnosis: A systematic literature review. Heliyon, 2023, 9(11), e21626.
[http://dx.doi.org/10.1016/j.heliyon.2023.e21626] [PMID: 38027622]
[50]
Mieling, M.; Göttlich, M.; Yousuf, M.; Bunzeck, N. Basal forebrain activity predicts functional degeneration in the entorhinal cortex in Alzheimer’s disease. Brain Commun., 2023, 5(5), fcad262.
[http://dx.doi.org/10.1093/braincomms/fcad262] [PMID: 37901036]
[51]
Fide, E.; Yerlikaya, D.; Öz, D.; Öztura, İ.; Yener, G. Normalized theta but increased gamma activity after acetylcholinesterase inhibitor treatment in Alzheimer’s disease: Preliminary qEEG study. Clin. EEG Neurosci., 2023, 54(3), 305-315.
[http://dx.doi.org/10.1177/15500594221120723] [PMID: 35957592]
[52]
Hook, G.; Kindy, M.; Hook, V. Cathepsin B deficiency improves memory deficits and reduces amyloid-β in hAβPP rat models representing the major sporadic Alzheimer’s disease condition. J. Alzheimers Dis., 2023, 93(1), 33-46.
[http://dx.doi.org/10.3233/JAD-221005] [PMID: 36970896]
[53]
Secker, C.; Motzny, A.Y.; Kostova, S.; Buntru, A.; Helmecke, L.; Reus, L.; Steinfort, R.; Brusendorf, L.; Boeddrich, A.; Neuendorf, N.; Diez, L.; Schmieder, P.; Schulz, A.; Czekelius, C.; Wanker, E.E. The polyphenol EGCG directly targets intracellular amyloid-β aggregates and promotes their lysosomal degradation. J. Neurochem., 2023, 166(2), 294-317.
[http://dx.doi.org/10.1111/jnc.15842] [PMID: 37165774]
[54]
Marr, R.A.; Rockenstein, E.; Mukherjee, A.; Kindy, M.S.; Hersh, L.B.; Gage, F.H.; Verma, I.M.; Masliah, E. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci., 2003, 23(6), 1992-1996.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-01992.2003] [PMID: 12657655]
[55]
Peplow, P.V.; Martinez, B. Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration. Neural Regen. Res., 2022, 17(10), 2108-2116.
[http://dx.doi.org/10.4103/1673-5374.336132] [PMID: 35259816]
[56]
Sinden, J.D. Functional repair with neural stem cells. Novartis Foundation Symposium, 2000, Vol. 231, pp. 270-288.
[http://dx.doi.org/10.1002/0470870834.ch16]
[57]
Prakash, A.; Kumar, A.; Ming, L.C.; Mani, V.; Majeed, A.B.A. Modulation of the nitrergic pathway via activation of ppar-γ contributes to the neuroprotective effect of pioglitazone against streptozotocin-induced memory dysfunction. J. Mol. Neurosci., 2015, 56(3), 739-750.
[http://dx.doi.org/10.1007/s12031-015-0508-7] [PMID: 25854775]
[58]
Shariati, A.; Nemati, R.; Sadeghipour, Y.; Yaghoubi, Y.; Baghbani, R.; Javidi, K.; Zamani, M.; Hassanzadeh, A. Mesenchymal stromal cells (MSCs) for neurodegenerative disease: A promising frontier. Eur. J. Cell Biol., 2020, 99(6), 151097.
[http://dx.doi.org/10.1016/j.ejcb.2020.151097] [PMID: 32800276]
[59]
Richardson, RT; DeLong, MR A reappraisal of the functions of the nucleus basalis of Meynert. Trends Neurosci, 1988, 11(6), 264-267.
[http://dx.doi.org/10.1016/0166-2236(88)90107-5]
[60]
Nikolac Perkovic, M.; Borovecki, F.; Filipcic, I.; Vuic, B.; Milos, T.; Nedic Erjavec, G.; Konjevod, M.; Tudor, L.; Mimica, N.; Uzun, S.; Kozumplik, O.; Svob Strac, D.; Pivac, N. Relationship between brain-derived neurotrophic factor and cognitive decline in patients with mild cognitive impairment and dementia. Biomolecules, 2023, 13(3), 570.
[http://dx.doi.org/10.3390/biom13030570] [PMID: 36979505]
[61]
Rufino, R.A.; Pereira-Rufino, L.S.; Vissoto, T.C.S.; Kerkis, I.; Neves, A.C.; da Silva, M.C.P. The immunomodulatory potential role of mesenchymal stem cells in diseases of the central nervous system. Neurodegener. Dis., 2022, 22(2), 68-82.
[http://dx.doi.org/10.1159/000528036] [PMID: 36398461]
[62]
Zhang, Q.; Chen, Z.; Zhang, K.; Zhu, J.; Jin, T. FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci. Ther., 2023, 29(6), 1497-1511.
[http://dx.doi.org/10.1111/cns.14176] [PMID: 36924298]
[63]
Christodoulou, M.V.; Petkou, E.; Atzemoglou, N.; Gkorla, E.; Karamitrou, A.; Simos, Y.V.; Bellos, S.; Bekiari, C.; Kouklis, P.; Konitsiotis, S.; Vezyraki, P.; Peschos, D.; Tsamis, K.I. Cell replacement therapy with stem cells in multiple sclerosis, a systematic review. Hum. Cell, 2023, 37(1), 9-53.
[http://dx.doi.org/10.1007/s13577-023-01006-1] [PMID: 37985645]
[64]
Sultana, S.; Viet, T.D.; Amin, T.; Kazi, E.; Micolucci, L.; Mollah, A.K.M.M.; Akhtar, M.M.; Islam, M.S. Exploring inflammasome complex as a therapeutic approach in inflammatory diseases. Future Pharmacology, 2023, 3(4), 789-818.
[http://dx.doi.org/10.3390/futurepharmacol3040048]
[65]
Diebold, M.; Fehrenbacher, L.; Frosch, M.; Prinz, M. How myeloid cells shape experimental autoimmune encephalomyelitis: At the crossroads of outside-in immunity. Eur. J. Immunol., 2023, 53(10), 2250234.
[http://dx.doi.org/10.1002/eji.202250234] [PMID: 37505465]
[66]
Ghasemi, M.; Roshandel, E.; Mohammadian, M.; Farhadihosseinabadi, B.; Akbarzadehlaleh, P.; Shamsasenjan, K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: Overview of clinical trials. Stem Cell Res. Ther., 2023, 14(1), 122.
[http://dx.doi.org/10.1186/s13287-023-03264-0] [PMID: 37143147]
[67]
Khalid, M. U.; Masroor, T. The promise of stem cells in amyotrophic lateral sclerosis: A review of clinical trials. J. Pak. Med. Assoc, 2023, 73(suppl. 1), S138-S142.
[68]
Belosludtseva, N.V.; Matveeva, L.A.; Belosludtsev, K.N. Mitochondrial dyshomeostasis as an early hallmark and a therapeutic target in amyotrophic lateral sclerosis. Int. J. Mol. Sci., 2023, 24(23), 16833.
[http://dx.doi.org/10.3390/ijms242316833] [PMID: 38069154]
[69]
Cecerska-Heryć, E.; Pękała, M.; Serwin, N.; Gliźniewicz, M.; Grygorcewicz, B.; Michalczyk, A.; Heryć, R.; Budkowska, M.; Dołęgowska, B. The use of stem cells as a potential treatment method for selected neurodegenerative diseases: Review. Cell. Mol. Neurobiol., 2023, 43(6), 2643-2673.
[http://dx.doi.org/10.1007/s10571-023-01344-6] [PMID: 37027074]
[70]
Du, H.; Huo, Z.; Chen, Y.; Zhao, Z.; Meng, F.; Wang, X.; Liu, S.; Zhang, H.; Zhou, F.; Liu, J.; Zhang, L.; Zhou, S.; Guan, Y.; Wang, X. Induced pluripotent stem cells and their applications in amyotrophic lateral sclerosis. Cells, 2023, 12(6), 971.
[http://dx.doi.org/10.3390/cells12060971] [PMID: 36980310]
[71]
Papazoglou, A.; Henseler, C.; Weickhardt, S.; Teipelke, J.; Papazoglou, P.; Daubner, J.; Schiffer, T.; Krings, D.; Broich, K.; Hescheler, J.; Sachinidis, A.; Ehninger, D.; Scholl, C.; Haenisch, B.; Weiergräber, M. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer’s disease mice. PLoS One, 2024, 19(2), e0296959.
[http://dx.doi.org/10.1371/journal.pone.0296959] [PMID: 38324617]
[72]
Ma, J.; Hou, Y.H.; Liao, Z.Y.; Ma, Z.; Zhang, X.X.; Wang, J.L.; Zhu, Y.B.; Shan, H.L.; Wang, P.Y.; Li, C.B.; Lv, Y.L.; Wei, Y.L.; Dou, J.Z. Neuroprotective effects of leptin on the app/ps1 alzheimer’s disease mouse model: Role of microglial and neuroinflammation. Degener. Neurol. Neuromuscul. Dis., 2023, 13, 69-79.
[http://dx.doi.org/10.2147/DNND.S427781] [PMID: 37905186]
[73]
Statz, M.; Schleuter, F.; Weber, H.; Kober, M.; Plocksties, F.; Timmermann, D.; Storch, A.; Fauser, M. Subthalamic nucleus deep brain stimulation does not alter growth factor expression in a rat model of stable dopaminergic deficiency. Neurosci. Lett., 2023, 814, 137459.
[http://dx.doi.org/10.1016/j.neulet.2023.137459] [PMID: 37625613]
[74]
Anjum, R.; Raza, C.; Faheem, M.; Ullah, A.; Chaudhry, M. Neuroprotective potential of Mentha piperita extract prevents motor dysfunctions in mouse model of Parkinson’s disease through anti-oxidant capacities. PLoS One, 2024, 19(4), e0302102.
[http://dx.doi.org/10.1371/journal.pone.0302102] [PMID: 38625964]
[75]
Ruan, S.; Xie, J.; Wang, L.; Guo, L.; Li, Y.; Fan, W.; Ji, R.; Gong, Z.; Xu, Y.; Mao, J.; Xie, J. Nicotine alleviates MPTP-induced nigrostriatal damage through modulation of JNK and ERK signaling pathways in the mice model of Parkinson’s disease. Front. Pharmacol., 2023, 14, 1088957.
[http://dx.doi.org/10.3389/fphar.2023.1088957] [PMID: 36817162]
[76]
Chaney, A.M.; Cropper, H.C.; Jain, P.; Wilson, E.; Simonetta, F.; Johnson, E.M.; Alam, I.S.; Patterson, I.T.J.; Swarovski, M.; Stevens, M.Y.; Wang, Q.; Azevedo, C.; Nagy, S.C.; Ramos Benitez, J.; Deal, E.M.; Vogel, H.; Andreasson, K.I.; James, M.L. PET imaging of TREM1 identifies CNS-infiltrating myeloid cells in a mouse model of multiple sclerosis. Sci. Transl. Med., 2023, 15(702), eabm6267.
[http://dx.doi.org/10.1126/scitranslmed.abm6267] [PMID: 37379371]
[77]
Mariki, A.; Barzin, Z.; Fasihi Harandi, M.; Karbasi Ravari, K.; Davoodi, M.; Mousavi, S.M.; Rezakhani, S.; Nazeri, M.; Shabani, M. Antigen B modulates anti-inflammatory cytokines in the EAE model of multiple sclerosis. Brain Behav., 2023, 13(2), e2874.
[http://dx.doi.org/10.1002/brb3.2874] [PMID: 36582052]
[78]
Gilbert, E.A.B.; Livingston, J.; Flores, E.G.; Khan, M.; Kandavel, H.; Morshead, C.M. Metformin treatment reduces inflammation, dysmyelination and disease severity in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis. Brain Res., 2024, 1822, 148648.
[http://dx.doi.org/10.1016/j.brainres.2023.148648] [PMID: 37890574]
[79]
Khamis, Z.I.; Sarker, D.B.; Xue, Y.; Al-Akkary, N.; James, V.D.; Zeng, C.; Li, Y.; Sang, Q.X.A. Modeling human brain tumors and the microenvironment using induced pluripotent stem cells. Cancers, 2023, 15(4), 1253.
[http://dx.doi.org/10.3390/cancers15041253] [PMID: 36831595]
[80]
Razi, S.; Haghparast, A.; Chodari Khameneh, S.; Ebrahimi Sadrabadi, A.; Aziziyan, F.; Bakhtiyari, M.; Nabi-Afjadi, M.; Tarhriz, V.; Jalili, A.; Zalpoor, H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun. Signal., 2023, 21(1), 143.
[http://dx.doi.org/10.1186/s12964-023-01129-w] [PMID: 37328876]
[81]
Verma, P.; Shukla, N.; Kumari, S.; Ansari, M.S.; Gautam, N.K.; Patel, G.K. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim. Biophys. Acta Rev. Cancer, 2023, 1878(3), 188887.
[http://dx.doi.org/10.1016/j.bbcan.2023.188887] [PMID: 36997008]
[82]
Rahman, MU; Bilal, M; Shah, JA; Kaushik, A; Teissedre, PL; Kujawska, M CRISPR-Cas9-based technology and its relevance to gene editing in parkinson's disease. Pharmaceutics, 2022, 14(6), 1252.
[http://dx.doi.org/10.3390/pharmaceutics14061252]
[83]
Peterson, S.E.; Garitaonandia, I.; Loring, J.F. The tumorigenic potential of pluripotent stem cells: What can we do to minimize it? BioEssays, 2016, 38(S1)(Suppl. 1), S86-S95.
[http://dx.doi.org/10.1002/bies.201670915] [PMID: 27417126]
[84]
Sadri, M.; Najafi, A.; Rahimi, A.; Behranvand, N.; Hossein Kazemi, M.; Khorramdelazad, H.; Falak, R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int. Immunopharmacol., 2023, 122, 110470.
[http://dx.doi.org/10.1016/j.intimp.2023.110470] [PMID: 37433246]
[85]
de Morree, A.; Rando, T.A. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat. Rev. Mol. Cell Biol., 2023, 24(5), 334-354.
[http://dx.doi.org/10.1038/s41580-022-00568-6] [PMID: 36922629]
[86]
Babu, S.; Krishnan, M.; Panneerselvam, A.; Chinnaiyan, M. A comprehensive review on therapeutic application of mesenchymal stem cells in neuroregeneration. Life Sci., 2023, 327, 121785.
[http://dx.doi.org/10.1016/j.lfs.2023.121785] [PMID: 37196856]
[87]
Stamenkovic, S.; Li, Y.; Waters, J.; Shih, A. Deep imaging to dissect microvascular contributions to white matter degeneration in rodent models of dementia. Stroke, 2023, 54(5), 1403-1415.
[http://dx.doi.org/10.1161/STROKEAHA.122.037156] [PMID: 37094035]
[88]
Li, Y.; Wu, Q.; Wang, Y.; Li, L.; Bu, H.; Bao, J. Senescence of mesenchymal stem cells (Review). Int. J. Mol. Med., 2017, 39(4), 775-782.
[http://dx.doi.org/10.3892/ijmm.2017.2912] [PMID: 28290609]
[89]
Lee, B.C.; Yu, K.R. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep., 2020, 53(2), 65-73.
[http://dx.doi.org/10.5483/BMBRep.2020.53.2.291] [PMID: 31964472]
[90]
Cramb, K.M.L.; Beccano-Kelly, D.; Cragg, S.J.; Wade-Martins, R. Impaired dopamine release in Parkinson’s disease. Brain, 2023, 146(8), 3117-3132.
[http://dx.doi.org/10.1093/brain/awad064] [PMID: 36864664]
[91]
Martinez-Serrano, A.; Hantzopoulos, P.A.; Björklund, A. Ex vivo gene transfer of brain-derived neurotrophic factor to the intact rat forebrain: Neurotrophic effects on cholinergic neurons. Eur. J. Neurosci., 1996, 8(4), 727-735.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01258.x] [PMID: 9081624]
[92]
Semenza, G.L. Mechanisms of breast cancer stem cell specification and self-renewal mediated by hypoxia-inducible factor 1. Stem Cells Transl. Med., 2023, 12(12), 783-790.
[http://dx.doi.org/10.1093/stcltm/szad061] [PMID: 37768037]
[93]
Negi, S.; Imanishi, M.; Hamori, M.; Kawahara-Nakagawa, Y.; Nomura, W.; Kishi, K.; Shibata, N.; Sugiura, Y. The past, present, and future of artificial zinc finger proteins: Design strategies and chemical and biological applications. Eur. J. Biochem., 2023, 28(3), 249-261.
[http://dx.doi.org/10.1007/s00775-023-01991-6] [PMID: 36749405]
[94]
Phan, H.T.L.; Kim, K.; Lee, H.; Seong, J.K. Progress in and prospects of genome editing tools for human disease model development and therapeutic applications. Genes, 2023, 14(2), 483.
[http://dx.doi.org/10.3390/genes14020483] [PMID: 36833410]
[95]
Alizadeh, R.; Asghari, A.; Taghizadeh-Hesary, F.; Moradi, S.; Farhadi, M.; Mehdizadeh, M.; Simorgh, S.; Nourazarian, A.; Shademan, B.; Susanabadi, A.; Kamrava, K. Intranasal delivery of stem cells labeled by nanoparticles in neurodegenerative disorders: Challenges and opportunities. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(6), e1915.
[http://dx.doi.org/10.1002/wnan.1915] [PMID: 37414546]
[96]
Beygi, M. Multifunctional nanotheranostics for overcoming the blood–brain barrier. In: Advanced Functional Materials; Wiley Online Library, 2024; p. 2310881.
[http://dx.doi.org/10.1002/adfm.202310881]
[97]
Chasara, R.S.; Ajayi, T.O.; Leshilo, D.M.; Poka, M.S.; Witika, B.A. Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species. Heliyon, 2023, 9(9), e19896.
[http://dx.doi.org/10.1016/j.heliyon.2023.e19896] [PMID: 37809420]
[98]
Doustmihan, A.; Fathi, M.; Mazloomi, M.; Salemi, A.; Hamblin, M.R.; Jahanban-Esfahlan, R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J. Control. Release, 2023, 363, 57-83.
[http://dx.doi.org/10.1016/j.jconrel.2023.09.029] [PMID: 37739017]
[99]
Harke, S.; Habibpourmoghadam, A.; Evlyukhin, A.B.; Calà Lesina, A.; Chichkov, B.N. Low-frequency magnetic response of gold nanoparticles. Sci. Rep., 2023, 13(1), 21588.
[http://dx.doi.org/10.1038/s41598-023-48813-y] [PMID: 38062118]
[100]
Seaberg, J.; Clegg, J.R.; Bhattacharya, R.; Mukherjee, P. Self-therapeutic nanomaterials: Applications in biology and medicine. Mater. Today, 2023, 62, 190-224.
[http://dx.doi.org/10.1016/j.mattod.2022.11.007] [PMID: 36938366]
[101]
Sabale, S.; Kandesar, P.; Jadhav, V.; Komorek, R.; Motkuri, R.K.; Yu, X.Y. Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold. Biomater. Sci., 2017, 5(11), 2212-2225.
[http://dx.doi.org/10.1039/C7BM00723J] [PMID: 28901350]
[102]
Biswas, K. Microglia mediated neuroinflammation in neurodegenerative diseases: A review on the cell signaling pathways involved in microglial activation. J. Neuroimmunol., 2023, 383, 578180.
[http://dx.doi.org/10.1016/j.jneuroim.2023.578180] [PMID: 37672840]
[103]
Laphanuwat, P.; Gomes, D.C.O.; Akbar, A.N. Senescent T cells: Beneficial and detrimental roles. Immunol. Rev., 2023, 316(1), 160-175.
[http://dx.doi.org/10.1111/imr.13206] [PMID: 37098109]
[104]
Devi, A.; Pahuja, I.; Singh, S.P.; Verma, A.; Bhattacharya, D.; Bhaskar, A.; Dwivedi, V.P.; Das, G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell. Mol. Immunol., 2023, 20(6), 600-612.
[http://dx.doi.org/10.1038/s41423-023-01028-7] [PMID: 37173422]
[105]
Hanson, S.; D’Souza, R.N.; Hematti, P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng. Part A, 2014, 20(15-16), 2162-2168.
[http://dx.doi.org/10.1089/ten.tea.2013.0359] [PMID: 25140989]
[106]
Abo-Zena, R.; Horwitz, M.E. Immunomodulation in stem-cell transplantation. Curr. Opin. Pharmacol., 2002, 2(4), 452-457.
[http://dx.doi.org/10.1016/S1471-4892(02)00174-1] [PMID: 12127880]
[107]
Pereira, I.; Lopez-Martinez, M.J.; Samitier, J. Advances in current in vitro models on neurodegenerative diseases. Front. Bioeng. Biotechnol., 2023, 11, 1260397.
[http://dx.doi.org/10.3389/fbioe.2023.1260397] [PMID: 38026882]
[108]
Rafiq, M.; Rather, S.; Wani, T.U.; Rather, A.H.; Khan, R.S.; Khan, A.E.; Hamid, I.; Khan, H.A.; Alhomida, A.S.; Sheikh, F.A. Recent progress in MXenes incorporated into electrospun nanofibers for biomedical application: Study focusing from 2017 to 2022. Chin. Chem. Lett., 2023, 34(7), 108463.
[http://dx.doi.org/10.1016/j.cclet.2023.108463]
[109]
Mansour, H.M.; Mohamed, A.F.; Khattab, M.M.; El-Khatib, A.S. Heat Shock Protein 90 in Parkinson’s disease: Profile of a serial killer. Neuroscience, 2024; 537: 32-46.
[http://dx.doi.org/10.1016/j.neuroscience.2023.11.031] [PMID: 38040085]
[110]
Reyes, C.; Patarroyo, M.A. Self-assembling peptides: Perspectives regarding biotechnological applications and vaccine development. Int. J. Biol. Macromol., 2023; 259 (PF. 1): 128944
[http://dx.doi.org/10.1016/j.ijbiomac.2023.128944] [PMID: 38145690]
[111]
Guidi, L.; Cascone, M.G.; Rosellini, E. Light-responsive polymeric nanoparticles for retinal drug delivery: Design cues, challenges and future perspectives. Heliyon, 2024, 10(5), e26616.
[http://dx.doi.org/10.1016/j.heliyon.2024.e26616] [PMID: 38434257]
[112]
Hills, R.; Mossman, J.A.; Bratt-Leal, A.M.; Tran, H.; Williams, R.M.; Stouffer, D.G.; Sokolova, I.V.; Sanna, P.P.; Loring, J.F.; Lelos, M.J. Neurite outgrowth and gene expression profile correlate with efficacy of human induced pluripotent stem cell-derived dopamine neuron grafts. Stem Cells Dev., 2023, 32(13-14), 387-397.
[http://dx.doi.org/10.1089/scd.2023.0043] [PMID: 37166357]
[113]
Sánchez-Sáez, X.; Ortuño-Lizarán, I.; Sánchez-Castillo, C.; Lax, P.; Cuenca, N. Correction: Starburst amacrine cells, involved in visual motion perception, lose their synaptic input from dopaminergic amacrine cells and degenerate in Parkinson’s disease patients. Transl. Neurodegener., 2023, 12(1), 22.
[http://dx.doi.org/10.1186/s40035-023-00360-2] [PMID: 37161526]
[114]
National Library of Medicine. Specialized Information Services: Transplant Study in Parkinson's Disease. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01898390?term=NCT01898390&draw=2&rank=1 (Accessed May 25, 2023).
[115]
National Library of Medicine. Specialized Information Services: STEPS Trial - Spheramine Safety and Efficacy Study Parkinson's Disease. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT00206687?term=NCT00206687&draw=2&rank=1 (Accessed May 20, 2012).
[116]
Kampmann, M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat. Rev. Neurosci., 2024, 25(5), 351-371.
[http://dx.doi.org/10.1038/s41583-024-00806-0] [PMID: 38575768]
[117]
Ni, J.; Xie, Z.; Quan, Z.; Meng, J.; Qing, H. How brain ‘cleaners’ fail: Mechanisms and therapeutic value of microglial phagocytosis in Alzheimer’s disease. Glia, 2024, 72(2), 227-244.
[http://dx.doi.org/10.1002/glia.24465] [PMID: 37650384]
[118]
de Leeuw, S.M.; Davaz, S.; Wanner, D.; Milleret, V.; Ehrbar, M.; Gietl, A.; Tackenberg, C. Increased maturation of iPSC-derived neurons in a hydrogel-based 3D culture. J. Neurosci. Methods, 2021, 360, 109254.
[http://dx.doi.org/10.1016/j.jneumeth.2021.109254] [PMID: 34126141]
[119]
de Rus Jacquet, A. Preparation and co-culture of iPSC-derived dopaminergic neurons and astrocytes. Curr. Protoc. Cell Biol., 2019, 85(1), e98.
[http://dx.doi.org/10.1002/cpcb.98] [PMID: 31763766]
[120]
Engle, S.J.; Blaha, L.; Kleiman, R.J. Best practices for translational disease modeling using human iPSC-derived neurons. Neuron, 2018, 100(4), 783-797.
[http://dx.doi.org/10.1016/j.neuron.2018.10.033] [PMID: 30465765]
[121]
Lohrasbi, F.; Ghasemi-Kasman, M.; Soghli, N.; Ghazvini, S.; Vaziri, Z.; Abdi, S.; Darban, Y.M. The journey of iPSC-derived OPCs in demyelinating disorders: From in vitro generation to in vivo transplantation. Curr. Neuropharmacol., 2023, 21(9), 1980-1991.
[http://dx.doi.org/10.2174/1570159X21666230220150010] [PMID: 36825702]
[122]
Petersen, S.I.; Okolicsanyi, R.K.; Haupt, L.M. Exploring heparan sulfate proteoglycans as mediators of human mesenchymal stem cell neurogenesis. Cell. Mol. Neurobiol., 2024, 44(1), 30.
[http://dx.doi.org/10.1007/s10571-024-01463-8] [PMID: 38546765]
[123]
Ratziu, V.; Harrison, S.A.; Hajji, Y.; Magnanensi, J.; Petit, S.; Majd, Z.; Delecroix, E.; Rosenquist, C.; Hum, D.; Staels, B.; Anstee, Q.M.; Sanyal, A.J. NIS2+TM as a screening tool to optimize patient selection in metabolic dysfunction-associated steatohepatitis clinical trials. J. Hepatol., 2024, 80(2), 209-219.
[http://dx.doi.org/10.1016/j.jhep.2023.10.038] [PMID: 38061448]
[124]
Aguirre, M.; Escobar, M.; Forero Amézquita, S.; Cubillos, D.; Rincón, C.; Vanegas, P.; Tarazona, M.P.; Atuesta Escobar, S.; Blanco, J.C.; Celis, L.G. Application of the yamanaka transcription factors Oct4, Sox2, Klf4, and c-Myc from the Laboratory to the Clinic. Genes, 2023, 14(9), 1697.
[http://dx.doi.org/10.3390/genes14091697] [PMID: 37761837]
[125]
Vassileff, N; Cheng, L; Hill, AF Extracellular vesicles - propagators of neuropathology and sources of potential biomarkers and therapeutics for neurodegenerative diseases. J Cell Sci, 2020, 133(23), jcs243139.
[http://dx.doi.org/10.1242/jcs.243139]
[126]
Jamali, F.; Aldughmi, M.; Atiani, S.; Al-Radaideh, A.; Dahbour, S.; Alhattab, D.; Khwaireh, H.; Arafat, S.; Jaghbeer, J.A.; Rahmeh, R.; Abu Moshref, K.; Bawaneh, H.; Hassuneh, M.R.; Hourani, B.; Ababneh, O.; Alghwiri, A.; Awidi, A. Human umbilical cord–derived mesenchymal stem cells in the treatment of multiple sclerosis patients: Phase I/II dose-finding clinical study. Cell Transplant., 2024, 33, 09636897241233045.
[http://dx.doi.org/10.1177/09636897241233045] [PMID: 38450623]