Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis

Page: [1894 - 1929] Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.

[1]
Ciardullo, S.; Monti, T.; Perseghin, G. High prevalence of advanced liver fibrosis assessed by transient elastography among U.S. adults with type 2 diabetes. Diabetes Care, 2021, 44(2), 519-525.
[http://dx.doi.org/10.2337/dc20-1778] [PMID: 33303638]
[2]
Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; Yeh, M.; McCullough, A.J.; Sanyal, A.J. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 2005, 41(6), 1313-1321.
[http://dx.doi.org/10.1002/hep.20701] [PMID: 15915461]
[3]
Lomonaco, R.; Godinez Leiva, E.; Bril, F.; Shrestha, S.; Mansour, L.; Budd, J.; Portillo Romero, J.; Schmidt, S.; Chang, K.L.; Samraj, G.; Malaty, J.; Huber, K.; Bedossa, P.; Kalavalapalli, S.; Marte, J.; Barb, D.; Poulton, D.; Fanous, N.; Cusi, K. Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: The need for systematic screening. Diabetes Care, 2021, 44(2), 399-406.
[http://dx.doi.org/10.2337/dc20-1997] [PMID: 33355256]
[4]
Sheka, A.C. Nonalcoholic steatohepatitis. JAMA, 2020, 323(12), 1175-1183.
[http://dx.doi.org/10.1001/jama.2020.2298] [PMID: 32207804]
[5]
Farrell, G.C.; Wong, V.W.S.; Chitturi, S. NAFLD in Asia—as common and important as in the West. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(5), 307-318.
[http://dx.doi.org/10.1038/nrgastro.2013.34] [PMID: 23458891]
[6]
Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 2018, 24(7), 908-922.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[7]
Lechner, K.; McKenzie, A.L.; Kränkel, N.; Von Schacky, C.; Worm, N.; Nixdorff, U.; Lechner, B.; Scherr, J.; Weingärtner, O.; Krauss, R.M. High-risk atherosclerosis and metabolic phenotype: The roles of ectopic adiposity, atherogenic dyslipidemia, and inflammation. Metab. Syndr. Relat. Disord., 2020, 18(4), 176-185.
[http://dx.doi.org/10.1089/met.2019.0115] [PMID: 32119801]
[8]
Loomba, R.; Adams, L.A. The 20% rule of NASH progression: The natural history of advanced fibrosis and cirrhosis caused by NASH. Hepatology, 2019, 70(6), 1885-1888.
[http://dx.doi.org/10.1002/hep.30946] [PMID: 31520407]
[9]
Milić, S.; Lulić, D.; Štimac, D. Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations. World J. Gastroenterol., 2014, 20(28), 9330-9337.
[PMID: 25071327]
[10]
Worm, N. Beyond body weight-loss: Dietary strategies targeting intrahepatic fat in NAFLD. Nutrients, 2020, 12(5), 1316.
[http://dx.doi.org/10.3390/nu12051316] [PMID: 32384593]
[11]
Powell, E.E.; Wong, V.W.S.; Rinella, M. Non-alcoholic fatty liver disease. Lancet, 2021, 397(10290), 2212-2224.
[http://dx.doi.org/10.1016/S0140-6736(20)32511-3] [PMID: 33894145]
[12]
Higashi, T.; Friedman, S.L.; Hoshida, Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev., 2017, 121, 27-42.
[http://dx.doi.org/10.1016/j.addr.2017.05.007] [PMID: 28506744]
[13]
Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol., 2022, 7(9), 851-861.
[http://dx.doi.org/10.1016/S2468-1253(22)00165-0] [PMID: 35798021]
[14]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[15]
Zou, H.; Ge, Y.; Lei, Q.; Ung, C.O.L.; Ruan, Z.; Lai, Y.; Yao, D.; Hu, H. Epidemiology and disease burden of non-alcoholic steatohepatitis in greater China: A systematic review. Hepatol. Int., 2022, 16(1), 27-37.
[http://dx.doi.org/10.1007/s12072-021-10286-4] [PMID: 35098442]
[16]
Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; Eguchi, Y.; Geier, A.; Kondili, L.A.; Kroy, D.C.; Lazarus, J.V.; Loomba, R.; Manns, M.P.; Marchesini, G.; Nakajima, A.; Negro, F.; Petta, S.; Ratziu, V.; Romero-Gomez, M.; Sanyal, A.; Schattenberg, J.M.; Tacke, F.; Tanaka, J.; Trautwein, C.; Wei, L.; Zeuzem, S.; Razavi, H. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol., 2018, 69(4), 896-904.
[http://dx.doi.org/10.1016/j.jhep.2018.05.036] [PMID: 29886156]
[17]
Kumar, D.P.; Caffrey, R.; Marioneaux, J.; Santhekadur, P.K.; Bhat, M.; Alonso, C.; Koduru, S.V.; Philip, B.; Jain, M.R.; Giri, S.R.; Bedossa, P.; Sanyal, A.J. The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease. Sci. Rep., 2020, 10(1), 9330.
[http://dx.doi.org/10.1038/s41598-020-66458-z] [PMID: 32518275]
[18]
Mantovani, A.; Byrne, C.D.; Targher, G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: A systematic review. Lancet Gastroenterol. Hepatol., 2022, 7(4), 367-378.
[http://dx.doi.org/10.1016/S2468-1253(21)00261-2] [PMID: 35030323]
[19]
Lin, C.; Yu, B. Liu, X Obeticholic acid inhibits hepatic fatty acid uptake independent of FXR in mouse. Biomed. Pharmacother., 2022, 150, 112984.
[20]
Rinella, M.E.; Dufour, J.F.; Anstee, Q.M.; Goodman, Z.; Younossi, Z.; Harrison, S.A.; Loomba, R.; Sanyal, A.J.; Bonacci, M.; Trylesinski, A.; Natha, M.; Shringarpure, R.; Granston, T.; Venugopal, A.; Ratziu, V. Non-invasive evaluation of response to obeticholic acid in patients with NASH: Results from the REGENERATE study. J. Hepatol., 2022, 76(3), 536-548.
[http://dx.doi.org/10.1016/j.jhep.2021.10.029] [PMID: 34793868]
[21]
Younossi, Z.M.; Ratziu, V.; Loomba, R.; Rinella, M.; Anstee, Q.M.; Goodman, Z.; Bedossa, P.; Geier, A.; Beckebaum, S.; Newsome, P.N.; Sheridan, D.; Sheikh, M.Y.; Trotter, J.; Knapple, W.; Lawitz, E.; Abdelmalek, M.F.; Kowdley, K.V.; Montano-Loza, A.J.; Boursier, J.; Mathurin, P.; Bugianesi, E.; Mazzella, G.; Olveira, A.; Cortez-Pinto, H.; Graupera, I.; Orr, D.; Gluud, L.L.; Dufour, J.F.; Shapiro, D.; Campagna, J.; Zaru, L.; MacConell, L.; Shringarpure, R.; Harrison, S.; Sanyal, A.J.; Abdelmalek, M.; Abrams, G.; Aguilar, H.; Ahmed, A.; Aigner, E.; Aithal, G.; Ala, A.; Alazawi, W.; Albillos, A.; Allison, M.; Al-Shamma, S.; Andrade, R.; Andreone, P.; Angelico, M.; Ankoma-Sey, V.; Anstee, Q.; Anty, R.; Araya, V.; Arenas Ruiz, J.I.; Arkkila, P.; Arora, M.; Asselah, T.; Au, J.; Ayonrinde, O.; Bailey, R.J.; Balakrishnan, M.; Bambha, K.; Bansal, M.; Barritt, S.; Bate, J.; Beato, J.; Beckebaum, S.; Behari, J.; Bellot, P.; Ben Ari, Z.; Bennett, M.; Berenguer, M.; Beretta-Piccoli, B.T.; Berg, T.; Bonacini, M.; Bonet, L.; Borg, B.; Bourliere, M.; Boursier, J.; Bowman, W.; Bradley, D.; Brankovic, M.; Braun, M.; Bronowicki, J-P.; Bruno, S.; Bugianesi, E.; Cai, C.; Calderon, A.; Calleja Panero, J.L.; Carey, E.; Carmiel, M.; Carrión, J.A.; Cave, M.; Chagas, C.; Chami, T.; Chang, A.; Coates, A.; Cobbold, J.; Costentin, C.; Corey, K.; Corless, L.; Cortez-Pinto, H.; Crespo, J.; Cruz Pereira, O.; de Ledinghen, V.; deLemos, A.; Diago, M.; Dong, M.; Dufour, J-F.; Dugalic, P.; Dunn, W.; Elkhashab, M.; Epstein, M.; Escudero-Garcia, M.D.; Etzion, O.; Evans, L.; Falcone, R.; Fernandez, C.; Ferreira, J.; Fink, S.; Finnegan, K.; Firpi-Morell, R.; Floreani, A.; Fontanges, T.; Ford, R.; Forrest, E.; Fowell, A.; Fracanzani, A.L.; Francque, S.; Freilich, B.; Frias, J.; Fuchs, M.; Fuentes, J.; Galambos, M.; Gallegos, J.; Geerts, A.; Geier, A.; George, J.; Ghali, M.; Ghalib, R.; Gholam, P.; Gines, P.; Gitlin, N.; Gluud, L.L.; Goeser, T.; Goff, J.; Gordon, S.; Gordon, F.; Goria, O.; Greer, S.; Grigorian, A.; Gronbaek, H.; Guillaume, M.; Gunaratnam, N.; Halegoua-De Marzio, D.; Hameed, B.; Hametner, S.; Hamilton, J.; Harrison, S.; Hartleb, M.; Hassanein, T.; Häussinger, D.; Hellstern, P.; Herring, R.; Heurich, E.; Hezode, C.; Hinrichsen, H.; Holland Fischer, P.; Horsmans, Y.; Huang, J.; Hussaini, H.; Jakiche, A.; Jeffers, L.; Jones, B.; Jorge, R.; Jorquera, F.; Joshi, S.; Kahraman, A.; Kaita, K.; Karyotakis, N.; Kayali, Z.; Kechagias, S.; Kepczyk, T.; Khalili, M.; Khallafi, H.; Kluwe, J.; Knapple, W.; Kohli, A.; Korenblat, K.; Kowdley, K.; Krag, A.; Krause, R.; Kremer, A.; Krok, K.; Krstic, M.; Kugelmas, M.; Kumar, S.; Kuwada, S.; Labarriere, D.; Lai, M.; Laleman, W.; Lampertico, P.; Lawitz, E.; Lee, A.; Leroy, V.; Lidofsky, S.; Lim, T.H.; Lim, J.; Lipkis, D.; Little, E.; Lonardo, A.; Long, M.; Loomba, R.; Luketic, V.A.C.; Lurie, Y.; Macedo, G.; Magalhaes, J.; Makara, M.; Maliakkal, B.; Manns, M.; Manousou, P.; Mantry, P.; Marchesini, G.; Marinho, C.; Marotta, P.; Marschall, H-U.; Martinez, L.; Mathurin, P.; Mayo, M.; Mazzella, G.; McCullen, M.; McLaughlin, W.; Merle, U.; Merriman, R.; Modi, A.; Molina, E.; Montano-Loza, A.; Monteverde, C.; Morales Cardona, A.; Moreea, S.; Moreno, C.; Morisco, F.; Mubarak, A.; Muellhaupt, B.; Mukherjee, S.; Müller, T.; Nagorni, A.; Naik, J.; Neff, G.; Nevah, M.; Newsome, P.; Nguyen-Khac, E.; Noureddin, M.; Oben, J.; Olveira, A.; Orlent, H.; Orr, D.; Orr, J.; Ortiz-Lasanta, G.; Ozenne, V.; Pandya, P.; Paredes, A.; Park, J.; Patel, J.; Patel, K.; Paul, S.; Patton, H.; Peck-Radosavljevic, M.; Petta, S.; Pianko, S.; Piekarska, A.; Pimstone, N.; Pisegna, J.; Pockros, P.; Pol, S.; Porayko, M.; Poulos, J.; Pound, D.; Pouzar, J.; Presa Ramos, J.; Pyrsopoulos, N.; Rafiq, N.; Muller, K.; Ramji, A.; Ratziu, V.; Ravinuthala, R.; Reddy, C.; Reddy, K.G. G.; Reddy K R, K.R.; Regenstein, F.; Reindollar, R.; Reynolds, J.; Riera, A.; Rinella, M.; Rivera Acosta, J.; Robaeys, G.; Roberts, S.; Rodriguez-Perez, F.; Romero, S.; Romero-Gomez, M.; Rubin, R.; Rumi, M.; Rushbrook, S.; Rust, C.; Ryan, M.; Safadi, R.; Said, A.; Salminen, K.; Samuel, D.; Santoro, J.; Sanyal, A.; Sarkar, S.; Schaeffer, C.; Schattenberg, J.; Schiefke, I.; Schiff, E.; Schmidt, W.; Schneider, J.; Schouten, J.; Schultz, M.; Sebastiani, G.; Semela, D.; Sepe, T.; Sheikh, A.; Sheikh, M.; Sheridan, D.; Sherman, K.; Shibolet, O.; Shiffman, M.; Siddique, A.; Sieberhagen, C.; Sigal, S.; Sikorska, K.; Simon, K.; Sinclair, M.; Skoien, R.; Solis, J.; Sood, S.; Souder, B.; Spivey, J.; Stal, P.; Stinton, L.; Strasser, S.; Svorcan, P.; Szabo, G.; Talal, A.; Tam, E.; Tetri, B.; Thuluvath, P.; Tobias, H.; Tomasiewicz, K.; Torres, D.; Tran, A.; Trauner, M.; Trautwein, C.; Trotter, J.; Tsochatzis, E.; Unitt, E.; Vargas, V.; Varkonyi, I.; Veitsman, E.; Vespasiani Gentilucci, U.; Victor, D.; Vierling, J.; Vincent, C.; Vincze, A.; von der Ohe, M.; Von Roenn, N.; Vuppalanchi, R.; Waters, M.; Watt, K.; Wattacheril, J.; Weltman, M.; Wieland, A.; Wiener, G.; Williams A, A.; Williams J, J.; Wilson, J.; Yataco, M.; Yoshida, E.; Younes, Z.; Yuan, L.; Zivony, A.; Zogg, D.; Zoller, H.; Zoulim, F.; Zuckerman, E.; Zuin, M. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, 2019, 394(10215), 2184-2196.
[http://dx.doi.org/10.1016/S0140-6736(19)33041-7] [PMID: 31813633]
[22]
Armstrong, M.J.; Barton, D.; Gaunt, P.; Hull, D.; Guo, K.; Stocken, D.; Gough, S.C.L.; Tomlinson, J.W.; Brown, R.M.; Hübscher, S.G.; Newsome, P.N. Liraglutide efficacy and action in non-alcoholic steatohepatitis (LEAN): Study protocol for a phase II multicentre, double-blinded, randomised, controlled trial. BMJ Open, 2013, 3(11), e003995.
[http://dx.doi.org/10.1136/bmjopen-2013-003995] [PMID: 24189085]
[23]
Duparc, T.; Briand, F.; Trenteseaux, C.; Merian, J.; Combes, G.; Najib, S.; Sulpice, T.; Martinez, L.O. Liraglutide improves hepatic steatosis and metabolic dysfunctions in a 3-week dietary mouse model of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 317(4), G508-G517.
[http://dx.doi.org/10.1152/ajpgi.00139.2019] [PMID: 31460789]
[24]
Kojima, M.; Takahashi, H.; Kuwashiro, T.; Tanaka, K.; Mori, H.; Ozaki, I.; Kitajima, Y.; Matsuda, Y.; Ashida, K.; Eguchi, Y.; Anzai, K. glucagon-like peptide-1 receptor agonist prevented the progression of hepatocellular carcinoma in a mouse model of nonalcoholic steatohepatitis. Int. J. Mol. Sci., 2020, 21(16), 5722.
[http://dx.doi.org/10.3390/ijms21165722] [PMID: 32785012]
[25]
Klaebel, J. H Dietary intervention accelerates NASH resolution depending on inflammatory status with minor additive effects on hepatic injury by vitamin E supplementation. Antioxidants (Basel), 2020, 9(9), 808.
[26]
Presa, N.; Clugston, R.D.; Lingrell, S.; Kelly, S.E.; Merrill, A.H., Jr; Jana, S.; Kassiri, Z.; Gómez-Muñoz, A.; Vance, D.E.; Jacobs, R.L.; van der Veen, J.N. Vitamin E alleviates non-alcoholic fatty liver disease in phosphatidylethanolamine N-methyltransferase deficient mice. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(1), 14-25.
[http://dx.doi.org/10.1016/j.bbadis.2018.10.010] [PMID: 30300671]
[27]
SKAT-RøRDAM, J. Vitamin C deficiency may delay diet-induced NASH regression in the guinea pig. Antioxidants (Basel, Switzerland), 2021, 11(1), 14.
[28]
Hamouda, A.O.; Abdel-Hamed, A.R.; Abo-Elmatty, D.M.; Khedr, N.F.; Ghattas, M.H. Pentoxifylline and its association with kaempferol improve NASH-associated manifestation in mice through anti-apoptotic, anti-necroptotic, antioxidant, and anti-inflammatory mechanisms. Eur. Rev. Med. Pharmacol. Sci., 2022, 26(23), 8644-8659.
[PMID: 36524484]
[29]
Xu, D.; Zhao, W.; Feng, Y.; Wen, X.; Liu, H.; Ping, J. Pentoxifylline attenuates nonalcoholic fatty liver by inhibiting hepatic macrophage polarization to the M1 phenotype. Phytomedicine, 2022, 106, 154368.
[http://dx.doi.org/10.1016/j.phymed.2022.154368] [PMID: 35994850]
[30]
Zhou, Z.; Qi, J.; Lim, C.W.; Kim, J.W.; Kim, B. Dual TBK1/IKKε inhibitor amlexanox mitigates palmitic acid-induced hepatotoxicity and lipoapoptosis in vitro. Toxicology, 2020, 444, 152579.
[http://dx.doi.org/10.1016/j.tox.2020.152579] [PMID: 32905826]
[31]
Musso, G.; De Michieli, F.; Bongiovanni, D. New pharmacologic agents that target inflammation and fibrosis in nonalcoholic steatohepatitis-related kidney disease. Clin. Gastroenterol. Hepatol., 2017, 15(7), 972-985.
[32]
Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol., 2018, 53(3), 362-376.
[http://dx.doi.org/10.1007/s00535-017-1415-1] [PMID: 29247356]
[33]
Adar, T.; Ben Ya’acov, A.; Lalazar, G.; Lichtenstein, Y.; Nahman, D.; Mizrahi, M.; Wong, V.; Muller, B.; Rawlin, G.; Ilan, Y. Oral administration of immunoglobulin G-enhanced colostrum alleviates insulin resistance and liver injury and is associated with alterations in natural killer T cells. Clin. Exp. Immunol., 2012, 167(2), 252-260.
[http://dx.doi.org/10.1111/j.1365-2249.2011.04511.x] [PMID: 22236001]
[34]
Mizrahi, M.; Shabat, Y.; Ben Ya’acov, A.; Lalazar, G.; Adar, T.; Wong, V.; Muller, B.; Rawlin, G.; Ilan, Y. Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: Results of a phase I/II clinical trial in NASH. J. Inflamm. Res., 2012, 5, 141-150.
[PMID: 23293533]
[35]
Rotman, Y.; Sanyal, A.J. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut, 2017, 66(1), 180-190.
[http://dx.doi.org/10.1136/gutjnl-2016-312431] [PMID: 27646933]
[36]
Gawrieh, S.; Noureddin, M.; Loo, N.; Mohseni, R.; Awasty, V.; Cusi, K.; Kowdley, K.V.; Lai, M.; Schiff, E.; Parmar, D.; Patel, P.; Chalasani, N. Saroglitazar, a PPAR‐α/γ Agonist, for treatment of NAFLD: A randomized controlled double‐blind Phase 2 Trial. Hepatology, 2021, 74(4), 1809-1824.
[http://dx.doi.org/10.1002/hep.31843] [PMID: 33811367]
[37]
Wang, Y. Advances in phase III drug studies on the pipeline in nonalcoholic steatohepatitis. J. Clin. Hepatol., 2022, 38(6), 1398-1401.
[38]
Wang, Y.; Crittenden, D.B.; Eng, C.; Zhang, Q.; Guo, P.; Chung, D.; Fenaux, M.; Klucher, K.; Jones, C.; Jin, F.; Quirk, E.; Charlton, M.R. Safety, pharmacokinetics, pharmacodynamics, and formulation of liver‐distributed farnesoid X‐receptor agonist TERN‐101 in healthy volunteers. Clin. Pharmacol. Drug Dev., 2021, 10(10), 1198-1208.
[http://dx.doi.org/10.1002/cpdd.960] [PMID: 34302449]
[39]
Harrison, S.A.; Gunn, N.; Neff, G.W.; Kohli, A.; Liu, L.; Flyer, A.; Goldkind, L.; Di Bisceglie, A.M. A phase 2, proof of concept, randomised controlled trial of berberine ursodeoxycholate in patients with presumed non-alcoholic steatohepatitis and type 2 diabetes. Nat. Commun., 2021, 12(1), 5503.
[http://dx.doi.org/10.1038/s41467-021-25701-5] [PMID: 34535644]
[40]
Yan, T.; Yan, N.; Wang, P.; Xia, Y.; Hao, H.; Wang, G.; Gonzalez, F.J. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm. Sin. B, 2020, 10(1), 3-18.
[http://dx.doi.org/10.1016/j.apsb.2019.11.017] [PMID: 31993304]
[41]
Wah Kheong, C.; Nik Mustapha, N.R. A randomized trial of Silymarin for the treatment of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol., 2017, 15(12), 1940-1949.
[42]
Cao, Y.; Pan, Q.; Cai, W.; Shen, F.; Chen, G.Y.; Xu, L.M.; Fan, J.G. Modulation of Gut Microbiota by Berberine Improves Steatohepatitis in High-Fat Diet-Fed BALB/C Mice. Arch. Iran Med., 2016, 19(3), 197-203.
[PMID: 26923892]
[43]
Yan, H.M.; Xia, M.F.; Wang, Y.; Chang, X.X.; Yao, X.Z.; Rao, S.X.; Zeng, M.S.; Tu, Y.F.; Feng, R.; Jia, W.P.; Liu, J.; Deng, W.; Jiang, J.D.; Gao, X. efficacy of berberine in patients with non-alcoholic fatty liver disease. PLoS One, 2015, 10(8), e0134172.
[http://dx.doi.org/10.1371/journal.pone.0134172] [PMID: 26252777]
[44]
Yuan, X.; Wang, J.; Tang, X.; Li, Y.; Xia, P.; Gao, X. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J. Transl. Med., 2015, 13(1), 24.
[http://dx.doi.org/10.1186/s12967-015-0383-6] [PMID: 25623289]
[45]
Zhang, Z.; Li, B.; Meng, X.; Yao, S.; Jin, L.; Yang, J.; Wang, J.; Zhang, H.; Zhang, Z.; Cai, D.; Zhang, Y.; Ning, G. Berberine prevents progression from hepatic steatosis to steatohepatitis and fibrosis by reducing endoplasmic reticulum stress. Sci. Rep., 2016, 6(1), 20848.
[http://dx.doi.org/10.1038/srep20848] [PMID: 26857750]
[46]
Salomone, F.; Godos, J.; Zelber-Sagi, S. Natural antioxidants for non‐alcoholic fatty liver disease: Molecular targets and clinical perspectives. Liver Int., 2016, 36(1), 5-20.
[http://dx.doi.org/10.1111/liv.12975] [PMID: 26436447]
[47]
Salvoza, N.; Giraudi, P.J.; Tiribelli, C.; Rosso, N. Natural compounds for counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and limitations of the suggested candidates. Int. J. Mol. Sci., 2022, 23(5), 2764.
[http://dx.doi.org/10.3390/ijms23052764] [PMID: 35269912]
[48]
Tan, P.; Jin, L.; Qin, X.; He, B. Natural flavonoids: Potential therapeutic strategies for non-alcoholic fatty liver disease. Front. Pharmacol., 2022, 13, 1005312.
[http://dx.doi.org/10.3389/fphar.2022.1005312] [PMID: 36188561]
[49]
Leng, Y.R.; Zhang, M.H.; Luo, J.G.; Zhang, H. Pathogenesis of NASH and promising natural products. Chin. J. Nat. Med., 2021, 19(1), 12-27.
[http://dx.doi.org/10.1016/S1875-5364(21)60002-X] [PMID: 33516448]
[50]
Jadeja, R.; Devkar, R.V.; Nammi, S. Herbal medicines for the treatment of nonalcoholic steatohepatitis: Current scenario and future prospects. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-18.
[http://dx.doi.org/10.1155/2014/648308] [PMID: 24987431]
[51]
Xu, Y.; Guo, W.; Zhang, C.; Chen, F.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Front. Pharmacol., 2020, 11, 601.
[http://dx.doi.org/10.3389/fphar.2020.00601] [PMID: 32477116]
[52]
Hu, Q.; Zhang, W.; Wu, Z.; Tian, X.; Xiang, J.; Li, L.; Li, Z.; Peng, X.; Wei, S.; Ma, X.; Zhao, Y. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol. Res., 2021, 165, 105444.
[http://dx.doi.org/10.1016/j.phrs.2021.105444] [PMID: 33493657]
[53]
Kandemir, F.M.; Yildirim, S.; Kucukler, S.; Caglayan, C.; Mahamadu, A.; Dortbudak, M.B. Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomed. Pharmacother., 2018, 105, 981-991.
[http://dx.doi.org/10.1016/j.biopha.2018.06.048] [PMID: 30021393]
[54]
Kandemir, F.; Kucukler, S.; Eldutar, E.; Caglayan, C.; Gülçin, İ. Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: A multi-biomarker approach. Sci. Pharm., 2017, 85(1), 4.
[http://dx.doi.org/10.3390/scipharm85010004] [PMID: 28134775]
[55]
Caglayan, C.; Temel, Y.; Kandemir, F.M.; Yildirim, S.; Kucukler, S. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ. Sci. Pollut. Res. Int., 2018, 25(21), 20968-20984.
[http://dx.doi.org/10.1007/s11356-018-2242-5] [PMID: 29766429]
[56]
Parafati, M.; Lascala, A.; La Russa, D.; Mignogna, C.; Trimboli, F.; Morittu, V.; Riillo, C.; Macirella, R.; Mollace, V.; Brunelli, E.; Janda, E. Bergamot polyphenols boost therapeutic effects of the diet on Non-Alcoholic Steatohepatitis (NASH) induced by “Junk Food”: Evidence for anti-inflammatory activity. Nutrients, 2018, 10(11), 1604.
[http://dx.doi.org/10.3390/nu10111604] [PMID: 30388763]
[57]
Fan, H.; Ma, X.; Lin, P.; Kang, Q.; Zhao, Z.; Wang, L.; Sun, D.; Cheng, J.; Li, Y. Scutellarin prevents Nonalcoholic Fatty Liver Disease (NAFLD) and Hyperlipidemia via PI3K/AKT-dependent activation of nuclear factor (Erythroid-Derived 2)-like 2 (Nrf2) in rats. Med. Sci. Monit., 2017, 23, 5599-5612.
[http://dx.doi.org/10.12659/MSM.907530] [PMID: 29172017]
[58]
Hsu, M.C.; Guo, B.C.; Hu, P-A.; Chen, C.H.; Lee, T.S. Apigenin ameliorates hepatic lipid accumulation by activating the autophagy-mitochondria pathway. Yao Wu Shi Pin Fen Xi, 2021, 29(2), 240-254.
[http://dx.doi.org/10.38212/2224-6614.3269] [PMID: 35696209]
[59]
Janda, E.; Salerno, R.; Martino, C.; Lascala, A.; La Russa, D.; Oliverio, M. Qualitative and quantitative analysis of the proautophagic activity of Citrus flavonoids from Bergamot Polyphenol Fraction. Data Brief, 2018, 19, 1327-1334.
[http://dx.doi.org/10.1016/j.dib.2018.05.139] [PMID: 30229008]
[60]
Sun, W.L.; Yang, J.W.; Dou, H.Y.; Li, G.Q.; Li, X.Y.; Shen, L.; Ji, H.F. Anti-inflammatory effect of luteolin is related to the changes in the gut microbiota and contributes to preventing the progression from simple steatosis to nonalcoholic steatohepatitis. Bioorg. Chem., 2021, 112, 104966.
[http://dx.doi.org/10.1016/j.bioorg.2021.104966] [PMID: 33991837]
[61]
Abu-Elsaad, N. El-Karef, A Protection against nonalcoholic steatohepatitis through targeting IL-18 and IL-1alpha by luteolin. Pharmacol. Rep., 2019, 71(4), 688-694.
[62]
Zhu, Y.; Liu, R.; Shen, Z.; Cai, G. Combination of luteolin and lycopene effectively protect against the “two-hit” in NAFLD through Sirt1/AMPK signal pathway. Life Sci., 2020, 256, 117990.
[http://dx.doi.org/10.1016/j.lfs.2020.117990] [PMID: 32574665]
[63]
Liu, X.; Sun, R.; Li, Z.; Xiao, R.; Lv, P.; Sun, X.; Olson, M.A.; Gong, Y. Luteolin alleviates non-alcoholic fatty liver disease in rats via restoration of intestinal mucosal barrier damage and microbiota imbalance involving in gut-liver axis. Arch. Biochem. Biophys., 2021, 711, 109019.
[http://dx.doi.org/10.1016/j.abb.2021.109019] [PMID: 34478730]
[64]
Yin, Y.; Gao, L.; Lin, H.; Wu, Y.; Han, X.; Zhu, Y.; Li, J. Luteolin improves non-alcoholic fatty liver disease in db/db mice by inhibition of liver X receptor activation to down-regulate expression of sterol regulatory element binding protein 1c. Biochem. Biophys. Res. Commun., 2017, 482(4), 720-726.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.101] [PMID: 27888103]
[65]
Shen, J.; Li, P.; Liu, S.; Liu, Q.; Li, Y.; Zhang, Z.; Yang, C.; Hu, M.; Sun, Y.; He, C.; Xiao, P. The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis. Food Funct., 2020, 11(11), 9634-9650.
[http://dx.doi.org/10.1039/D0FO01731K] [PMID: 33048099]
[66]
Liu, J.; Yuan, Y.; Gong, X.; Zhang, L.; Zhou, Q.; Wu, S.; Zhang, X.; Hu, J.; Kuang, G.; Yin, X.; Wan, J.; Yuan, Y. Baicalin and its nanoliposomes ameliorates nonalcoholic fatty liver disease via suppression of TLR4 signaling cascade in mice. Int. Immunopharmacol., 2020, 80, 106208.
[http://dx.doi.org/10.1016/j.intimp.2020.106208] [PMID: 31955065]
[67]
Xiao, X.; Hu, Q.; Deng, X.; Shi, K.; Zhang, W.; Jiang, Y.; Ma, X.; Zeng, J.; Wang, X. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacol. Res., 2022, 175, 106005.
[http://dx.doi.org/10.1016/j.phrs.2021.106005] [PMID: 34843960]
[68]
Guerrerio, A.L.; Colvin, R.M.; Schwartz, A.K.; Molleston, J.P.; Murray, K.F.; Diehl, A.; Mohan, P.; Schwimmer, J.B.; Lavine, J.E.; Torbenson, M.S.; Scheimann, A.O. Choline intake in a large cohort of patients with nonalcoholic fatty liver disease. Am. J. Clin. Nutr., 2012, 95(4), 892-900.
[http://dx.doi.org/10.3945/ajcn.111.020156] [PMID: 22338037]
[69]
Wang, S.; Lan, T.; Sheng, H.; Zheng, F.; Lei, M.; Wang, L.; Chen, H.; Xu, C.; Zhang, F. Nobiletin alleviates non-alcoholic steatohepatitis in MCD-induced mice by regulating macrophage polarization. Front. Physiol., 2021, 12, 687744.
[http://dx.doi.org/10.3389/fphys.2021.687744] [PMID: 34093242]
[70]
Yimam, M.; Jiao, P.; Hong, M.; Brownell, L.; Lee, Y.C.; Hyun, E.J.; Kim, H.J.; Nam, J.B.; Kim, M.R.; Jia, Q. UP601, a standardized botanical composition composed of Morus alba, Yerba mate and Magnolia officinalis for weight loss. BMC Complement. Altern. Med., 2017, 17(1), 114.
[http://dx.doi.org/10.1186/s12906-017-1627-1] [PMID: 28209193]
[71]
Kawabata, K.; Sugiyama, Y.; Sakano, T.; Ohigashi, H. Flavonols enhanced production of anti‐inflammatory substance(s) by Bifidobacterium adolescentis: Prebiotic actions of galangin, quercetin, and fisetin. Biofactors, 2013, 39(4), 422-429.
[http://dx.doi.org/10.1002/biof.1081] [PMID: 23554103]
[72]
Hoang, M.H.; Jia, Y.; Mok, B.; Jun, H.; Hwang, K.Y.; Lee, S.J. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β. J. Nutr. Biochem., 2015, 26(8), 868-875.
[http://dx.doi.org/10.1016/j.jnutbio.2015.03.005] [PMID: 25959373]
[73]
Sharma, D.; Saxena, N.K. Mouse models to study the effect of natural products on obesity-associated NAFLD/NASH.Murine Models, Energy Balance, and Cancer; Springer: New York City, 2015, pp. 247-270.
[74]
Salomone, F.; Godos, J.; Zelber-Sagi, S. Natural antioxidants for non-alcoholic fatty liver disease: Molecular targets and clinical perspectives. Liver Int., 2016, 36(1), 5-20.
[75]
Marcolin, É.; Forgiarini, L.F.; Rodrigues, G.; Tieppo, J.; Borghetti, G.S.; Bassani, V.L.; Picada, J.N.; Marroni, N.P. Quercetin decreases liver damage in mice with non-alcoholic steatohepatitis. Basic Clin. Pharmacol. Toxicol., 2013, 112(6), 385-391.
[http://dx.doi.org/10.1111/bcpt.12049] [PMID: 23331460]
[76]
Marcolin, E.; San-Miguel, B.; Vallejo, D.; Tieppo, J.; Marroni, N.; González-Gallego, J.; Tuñón, M.J. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J. Nutr., 2012, 142(10), 1821-1828.
[http://dx.doi.org/10.3945/jn.112.165274] [PMID: 22915297]
[77]
Jeong, S.M.; Kang, M.J.; Choi, H.N.; Kim, J.H.; Kim, J.I. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract., 2012, 6(3), 201-207.
[http://dx.doi.org/10.4162/nrp.2012.6.3.201] [PMID: 22808343]
[78]
Gao, M.; Ma, Y.; Liu, D. Rutin suppresses palmitic acids-triggered inflammation in macrophages and blocks high fat diet-induced obesity and fatty liver in mice. Pharm. Res., 2013, 30(11), 2940-2950.
[http://dx.doi.org/10.1007/s11095-013-1125-1] [PMID: 23783345]
[79]
Zhang, Z.F.; Fan, S.H.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Troxerutin improves hepatic lipid homeostasis by restoring NAD+-depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochem. Pharmacol., 2014, 91(1), 74-86.
[http://dx.doi.org/10.1016/j.bcp.2014.07.002] [PMID: 25026599]
[80]
Yuan, Z.; Feng, S.; Zhang, J.; Liang, B.; Jin, H. Effects of cyclocarya paliurus flavonoid extract in non-alcoholic steatohepatitis mice: Intermeshing network pharmacology and in vivo pharmacological evaluation. Pharmacogn. Mag., 2021, 17(76), 765-773.
[http://dx.doi.org/10.4103/pm.pm_21_21]
[81]
Xia, S.F.; Le, G.W.; Wang, P.; Qiu, Y.Y.; Jiang, Y.Y.; Tang, X. Regressive effect of myricetin on hepatic steatosis in mice fed a high-fat diet. Nutrients, 2016, 8(12), 799.
[http://dx.doi.org/10.3390/nu8120799] [PMID: 27973423]
[82]
Choi, H.N.; Shin, J.Y.; Kim, J.I. ameliorative effect of myricetin on nonalcoholic fatty liver disease in ob/ob mice. J. Med. Food, 2021, 24(10), 1092-1099.
[http://dx.doi.org/10.1089/jmf.2021.K.0090] [PMID: 34668765]
[83]
Sun, W.L.; Li, X.Y.; Dou, H.Y.; Wang, X.D.; Li, J.D.; Shen, L.; Ji, H.F. Myricetin supplementation decreases hepatic lipid synthesis and inflammation by modulating gut microbiota. Cell Rep., 2021, 36(9), 109641.
[http://dx.doi.org/10.1016/j.celrep.2021.109641] [PMID: 34469716]
[84]
Gu, M.; Zhang, Y.; Liu, C.; Wang, D.; Feng, L.; Fan, S.; Yang, B.; Tong, Q.; Ji, G.; Huang, C. Morin, a novel liver X receptor α/β dual antagonist, has potent therapeutic efficacy for nonalcoholic fatty liver diseases. Br. J. Pharmacol., 2017, 174(18), 3032-3044.
[http://dx.doi.org/10.1111/bph.13933] [PMID: 28646531]
[85]
Lee, J.; Jung, E.; Lee, J.; Kim, S.; Huh, S.; Kim, Y.; Kim, Y.; Byun, S.Y.; Kim, Y.S.; Park, D. Isorhamnetin represses adipogenesis in 3T3-L1 cells. Obesity (Silver Spring), 2009, 17(2), 226-232.
[http://dx.doi.org/10.1038/oby.2008.472] [PMID: 18948972]
[86]
Kang, A.; Ming, Y.; Ying, P. Study on Ethonal-Extraction and Purification Process of Galangin from Alpinia officinarum Hance. Zhongguo Zhongyiyao Xinxi Zazhi, 2011, 18(5), 44-46.
[87]
Zhang, X.; Deng, Y.; Xiang, J.; Liu, H.; Zhang, J.; Liao, J.; Chen, K.; Liu, B.; Liu, J.; Pu, Y. Galangin improved non-alcoholic fatty liver disease in mice by promoting autophagy. Drug Des. Devel. Ther., 2020, 14, 3393-3405.
[http://dx.doi.org/10.2147/DDDT.S258187] [PMID: 32884242]
[88]
Zhou, Y.; Ding, Y.L.; Zhang, J.L. Alpinetin improved high fat diet-induced non-alcoholic fatty liver disease (NAFLD) through improving oxidative stress, inflammatory response and lipid metabolism. Biomed. Pharmacother., 2018, 97, 1397-1408.
[89]
Shi, Z.; Li, T.; Liu, Y.; Cai, T.; Yao, W.; Jiang, J.; He, Y.; Shan, L. Hepatoprotective and anti-oxidative effects of total flavonoids from Qu Zhi Qiao (Fruit of Citrus Paradisi cv.Changshanhuyou) on nonalcoholic steatohepatitis in vivo and in vitro through Nrf2-ARE signaling pathway. Front. Pharmacol., 2020, 11, 483.
[http://dx.doi.org/10.3389/fphar.2020.00483] [PMID: 32390839]
[90]
Kim, M.H.; Kang, K.S.; Lee, Y.S. The inhibitory effect of genistein on hepatic steatosis is linked to visceral adipocyte metabolism in mice with diet-induced non-alcoholic fatty liver disease. Br. J. Nutr., 2010, 104(9), 1333-1342.
[http://dx.doi.org/10.1017/S0007114510002266] [PMID: 20687969]
[91]
Yalniz, M.; Bahcecioglu, I.H.; Kuzu, N. Preventive role of genistein in an experimental non-alcoholic steatohepatitis model. J. Gastroenterol. Hepatol., 2007, 22(11), 2009-2014.
[92]
Fukui, M.; Senmaru, T.; Hasegawa, G. 17β-Estradiol attenuates saturated fatty acid diet-induced liver injury in ovariectomized mice by up-regulating hepatic senescence marker protein-30. Biochem. Biophys. Res. Commun., 2011, 415, 252-257.
[93]
Venetsanaki, V.; Polyzos, S.A. Menopause and non-alcoholic fatty liver disease: A review focusing on therapeutic perspectives. Curr. Vasc. Pharmacol., 2019, 17(6), 546-555.
[http://dx.doi.org/10.2174/1570161116666180711121949] [PMID: 29992886]
[94]
Farruggio, S.; Cocomazzi, G.; Marotta, P.; Romito, R.; Surico, D.; Calamita, G.; Bellan, M.; Pirisi, M.; Grossini, E. Genistein and 17β-estradiol protect hepatocytes from fatty degeneration by mechanisms involving mitochondria, inflammasome and kinases activation. Cell. Physiol. Biochem., 2020, 54(3), 401-416.
[http://dx.doi.org/10.33594/000000227] [PMID: 32330379]
[95]
Kim, M.H.; Park, J.S.; Jung, J.W. Daidzein supplementation prevents non-alcoholic fatty liver disease through alternation of hepatic gene expression profiles and adipocyte metabolism. Int. J. Obes. (Lond), 2011, 35(8), 1019-1030.
[96]
Crespillo, A.; Alonso, M.; Vida, M.; Pavón, F.J.; Serrano, A.; Rivera, P.; Romero-Zerbo, Y.; Fernández-Llebrez, P.; Martínez, A.; Pérez-Valero, V.; Bermúdez-Silva, F.J.; Suárez, J.; de Fonseca, F.R. Reduction of body weight, liver steatosis and expression of stearoyl‐CoA desaturase 1 by the isoflavone daidzein in diet‐induced obesity. Br. J. Pharmacol., 2011, 164(7), 1899-1915.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01477.x] [PMID: 21557739]
[97]
Duan, X.; Meng, Q.; Wang, C.; Liu, Z.; Liu, Q.; Sun, H.; Sun, P.; Yang, X.; Huo, X.; Peng, J.; Liu, K. Calycosin attenuates triglyceride accumulation and hepatic fibrosis in murine model of non-alcoholic steatohepatitis via activating farnesoid X receptor. Phytomedicine, 2017, 25, 83-92.
[http://dx.doi.org/10.1016/j.phymed.2016.12.006] [PMID: 28190475]
[98]
Wang, S.; Yang, F.J.; Shang, L.C.; Zhang, Y.H.; Zhou, Y.; Shi, X.L. Puerarin protects against high‐fat high‐sucrose diet‐induced non‐alcoholic fatty liver disease by modulating PARP‐1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother. Res., 2019, 33(9), 2347-2359.
[http://dx.doi.org/10.1002/ptr.6417] [PMID: 31273855]
[99]
Ke, Z.; Zhao, Y.; Tan, S.; Chen, H.; Li, Y.; Zhou, Z.; Huang, C. Citrus reticulata Blanco peel extract ameliorates hepatic steatosis, oxidative stress and inflammation in HF and MCD diet-induced NASH C57BL/6 J mice. J. Nutr. Biochem., 2020, 83, 108426.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108426] [PMID: 32559586]
[100]
Gad, R.A.; Abdel-Reheim, E.S.; Shehab, G.M.G.; Hafez, H.S.; Abuelsaad, A.S.A. Evaluation of insulin resistance induced brain tissue dysfunction in obese dams and their neonates: Role of ipriflavone amelioration. Comb. Chem. High Throughput Screen., 2021, 24(6), 767-780.
[http://dx.doi.org/10.2174/1386207323666200808181148] [PMID: 32772909]
[101]
Firdaus, A.; Asim, S.; Hasnain, A. Effect of aqueous extract of garlic and licorice on Carbon Tetra Chloride induced Liver fibrosis by evaluating serum Aspartate Amino Transferase (AST) and Serum Alanine Amino Transferase (ALT). Pak. J. Med. Health Sci., 2021, 15(8), 1949-1953.
[102]
Simmler, C.; Pauli, G.F.; Chen, S.N. Phytochemistry and biological properties of glabridin. Fitoterapia, 2013, 90, 160-184.
[http://dx.doi.org/10.1016/j.fitote.2013.07.003] [PMID: 23850540]
[103]
Li, Q.; Feng, H.; Wang, H.; Wang, Y.; Mou, W.; Xu, G.; Zhang, P.; Li, R.; Shi, W.; Wang, Z.; Fang, Z.; Ren, L.; Wang, Y.; Lin, L.; Hou, X.; Dai, W.; Li, Z.; Wei, Z.; Liu, T.; Wang, J.; Guo, Y.; Li, P.; Zhao, X.; Zhan, X.; Xiao, X.; Bai, Z. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7‐NLRP3 interaction. EMBO Rep., 2022, 23(2), e53499.
[http://dx.doi.org/10.15252/embr.202153499] [PMID: 34882936]
[104]
Luo, X.Y.; Takahara, T.; Hou, J.; Kawai, K.; Sugiyama, T.; Tsukada, K.; Takemoto, M.; Takeuchi, M.; Zhong, L.; Li, X.K. Theaflavin attenuates ischemia–reperfusion injury in a mouse fatty liver model. Biochem. Biophys. Res. Commun., 2012, 417(1), 287-293.
[http://dx.doi.org/10.1016/j.bbrc.2011.11.102] [PMID: 22155236]
[105]
Gan, L.; Cao, Y.; Yuan, J. [Effects of (+)-catechin and epigallocatechin gallate on alcoholic fatty liver in mice models]. Chin. J. Prev. Med, 2021, 55(11), 1305-1310.
[PMID: 34749473]
[106]
Sasaki, G.Y.; Li, J.; Cichon, M.J.; Kopec, R.E.; Bruno, R.S. Catechin‐rich green tea extract and the loss‐of‐TLR4 signaling differentially alter the hepatic metabolome in mice with nonalcoholic steatohepatitis. Mol. Nutr. Food Res., 2021, 65(2), 2000998.
[http://dx.doi.org/10.1002/mnfr.202000998] [PMID: 33249742]
[107]
Liu, B.; Zhang, J.; Sun, P.; Yi, R.; Han, X.; Zhao, X. Raw Bowl Tea (Tuocha) polyphenol prevention of nonalcoholic fatty liver disease by regulating intestinal function in mice. Biomolecules, 2019, 9(9), 435.
[http://dx.doi.org/10.3390/biom9090435] [PMID: 31480575]
[108]
Grosso, G.; Galvano, F.; Mistretta, A.; Marventano, S.; Nolfo, F.; Calabrese, G.; Buscemi, S.; Drago, F.; Veronesi, U.; Scuderi, A. Red orange: Experimental models and epidemiological evidence of its benefits on human health. Oxid. Med. Cell. Longev., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/157240] [PMID: 23738032]
[109]
Guo, H.; Liu, G.; Zhong, R.; Wang, Y.; Wang, D.; Xia, M. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. Lipids Health Dis., 2012, 11(1), 10.
[http://dx.doi.org/10.1186/1476-511X-11-10] [PMID: 22243683]
[110]
Guo, H.; Guo, J.; Jiang, X. Cyanidin-3-O-β-glucoside, a typical anthocyanin, exhibits antilipolytic effects in 3T3-L1 adipocytes during hyperglycemia: Involvement of FoxO1-mediated transcription of adipose triglyceride lipase. Food Chem. Toxicol., 2012, 50(9), 3040-3047.
[111]
Salamone, F.; Li Volti, G.; Titta, L.; Puzzo, L.; Barbagallo, I.; La Delia, F.; Zelber-Sagi, S.; Malaguarnera, M.; Pelicci, P.G.; Giorgio, M.; Galvano, F. Moro orange juice prevents fatty liver in mice. World J. Gastroenterol., 2012, 18(29), 3862-3868.
[http://dx.doi.org/10.3748/wjg.v18.i29.3862] [PMID: 22876038]
[112]
Romualdo, G.R.; Silva, E.A.; Da Silva, T.C.; Aloia, T.P.A.; Nogueira, M.S.; De Castro, I.A.; Vinken, M.; Barbisan, L.F.; Cogliati, B. Burdock (ARCTIUM LAPPA L.) root attenuates preneoplastic lesion development in a diet and thioacetamide‐induced model of steatohepatitis‐associated hepatocarcinogenesis. Environ. Toxicol., 2020, 35(4), 518-527.
[http://dx.doi.org/10.1002/tox.22887] [PMID: 31804025]
[113]
Shi, H.; Dong, L.; Dang, X. Effect of chlorogenic acid on LPS-induced proinflammatory signaling in hepatic stellate cells. Inflamm. Res., 2013, 62(6), 581-587.
[114]
Kim, H.M.; Kim, Y.; Lee, E.S.; Huh, J.H.; Chung, C.H. Caffeic acid ameliorates hepatic steatosis and reduces ER stress in high fat diet–induced obese mice by regulating autophagy. Nutrition, 2018, 55-56, 63-70.
[http://dx.doi.org/10.1016/j.nut.2018.03.010] [PMID: 29960159]
[115]
Liao, C.C.; Ou, T.T.; Huang, H.P.; Wang, C.J. The inhibition of oleic acid induced hepatic lipogenesis and the promotion of lipolysis by caffeic acid via up‐regulation of AMP ‐activated kinase. J. Sci. Food Agric., 2014, 94(6), 1154-1162.
[http://dx.doi.org/10.1002/jsfa.6386] [PMID: 24027117]
[116]
Mu, H.N. Caffeic acid prevents non-alcoholic fatty liver disease induced by a high-fat diet through gut microbiota modulation in mice. Food Res. Int. (Ottawa, Ont), 2021, 143, 110240.
[117]
Liu, X.; Huang, K.; Niu, Z.; Mei, D.; Zhang, B. Protective effect of isochlorogenic acid B on liver fibrosis in non‐alcoholic steatohepatitis of mice. Basic Clin. Pharmacol. Toxicol., 2019, 124(2), 144-153.
[http://dx.doi.org/10.1111/bcpt.13122] [PMID: 30180301]
[118]
Liu, B.; Deng, X.; Jiang, Q. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed. Pharmacother., 2020, 125, 109895.
[119]
Jang, S.I.I.; Kim, Y.J.; Lee, W.Y.; Kwak, K.C.; Baek, S.H.; Kwak, G.B.; Yun, Y.G.; Kwon, T.O.; Chung, H.T.; Chai, K.Y. Scoparone from artemisia capillaris inhibits the release of inflammatory mediators in RAW 264.7 cells upon stimulation cells by interferon-γ plus LPS. Arch. Pharm. Res., 2005, 28(2), 203-208.
[http://dx.doi.org/10.1007/BF02977716] [PMID: 15789752]
[120]
Liu, X.; Zhao, X. Scoparone attenuates hepatic stellate cell activation through inhibiting TGF-β/Smad signaling pathway. Biomed. Pharmacother., 2017, 93, 57-61.
[121]
Zhou, L.; Tang, J.; Xiong, X.; Dong, H.; Huang, J.; Zhou, S.; Zhang, L.; Qin, H.; Yan, S. Psoralea corylifolia L. Attenuates nonalcoholic steatohepatitis in juvenile mouse. Front. Pharmacol., 2017, 8, 876.
[http://dx.doi.org/10.3389/fphar.2017.00876] [PMID: 29249967]
[122]
Lange, S.S.; Reddy, M.C.; Vasquez, K.M. Human HMGB1 directly facilitates interactions between nucleotide excision repair proteins on triplex-directed psoralen interstrand crosslinks. DNA Repair (Amst.), 2009, 8(7), 865-872.
[http://dx.doi.org/10.1016/j.dnarep.2009.04.001] [PMID: 19446504]
[123]
Reddy, M.C.; Christensen, J.; Vasquez, K.M. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA. Biochemistry, 2005, 44(11), 4188-4195.
[http://dx.doi.org/10.1021/bi047902n] [PMID: 15766246]
[124]
Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; Manogue, K.R.; Faist, E.; Abraham, E.; Andersson, J.; Andersson, U.; Molina, P.E.; Abumrad, N.N.; Sama, A.; Tracey, K.J. HMG-1 as a late mediator of endotoxin lethality in mice. Science, 1999, 285(5425), 248-251.
[http://dx.doi.org/10.1126/science.285.5425.248] [PMID: 10398600]
[125]
Park, E.Y.; Shin, S.M.; Ma, C.J.; Kim, Y.C.; Kim, S.G. meso-dihydroguaiaretic acid from Machilus thunbergii down-regulates TGF-beta1 gene expression in activated hepatic stellate cells via inhibition of AP-1 activity. Planta Med., 2005, 71(5), 393-398.
[http://dx.doi.org/10.1055/s-2005-864131] [PMID: 15931574]
[126]
Sim, W.C.; Park, S.; Lee, K.Y.; Je, Y.T.; Yin, H.Q.; Choi, Y.J.; Sung, S.H.; Park, S.J.; Park, H.J.; Shin, K.J.; Lee, B.H. LXR-α antagonist meso-dihydroguaiaretic acid attenuates high-fat diet-induced nonalcoholic fatty liver. Biochem. Pharmacol., 2014, 90(4), 414-424.
[http://dx.doi.org/10.1016/j.bcp.2014.06.013] [PMID: 24955981]
[127]
Chan, J.K.W.; Bittner, S.; Bittner, A.; Atwal, S.; Shen, W.J.; Inayathullah, M.; Rajada, J.; Nicolls, M.R.; Kraemer, F.B.; Azhar, S. Nordihydroguaiaretic Acid, a Lignan from Larrea tridentata (Creosote Bush), Protects Against American Lifestyle-Induced Obesity Syndrome Diet–Induced Metabolic Dysfunction in Mice. J. Pharmacol. Exp. Ther., 2018, 365(2), 281-290.
[http://dx.doi.org/10.1124/jpet.117.243733] [PMID: 29472517]
[128]
Fukumitsu, S.; Aida, K.; Shimizu, H.; Toyoda, K. Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. Nutr. Res., 2010, 30(7), 441-446.
[http://dx.doi.org/10.1016/j.nutres.2010.06.004] [PMID: 20797475]
[129]
Leong, P.K.; Wong, H.S.; Chen, J.; Chan, W.M.; Leung, H.Y.; Ko, K.M. Differential action between Schisandrin A and Schisandrin B in Eliciting an anti-inflammatory action: The depletion of reduced glutathione and the induction of an antioxidant response. PLoS One, 2016, 11(5), e0155879.
[http://dx.doi.org/10.1371/journal.pone.0155879] [PMID: 27195753]
[130]
Jeong, M.J.; Kim, S.R.; Jung, U.J. Schizandrin A supplementation improves nonalcoholic fatty liver disease in mice fed a high-fat and high-cholesterol diet. Nutr. Res., 2019, 64, 64-71.
[http://dx.doi.org/10.1016/j.nutres.2019.01.001] [PMID: 30802724]
[131]
Chiang, C.K.; Sheu, M.L.; Lin, Y.W.; Wu, C.T.; Yang, C.C.; Chen, M.W.; Hung, K.Y.; Wu, K.D.; Liu, S.H. Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro‐inflammatory factors in vivo and in vitro. Br. J. Pharmacol., 2011, 163(3), 586-597.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01242.x] [PMID: 21265825]
[132]
Okuda, K.; Umemura, A.; Umemura, S.; Kataoka, S.; Taketani, H.; Seko, Y.; Nishikawa, T.; Yamaguchi, K.; Moriguchi, M.; Kanbara, Y.; Arbiser, J.L.; Shima, T.; Okanoue, T.; Karin, M.; Itoh, Y. Honokiol prevents non-alcoholic steatohepatitis-induced liver cancer via EGFR degradation through the glucocorticoid receptor—MIG6 axis. Cancers (Basel), 2021, 13(7), 1515.
[http://dx.doi.org/10.3390/cancers13071515] [PMID: 33806040]
[133]
Lynch, K.D.; Montonye, M.L.; Tian, D.D.; Arman, T.; Oyanna, V.O.; Bechtold, B.J.; Graf, T.N.; Oberlies, N.H.; Paine, M.F.; Clarke, J.D. Hepatic organic anion transporting polypeptides mediate disposition of milk thistle flavonolignans and pharmacokinetic silymarin‐drug interactions. Phytother. Res., 2021, 35(6), 3286-3297.
[http://dx.doi.org/10.1002/ptr.7049] [PMID: 33587330]
[134]
Stec, D.E.; Hinds, T.D., Jr Natural product heme oxygenase inducers as treatment for nonalcoholic fatty liver disease. Int. J. Mol. Sci., 2020, 21(24), 9493.
[http://dx.doi.org/10.3390/ijms21249493] [PMID: 33327438]
[135]
Bijak, M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism. Molecules, 2017, 22(11), 1942.
[http://dx.doi.org/10.3390/molecules22111942] [PMID: 29125572]
[136]
Erisgin, Z.; Atasever, M. Cetinkaya, K Protective effects of Nigella sativa oil against carboplatin-induced liver damage in rats. Biomed. Pharmacother., 2019, 110, 742-747.
[137]
Jun, H.; Hoang, M.H.; Yeo, S.K.; Jia, Y.; Lee, S.J. Induction of ABCA1 and ABCG1 expression by the liver X receptor modulator cineole in macrophages. Bioorg. Med. Chem. Lett., 2013, 23(2), 579-583.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.012] [PMID: 23246324]
[138]
Liang, H.Q.; Lin, M.T.; Zhao, X.; Zhou, H.H.; Wang, H.G.; Li, G.H.; Wang, Y.J.; Zhang, L.M.; Wang, Y.Y.; Chen, S.D. [Mechanism of geniposide in improving free fatty acid metabolism in rats with non-alcoholic fatty liver disease]. Zhongguo Zhongyao Zazhi, 2016, 41(3), 470-475.
[PMID: 28868866]
[139]
Shen, B.; Feng, H.; Cheng, J.; Li, Z.; Jin, M.; Zhao, L.; Wang, Q.; Qin, H.; Liu, G. Geniposide alleviates non‐alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways. J. Cell. Mol. Med., 2020, 24(9), 5097-5108.
[http://dx.doi.org/10.1111/jcmm.15139] [PMID: 32293113]
[140]
Zheng, W.; Lu, Y.; Lin, S.; Wang, R.; Qiu, L.; Zhu, Y.; Yao, B.; Guo, F.; Jin, S.; Jin, L.; Li, Y. A novel class of natural fxr modulators with a unique mode of selective co‐regulator assembly. ChemBioChem, 2017, 18(8), 721-725.
[http://dx.doi.org/10.1002/cbic.201700059] [PMID: 28186695]
[141]
Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in chronic inflammation. Nutrients, 2020, 12(11), 3273.
[http://dx.doi.org/10.3390/nu12113273] [PMID: 33114564]
[142]
Lin, H.R. Lepidozenolide from the liverwort Lepidozia fauriana acts as a farnesoid X receptor agonist. J. Asian Nat. Prod. Res., 2015, 17(2), 149-158.
[http://dx.doi.org/10.1080/10286020.2014.964689] [PMID: 25315435]
[143]
Guo, Z. Artemisinin anti-malarial drugs in China. Acta Pharm. Sin. B, 2016, 6(2), 115-124.
[http://dx.doi.org/10.1016/j.apsb.2016.01.008] [PMID: 27006895]
[144]
Xu, W.; Lu, C.; Yao, L.; Zhang, F.; Shao, J.; Zheng, S. Dihydroartemisinin protects against alcoholic liver injury through alleviating hepatocyte steatosis in a farnesoid X receptor-dependent manner. Toxicol. Appl. Pharmacol., 2017, 315, 23-34.
[http://dx.doi.org/10.1016/j.taap.2016.12.001] [PMID: 27939985]
[145]
Flobinus, A.; Taudon, N.; Desbordes, M.; Labrosse, B.; Simon, F.; Mazeron, M.C.; Schnepf, N. Stability and antiviral activity against human cytomegalovirus of artemisinin derivatives. J. Antimicrob. Chemother., 2014, 69(1), 34-40.
[http://dx.doi.org/10.1093/jac/dkt346] [PMID: 24003183]
[146]
Wu, C.; Liu, J.; Pan, X.; Xian, W.; Li, B.; Peng, W.; Wang, J.; Yang, D.; Zhou, H. Design, synthesis and evaluation of the antibacterial enhancement activities of amino dihydroartemisinin derivatives. Molecules, 2013, 18(6), 6866-6882.
[http://dx.doi.org/10.3390/molecules18066866] [PMID: 23752470]
[147]
Lin, R.; Zhang, Z.; Chen, L.; Zhou, Y.; Zou, P.; Feng, C.; Wang, L.; Liang, G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett., 2016, 381(1), 165-175.
[http://dx.doi.org/10.1016/j.canlet.2016.07.033] [PMID: 27477901]
[148]
Sun, Y.; Chi, J.; Zhang, L.; Wang, S.; Chen, Z.; Zhang, H.; Kong, L.; Luo, J. Sarglaromatics A–E: A class of naphthalene-like architecture fused norlindenane sesquiterpene dimers from Sarcandra glabra. J. Org. Chem., 2022, 87(6), 4323-4332.
[http://dx.doi.org/10.1021/acs.joc.2c00014] [PMID: 35230123]
[149]
Yang, M.; Kimchi, E.T.; Staveley-O’Carroll, K.F.; Li, G. Astaxanthin Prevents Diet-Induced NASH Progression by Shaping Intrahepatic Immunity. Int. J. Mol. Sci., 2021, 22(20), 11037.
[http://dx.doi.org/10.3390/ijms222011037] [PMID: 34681695]
[150]
Li, L.; Li, S.; Jiang, J.; Liu, C.; Ji, L. Investigating pharmacological mechanisms of andrographolide on non-alcoholic steatohepatitis (NASH): A bioinformatics approach of network pharmacology. Chin. Herb. Med., 2021, 13(3), 342-350.
[http://dx.doi.org/10.1016/j.chmed.2021.05.001] [PMID: 36118934]
[151]
Lin, H.R. Triterpenes from Alisma orientalis act as farnesoid X receptor agonists. Bioorg. Med. Chem. Lett., 2012, 22(14), 4787-4792.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.057] [PMID: 22683342]
[152]
Meng, Q.; Duan, X.; Wang, C.; Liu, Z.; Sun, P.; Huo, X.; Sun, H.; Peng, J.; Liu, K. Alisol B 23-acetate protects against non-alcoholic steatohepatitis in mice via farnesoid X receptor activation. Acta Pharmacol. Sin., 2017, 38(1), 69-79.
[http://dx.doi.org/10.1038/aps.2016.119] [PMID: 27773935]
[153]
Yuan, X.; Gong, Z.; Wang, B.; Guo, X.; Yang, L.; Li, D.; Zhang, Y. Astragaloside Inhibits Hepatic Fibrosis by Modulation of TGF- β 1/Smad Signaling Pathway. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/3231647] [PMID: 29853950]
[154]
Gu, M.; Zhang, S.; Zhao, Y.; Huang, J.; Wang, Y.; Li, Y.; Fan, S.; Yang, L.; Ji, G.; Tong, Q.; Huang, C. Cycloastragenol improves hepatic steatosis by activating farnesoid X receptor signalling. Pharmacol. Res., 2017, 121, 22-32.
[http://dx.doi.org/10.1016/j.phrs.2017.04.021] [PMID: 28428116]
[155]
Li, H.; Ying, H.; Hu, A.; Hu, Y.; Li, D. Therapeutic effect of gypenosides on nonalcoholic steatohepatitis regulating hepatic lipogenesis and fatty acid oxidation. Biol. Pharm. Bull., 2017, 40(5), 650-657.
[http://dx.doi.org/10.1248/bpb.b16-00942] [PMID: 28458350]
[156]
Yu, X.; Ye, L.; Zhang, H.; Zhao, J.; Wang, G.; Guo, C.; Shang, W. Ginsenoside Rb1 ameliorates liver fat accumulation by upregulating perilipin expression in adipose tissue of db/db obese mice. J. Ginseng Res., 2015, 39(3), 199-205.
[http://dx.doi.org/10.1016/j.jgr.2014.11.004] [PMID: 26199550]
[157]
Wang, Y.; Zhao, H.; Li, X.; Li, N.; Wang, Q.; Liu, Y.; Liang, Q.; Shao, Z.; Zhang, N.; Zhao, T.; Peng, L.; Li, P. Tangshen formula alleviates hepatic steatosis by inducing autophagy through the AMPK/SIRT1 pathway. Front. Physiol., 2019, 10, 494.
[http://dx.doi.org/10.3389/fphys.2019.00494] [PMID: 31105592]
[158]
De Marino, S.; Festa, C.; Sepe, V.; Zampella, A. Chemistry and Pharmacology of GPBAR1 and FXR selective agonists, dual agonists, and antagonists. Handb. Exp. Pharmacol., 2019, 256, 137-165.
[http://dx.doi.org/10.1007/164_2019_237] [PMID: 31201554]
[159]
Choi, J.H.; Jin, S.W.; Choi, C.Y. Saponins from the roots of Platycodon grandiflorum ameliorate high fat diet-induced non-alcoholic steatohepatitis. Biomed. Pharmacother., 2017, 86, 205-212.
[160]
Liu, H.J.; Cao, S.T.; Wen, B.Y.; Han, X.; Li, Y.; Li, S.; Li, J.; Zhang, L. Rotundic acid ameliorates non-alcoholic steatohepatitis via SREBP-1c/SCD1 signaling pathway and modulating gut microbiota. Int. Immunopharmacol., 2021, 99, 108065.
[http://dx.doi.org/10.1016/j.intimp.2021.108065] [PMID: 34426119]
[161]
Zhu, Y.; Li, X.; Chen, J.; Chen, T.; Shi, Z.; Lei, M.; Zhang, Y.; Bai, P.; Li, Y.; Fei, X. The pentacyclic triterpene Lupeol switches M1 macrophages to M2 and ameliorates experimental inflammatory bowel disease. Int. Immunopharmacol., 2016, 30, 74-84.
[http://dx.doi.org/10.1016/j.intimp.2015.11.031] [PMID: 26655877]
[162]
Zhang, N.; Wu, Y.; Zhong, W.; Xia, G.; Xia, H.; Wang, L.; Wei, X.; Li, Y.; Shang, H.; He, H.; Lin, S. Multiple anti-non-alcoholic steatohepatitis (NASH) efficacies of isopropylidenyl anemosapogenin via farnesoid X receptor activation and TFEB-mediated autophagy. Phytomedicine, 2022, 102, 154148.
[http://dx.doi.org/10.1016/j.phymed.2022.154148] [PMID: 35576742]
[163]
Wang, L.Y.; Cheng, K.C. Glycyrrhizic acid increases glucagon like peptide-1 secretion via TGR5 activation in type 1-like diabetic rats. Biomed. Pharmacother., 2017, 95, 599-604.
[164]
Zenone, T.; Blanc, Q. Rhabdomyolyse liée à une hypokaliémie profonde par intoxication chronique à la glycyrrhizine. Rev. Med. Interne, 2009, 30(1), 78-80.
[http://dx.doi.org/10.1016/j.revmed.2008.04.002] [PMID: 18486280]
[165]
Zhang, H.F.; Shi, L.J.; Song, G.Y. Protective effects of matrine against progression of high-fructose diet-induced steatohepatitis by enhancing antioxidant and anti-inflammatory defences involving Nrf2 translocation. Food Chem. Toxicol., 2013, 55, 70-77.
[166]
Zhang, H.; Yang, L.; Wang, Y.; Huang, W.; Li, Y.; Chen, S.; Song, G.; Ren, L. Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sci., 2020, 257, 118090.
[http://dx.doi.org/10.1016/j.lfs.2020.118090] [PMID: 32679144]
[167]
Song, C.Y. Sophocarpine alleviates hepatocyte steatosis through activating AMPK signaling pathway. Toxicol. In Vitro, 2013, 27(3), 1065-1071.
[168]
Sylvester Darvin, S.; Toppo, E. Esakkimuthu, S Hepatoprotective effect of bisbenzylisoquinoline alkaloid tiliamosine from Tiliacora racemosa in high-fat diet/diethylnitrosamine-induced non-alcoholic steatohepatitis. Biomed. Pharmacother., 2018, 108, 963-973.
[169]
Sharma, A.; Anand, S.K.; Singh, N.; Dwivedi, U.N.; Kakkar, P. Berbamine induced AMPK activation regulates mTOR/SREBP-1c axis and Nrf2/ARE pathway to allay lipid accumulation and oxidative stress in steatotic HepG2 cells. Eur. J. Pharmacol., 2020, 882, 173244.
[http://dx.doi.org/10.1016/j.ejphar.2020.173244] [PMID: 32526241]
[170]
Tian, Y.; Cai, J.; Gui, W.; Nichols, R.G.; Koo, I.; Zhang, J.; Anitha, M.; Patterson, A.D. Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation. Drug Metab. Dispos., 2019, 47(2), 86-93.
[http://dx.doi.org/10.1124/dmd.118.083691] [PMID: 30409838]
[171]
Xie, W.; Gu, D.; Li, J.; Cui, K.; Zhang, Y. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice. PLoS One, 2011, 6(9), e24520.
[http://dx.doi.org/10.1371/journal.pone.0024520] [PMID: 21915347]
[172]
Chen, W.; Miao, Y.Q.; Fan, D.J.; Yang, S.S.; Lin, X.; Meng, L.K.; Tang, X. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 2011, 12(2), 705-711.
[http://dx.doi.org/10.1208/s12249-011-9632-z] [PMID: 21637946]
[173]
Feng, R.; Zhao, Z.X.; Ma, S.R.; Guo, F.; Wang, Y.; Jiang, J.D. Gut Microbiota-regulated pharmacokinetics of berberine and active metabolites in beagle dogs after oral administration. Front. Pharmacol., 2018, 9, 214.
[http://dx.doi.org/10.3389/fphar.2018.00214] [PMID: 29618977]
[174]
Cheng, H.; Liu, J.; Tan, Y.; Feng, W.; Peng, C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J. Pharm. Anal., 2022, 12(4), 541-555.
[http://dx.doi.org/10.1016/j.jpha.2021.10.003] [PMID: 36105164]
[175]
Qiang, X.; Xu, L.; Zhang, M.; Zhang, P.; Wang, Y.; Wang, Y.; Zhao, Z.; Chen, H.; Liu, X.; Zhang, Y. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress. Biochem. Biophys. Res. Commun., 2016, 472(4), 603-609.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.019] [PMID: 26970305]
[176]
Yue, R.; Jin, G.; Wei, S.; Huang, H.; Su, L.; Zhang, C.; Xu, Y.; Yang, J.; Liu, M.; Chu, Z.; Yu, C. Immunoregulatory effect of koumine on nonalcoholic fatty liver disease rats. J. Immunol. Res., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/8325102] [PMID: 30915371]
[177]
Ohashi, T.; Nakade, Y.; Ibusuki, M.; Kitano, R.; Yamauchi, T.; Kimoto, S.; Inoue, T.; Kobayashi, Y.; Sumida, Y.; Ito, K.; Nakao, H.; Umezawa, K.; Yoneda, M. Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice. PLoS One, 2019, 14(1), e0210068.
[http://dx.doi.org/10.1371/journal.pone.0210068] [PMID: 30689650]
[178]
Veskovic, M.; Mladenovic, D.; Milenkovic, M.; Tosic, J.; Borozan, S.; Gopcevic, K.; Labudovic-Borovic, M.; Dragutinovic, V.; Vucevic, D.; Jorgacevic, B.; Isakovic, A.; Trajkovic, V.; Radosavljevic, T. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur. J. Pharmacol., 2019, 848, 39-48.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.043] [PMID: 30689995]
[179]
BrahmaNaidu, P.; Nemani, H.; Meriga, B.; Mehar, S.K.; Potana, S.; Ramgopalrao, S. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chem. Biol. Interact., 2014, 221, 42-51.
[http://dx.doi.org/10.1016/j.cbi.2014.07.008] [PMID: 25087745]
[180]
Wang, G.E.; Li, Y.F.; Zhai, Y.J.; Gong, L.; Tian, J.Y.; Hong, M.; Yao, N.; Wu, Y.P.; Kurihara, H.; He, R.R. Theacrine protects against nonalcoholic fatty liver disease by regulating acylcarnitine metabolism. Metabolism, 2018, 85, 227-239.
[http://dx.doi.org/10.1016/j.metabol.2018.04.011] [PMID: 29727630]
[181]
Zhang, D.D.; Zhang, J.G.; Wu, X.; Liu, Y.; Gu, S.Y.; Zhu, G.H.; Wang, Y.Z.; Liu, G.L.; Li, X.Y. Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells. Front. Pharmacol., 2015, 6, 238.
[http://dx.doi.org/10.3389/fphar.2015.00238] [PMID: 26539118]
[182]
Zheng, X.; Dai, W.; Chen, X.; Wang, K.; Zhang, W.; Liu, L.; Hou, J. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J. Biomed. Sci., 2015, 22(1), 105.
[http://dx.doi.org/10.1186/s12929-015-0206-3] [PMID: 26572131]
[183]
Fan, S.; Guo, L.; Zhang, Y.; Sun, Q.; Yang, B.; Huang, C. Okra polysaccharide improves metabolic disorders in high-fat diet-induced obese C57BL/6 mice. Mol. Nutr. Food Res., 2013, 57(11), 2075-2078.
[http://dx.doi.org/10.1002/mnfr.201300054] [PMID: 23894043]
[184]
Zhou, G.D.; Li, M.R.; Zhang, J.; Pan, D.; Zhao, S.X.; Yang, J.F.; Yu, J.; Zhao, J.M. Chitosan ameliorates the severity of steatohepatitis induced by high fat diet in rats. Scand. J. Gastroenterol., 2008, 43(11), 1371-1377.
[http://dx.doi.org/10.1080/00365520802240230] [PMID: 18654934]
[185]
Zhang, J.; Feng, Q. Pharmacological effects and molecular protective mechanisms of astragalus polysaccharides on nonalcoholic fatty liver disease. Front. Pharmacol., 2022, 13, 854674.
[http://dx.doi.org/10.3389/fphar.2022.854674] [PMID: 35308224]
[186]
Xiao, J.; Xing, F.; Huo, J.; Fung, M.L.; Liong, E.C.; Ching, Y.P.; Xu, A.; Chang, R.C.C.; So, K.F.; Tipoe, G.L. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Sci. Rep., 2014, 4(1), 5587.
[http://dx.doi.org/10.1038/srep05587] [PMID: 24998389]
[187]
Wang, J.M.; Sun, X.Y.; Ouyang, J.M. Structural characterization, antioxidant activity, and biomedical application of astragalus polysaccharide degradation products. Int. J. Polym. Sci., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/5136185]
[188]
Sheng, Z.; Liu, J.; Yang, B. Structure differences of water soluble polysaccharides in astragalus membranaceus induced by origin and their bioactivity. Foods, 2021, 10(8), 1755.
[http://dx.doi.org/10.3390/foods10081755] [PMID: 34441532]
[189]
Huang, X.; Xu, M.; Shirahata, T.; Li, W.; Koike, K.; Kojima-Yuasa, A.; Yuasa, I.; Kobayashi, Y. Anti-steatosis compounds from leaves of Mallotus furetianus. Nat. Prod. Res., 2018, 32(12), 1459-1462.
[http://dx.doi.org/10.1080/14786419.2017.1350664] [PMID: 28693358]
[190]
Lan, T.; Yu, Y.; Zhang, J.; Li, H.; Weng, Q.; Jiang, S.; Tian, S.; Xu, T.; Hu, S.; Yang, G.; Zhang, Y.; Wang, W.; Wang, L.; Zhu, Q.; Rong, X.; Guo, J. Cordycepin ameliorates nonalcoholic steatohepatitis by activation of the amp‐activated protein kinase signaling pathway. Hepatology, 2021, 74(2), 686-703.
[http://dx.doi.org/10.1002/hep.31749] [PMID: 33576035]
[191]
Yu, P.; Hu, C.; Meehan, E.J.; Chen, L. X-ray crystal structure and antioxidant activity of salidroside, a phenylethanoid glycoside. Chem. Biodivers., 2007, 4(3), 508-513.
[http://dx.doi.org/10.1002/cbdv.200790043] [PMID: 17372953]
[192]
Dhar, P.; Bajpai, P.K.; Tayade, A.B.; Chaurasia, O.P.; Srivastava, R.B.; Singh, S.B. Chemical composition and antioxidant capacities of phytococktail extracts from trans-Himalayan cold desert. BMC Complement. Altern. Med., 2013, 13(1), 259.
[http://dx.doi.org/10.1186/1472-6882-13-259] [PMID: 24098968]
[193]
Wu, Y.L.; Lian, L.H.; Jiang, Y.Z.; Nan, J.X. Hepatoprotective effects of salidroside on fulminant hepatic failure induced by D -galactosamine and lipopolysaccharide in mice. J. Pharm. Pharmacol., 2010, 61(10), 1375-1382.
[http://dx.doi.org/10.1211/jpp.61.10.0015] [PMID: 19814871]
[194]
Wu, Y.L.; Piao, D.M.; Han, X.H.; Nan, J.X. Protective effects of salidroside against acetaminophen-induced toxicity in mice. Biol. Pharm. Bull., 2008, 31(8), 1523-1529.
[http://dx.doi.org/10.1248/bpb.31.1523] [PMID: 18670083]
[195]
Yuan, Y.; Wu, S.J.; Liu, X.; Zhang, L.L. Antioxidant effect of salidroside and its protective effect against furan-induced hepatocyte damage in mice. Food Funct., 2013, 4(5), 763-769.
[http://dx.doi.org/10.1039/c3fo00013c] [PMID: 23507802]
[196]
Yang, Z.; Wang, H.; Zuo, T.; Guan, L.; Dai, N. Salidroside alleviates oxidative stress in the liver with non- alcoholic steatohepatitis in rats. BMC Pharmacol. Toxicol., 2016, 17(1), 16.
[http://dx.doi.org/10.1186/s40360-016-0059-8] [PMID: 27075663]
[197]
Xu, L.; Nagata, N.; Ota, T. Impact of Glucoraphanin-Mediated Activation of Nrf2 on non-alcoholic fatty liver disease with a focus on mitochondrial dysfunction. Int. J. Mol. Sci., 2019, 20(23), 5920.
[http://dx.doi.org/10.3390/ijms20235920] [PMID: 31775341]
[198]
Nagata, N.; Xu, L.; Kohno, S.; Ushida, Y.; Aoki, Y.; Umeda, R.; Fuke, N.; Zhuge, F.; Ni, Y.; Nagashimada, M.; Takahashi, C.; Suganuma, H.; Kaneko, S.; Ota, T. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes, 2017, 66(5), 1222-1236.
[http://dx.doi.org/10.2337/db16-0662] [PMID: 28209760]
[199]
Sheng, X.; Wang, M.; Lu, M.; Xi, B.; Sheng, H.; Zang, Y.Q. Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab., 2011, 300(5), E886-E893.
[http://dx.doi.org/10.1152/ajpendo.00332.2010] [PMID: 21364120]
[200]
Sheng, X.; Zhu, X.; Zhang, Y.; Cui, G.; Peng, L.; Lu, X.; Zang, Y.Q. Rhein protects against obesity and related metabolic disorders through liver X receptor-mediated uncoupling protein 1 upregulation in brown adipose tissue. Int. J. Biol. Sci., 2012, 8(10), 1375-1384.
[http://dx.doi.org/10.7150/ijbs.4575] [PMID: 23139635]
[201]
Liu, L.; Li, W.; Sasaki, T.; Asada, Y.; Koike, K. Juglanone, a novel α-tetralonyl derivative with potent antioxidant activity from Juglans mandshurica. J. Nat. Med., 2010, 64(4), 496-499.
[http://dx.doi.org/10.1007/s11418-010-0435-4] [PMID: 20571925]
[202]
Fang, Q.; Li, X.; Wang, M.; Qiao, X.; Huang, F.; Hu, C.; Xue, Y.; Zhao, S.; Lin, Y. Walnut green husk ethanol extract improves gut microbiota and their metabolites associated with NLRP3 in non-alcoholic steatohepatitis. Food Funct., 2022, 13(11), 6387-6403.
[http://dx.doi.org/10.1039/D2FO00012A] [PMID: 35616069]
[203]
Cheng, S.; Liang, S.; Liu, Q.; Deng, Z.; Zhang, Y.; Du, J.; Zhang, Y.; Li, S.; Cheng, B.; Ling, C. Diosgenin prevents high-fat diet-induced rat non-alcoholic fatty liver disease through the AMPK and LXR signaling pathways. Int. J. Mol. Med., 2018, 41(2), 1089-1095.
[PMID: 29207101]
[204]
Zhang, M.; Li, J.; Zhu, X.; Zhang, Y.; Ye, S.; Leng, Y.; Yang, T.; Zhang, H.; Kong, L. Physalin B ameliorates nonalcoholic steatohepatitis by stimulating autophagy and NRF2 activation mediated improvement in oxidative stress. Free Radic. Biol. Med., 2021, 164, 1-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.020] [PMID: 33388433]
[205]
Burris, T.P.; Montrose, C.; Houck, K.A.; Osborne, H.E.; Bocchinfuso, W.P.; Yaden, B.C.; Cheng, C.C.; Zink, R.W.; Barr, R.J.; Hepler, C.D.; Krishnan, V.; Bullock, H.A.; Burris, L.L.; Galvin, R.J.; Bramlett, K.; Stayrook, K.R. The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Mol. Pharmacol., 2005, 67(3), 948-954.
[http://dx.doi.org/10.1124/mol.104.007054] [PMID: 15602004]
[206]
Nakanishi, S.; Toki, S.; Saitoh, Y.; Tsukuda, E.; Kawahara, K.; Ando, K.; Matsuda, Y. Isolation of myosin light chain kinase inhibitors from microorganisms: dehydroaltenusin, altenusin, atrovenetinone, and cyclooctasulfur. Biosci. Biotechnol. Biochem., 1995, 59(7), 1333-1335.
[http://dx.doi.org/10.1271/bbb.59.1333] [PMID: 7670197]
[207]
Gao, X.; Fu, T.; Wang, C.; Ning, C.; Liu, K.; Liu, Z.; Sun, H.; Ma, X.; Huo, X.; Yang, X.; Zou, M.; Meng, Q. Yangonin protects against cholestasis and hepatotoxity via activation of farnesoid X receptor in vivo and in vitro. Toxicol. Appl. Pharmacol., 2018, 348, 105-116.
[http://dx.doi.org/10.1016/j.taap.2018.04.015] [PMID: 29660435]
[208]
Zheng, Z.; Zhao, Z.; Li, S.; Lu, X.; Jiang, M.; Lin, J.; An, Y.; Xie, Y.; Xu, M.; Shen, W.; Guo, G.L.; Huang, Y.; Li, S.; Zhang, X.; Xie, W. Altenusin, a nonsteroidal microbial metabolite, attenuates nonalcoholic fatty liver disease by activating the farnesoid X receptor. Mol. Pharmacol., 2017, 92(4), 425-436.
[http://dx.doi.org/10.1124/mol.117.108829] [PMID: 28739572]
[209]
Maithilikarpagaselvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Sripradha, R.; Badhe, B. Curcumin inhibits hyperlipidemia and hepatic fat accumulation in high-fructose-fed male Wistar rats. Pharm. Biol., 2016, 54(12), 2857-2863.
[http://dx.doi.org/10.1080/13880209.2016.1187179] [PMID: 27241764]
[210]
Yan, C.; Zhang, Y.; Zhang, X. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed. Pharmacother., 2018, 105, 274-281.
[211]
Dong, S.; Zhao, S.; Wu, Z.; Yang, J.; Xie, X.; Yu, B.; Nie, S. Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma–LXRalpha–ABCA1 passway. Mol. Cell. Biochem., 2011, 358(1-2), 281-285.
[http://dx.doi.org/10.1007/s11010-011-0978-z] [PMID: 21748336]
[212]
Ding, X.; Jian, T.; Li, J.; Lv, H.; Tong, B.; Li, J.; Meng, X.; Ren, B.; Chen, J. Chicoric acid ameliorates nonalcoholic fatty liver disease via the AMPK/Nrf2/NFκB signaling pathway and restores gut microbiota in high-fat-diet-fed mice. Oxid. Med. Cell. Longev., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/9734560] [PMID: 33204402]
[213]
Mohammadi, M.; Abbasalipourkabir, R.; Ziamajidi, N. Fish oil and chicoric acid combination protects better against palmitate-induced lipid accumulation via regulating AMPK-mediated SREBP-1/FAS and PPARα/UCP2 pathways. Arch. Physiol. Biochem., 2023, 129(1), 1-9.
[http://dx.doi.org/10.1080/13813455.2020.1789881] [PMID: 32654534]
[214]
Guo, R.; Zhao, B.; Wang, Y.; Wu, D.; Wang, Y.; Yu, Y.; Yan, Y.; Zhang, W.; Liu, Z.; Liu, X. Cichoric acid prevents free-fatty-acid-induced lipid metabolism disorders via regulating smal1 in HepG2 cells. J. Agric. Food Chem., 2018, 66(37), 9667-9678.
[http://dx.doi.org/10.1021/acs.jafc.8b02147] [PMID: 30036051]
[215]
Han, L.; Bittner, S.; Dong, D.; Cortez, Y.; Dulay, H.; Arshad, S.; Shen, W.J.; Kraemer, F.B.; Azhar, S. Creosote bush-derived NDGA attenuates molecular and pathological changes in a novel mouse model of non-alcoholic steatohepatitis (NASH). Mol. Cell. Endocrinol., 2019, 498, 110538.
[http://dx.doi.org/10.1016/j.mce.2019.110538] [PMID: 31415794]
[216]
Wei, Z.; Xue, Y.; Xue, Y.; Cheng, J.; Lv, G.; Chu, L.; Ma, Z.; Guan, S. Ferulic acid attenuates non-alcoholic steatohepatitis by reducing oxidative stress and inflammation through inhibition of the ROCK/NF-κB signaling pathways. J. Pharmacol. Sci., 2021, 147(1), 72-80.
[http://dx.doi.org/10.1016/j.jphs.2021.05.006] [PMID: 34294375]
[217]
Drygalski, K.; Siewko, K.; Chomentowski, A.; Odrzygóźdź, C.; Zalewska, A.; Krętowski, A.; Maciejczyk, M. Phloroglucinol Strengthens the Antioxidant Barrier and Reduces Oxidative/Nitrosative Stress in Nonalcoholic Fatty Liver Disease (NAFLD). Oxid. Med. Cell. Longev., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/8872702] [PMID: 33510844]
[218]
Nobili, V.; Alisi, A.; Mosca, A.; Crudele, A.; Zaffina, S.; Denaro, M.; Smeriglio, A.; Trombetta, D. The antioxidant effects of hydroxytyrosol and vitamin E on pediatric nonalcoholic fatty liver disease, in a clinical trial: A new treatment? Antioxid. Redox Signal., 2019, 31(2), 127-133.
[http://dx.doi.org/10.1089/ars.2018.7704] [PMID: 30588836]
[219]
Leng, J.; Huang, F.; Hai, Y.; Tian, H.; Liu, W.; Fang, Y.; Hu, Y.; Peng, J. Amelioration of non-alcoholic steatohepatitis by Qushi Huayu decoction is associated with inhibition of the intestinal mitogen-activated protein kinase pathway. Phytomedicine, 2020, 66, 153135.
[http://dx.doi.org/10.1016/j.phymed.2019.153135] [PMID: 31790895]
[220]
Ji, G.; Wang, Y.; Deng, Y.; Li, X.; Jiang, Z. Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy. Lipids Health Dis., 2015, 14(1), 134.
[http://dx.doi.org/10.1186/s12944-015-0139-6] [PMID: 26498332]
[221]
Hoang, M.H.; Jia, Y.; Jun, H.; Lee, J.H.; Hwang, K.Y.; Choi, D.W.; Um, S.J.; Lee, B.Y.; You, S.G.; Lee, S.J. Taurine is a liver X receptor‐α ligand and activates transcription of key genes in the reverse cholesterol transport without inducing hepatic lipogenesis. Mol. Nutr. Food Res., 2012, 56(6), 900-911.
[http://dx.doi.org/10.1002/mnfr.201100611] [PMID: 22707265]
[222]
Nakamura, A.; Kitamura, N.; Yokoyama, Y.; Uchida, S.; Kumadaki, K.; Tsubota, K.; Watanabe, M. Melon GliSODin® Prevents diet-Induced NASH onset by reducing fat synthesis and improving liver function. Nutrients, 2019, 11(8), 1779.
[http://dx.doi.org/10.3390/nu11081779] [PMID: 31374969]
[223]
Kathirvel, E.; Morgan, K.; French, S.W.; Morgan, T.R. Acetyl-l-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease. Nutr. Res., 2013, 33(11), 932-941.
[http://dx.doi.org/10.1016/j.nutres.2013.08.001] [PMID: 24176233]
[224]
Niu, W.X.; Bao, Y.Y.; Zhang, N.; Lu, Z.N.; Ge, M.X.; Li, Y.M.; Li, Y.; Chen, M.H.; He, H.W. Dehydromevalonolactone ameliorates liver fibrosis and inflammation by repressing activation of NLRP3 inflammasome. Bioorg. Chem., 2022, 127, 105971.
[http://dx.doi.org/10.1016/j.bioorg.2022.105971] [PMID: 35749855]
[225]
Lytle, K.A.; Wong, C.P.; Jump, D.B. Docosahexaenoic acid blocks progression of western diet-induced nonalcoholic steatohepatitis in obese Ldlr-/- mice. PLoS One, 2017, 12(4), e0173376.
[http://dx.doi.org/10.1371/journal.pone.0173376] [PMID: 28422962]
[226]
Beppu, F.; Hosokawa, M.; Yim, M.J.; Shinoda, T.; Miyashita, K. Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A(y) mice. Lipids, 2013, 48(5), 449-455.
[http://dx.doi.org/10.1007/s11745-013-3784-4] [PMID: 23516000]
[227]
Huang, T.; Yu, J.; Ma, Z.; Fu, Q.; Liu, S.; Luo, Z.; Liu, K.; Yu, L.; Miao, W.; Yu, D.; Song, Z.; Li, Y.; Zhou, L.; Xu, G. Translatomics Probes into the role of lycopene on improving hepatic steatosis induced by high-fat diet. Front. Nutr., 2021, 8, 727785.
[http://dx.doi.org/10.3389/fnut.2021.727785] [PMID: 34796193]
[228]
Epifano, F.; Genovese, S.; James Squires, E.; Gray, M.A. Nelumal A, the active principle from Ligularia nelumbifolia, is a novel farnesoid X receptor agonist. Bioorg. Med. Chem. Lett., 2012, 22(9), 3130-3135.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.057] [PMID: 22472691]
[229]
Takahashi, N.; Kang, M.S.; Kuroyanagi, K.; Goto, T.; Hirai, S.; Ohyama, K.; Lee, J.Y.; Kawada, T.; Yu, R.; Yano, M.; Sasaki, T.; Murakami, S. Auraptene, a citrus fruit compound, regulates gene expression as a PPARα agonist in HepG2 hepatocytes. Biofactors, 2008, 33(1), 25-32.
[http://dx.doi.org/10.1002/biof.5520330103] [PMID: 19276534]
[230]
Kuroyanagi, K.; Kang, M.S.; Goto, T.; Hirai, S.; Ohyama, K.; Kusudo, T.; Yu, R.; Yano, M.; Sasaki, T.; Takahashi, N.; Kawada, T. Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 2008, 366(1), 219-225.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.119] [PMID: 18060855]
[231]
Wang, D.; Cai, Y.; Pan, S.; Zhang, L.; Chen, Y.; Chen, F.; Jin, M.; Yan, M.; Li, X.; Chen, Z. Effect of Total Flavone of Haw Leaves on Nuclear Factor Erythroid-2 related factor and other related factors in nonalcoholic steatohepatitis rats. Chin. J. Integr. Med., 2018, 24(4), 265-271.
[http://dx.doi.org/10.1007/s11655-016-2450-0] [PMID: 26919834]
[232]
Haga, S. YiMin; Yamaki, H.; Jin, S.; Sogon, T.; Morita, N.; Ozaki, M. Extracts of bilberry (Vaccinium myrtillus L.) fruits improve liver steatosis and injury in mice by preventing lipid accumulation and cell death. Biosci. Biotechnol. Biochem., 2019, 83(11), 2110-2120.
[http://dx.doi.org/10.1080/09168451.2019.1634514] [PMID: 31244392]
[233]
Lee, D.H.; Lee, I.H.; Hong, J.T. Fermented field water-dropwort] (Oenanthe javanica) alleviates diet-induced non-alcoholic steatohepatitis. Food Agric. Immunol., 2022, 33(1), 20-34.
[http://dx.doi.org/10.1080/09540105.2021.2022603]
[234]
Ore, A.; Akinloye, O. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina (Kaunas), 2019, 55(2), 26.
[http://dx.doi.org/10.3390/medicina55020026] [PMID: 30682878]
[235]
Zhang, K.; Yuan, Y.; Dawa, Z.; Liu, F.; Yao, Y.; Wang, M.; Zhu, C.; Lin, C. Integrating metabolomics and network pharmacology to reveal the mechanisms of Delphinium brunonianum extract against nonalcoholic steatohepatitis. J. Ethnopharmacol., 2022, 293, 115268.
[http://dx.doi.org/10.1016/j.jep.2022.115268] [PMID: 35398502]
[236]
Watanabe, K.; Afrin, R.; Sreedhar, R.; Karuppagounder, V.; Harima, M.; Alexander, X.; Velayutham, R.; Arumugam, S. pharmacological investigation of Ceraceomyces tessulatus (Agaricomycetes) in mice with nonalcoholic steatohepatitis. Int. J. Med. Mushrooms, 2020, 22(7), 683-692.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2020035048] [PMID: 32865925]
[237]
Qushawy, M.; Mortagi, Y.; Alshaman, R.; Mokhtar, H.I.; Hisham, F.A.; Alattar, A.; Liang, D.; Enan, E.T.; Eltrawy, A.H.; Alamrani, Z.H.; Alshmrani, S.A.; Zaitone, S.A. Formulation and characterization of O/W nanoemulsions of hemp seed oil for protection from steatohepatitis: Analysis of hepatic free fatty acids and oxidation markers. Pharmaceuticals, 2022, 15(7), 864.
[http://dx.doi.org/10.3390/ph15070864] [PMID: 35890162]
[238]
Xu, Z.; Li, Y. Wang, J Effect of omega-3 polyunsaturated fatty acids to reverse biopsy-proven parenteral nutrition-associated liver disease in adults. Clin. Nutr., 2012, 31(2), 217-223.
[239]
Pihlanto, A.; Mattila, P.; Mäkinen, S.; Pajari, A.M. Bioactivities of alternative protein sources and their potential health benefits. Food Funct., 2017, 8(10), 3443-3458.
[http://dx.doi.org/10.1039/C7FO00302A] [PMID: 28804797]
[240]
González-Ortiz, M.; Martínez-Abundis, E.; Espinel-Bermúdez, M.C.; Pérez-Rubio, K.G. Effect of pomegranate juice on insulin secretion and sensitivity in patients with obesity. Ann. Nutr. Metab., 2011, 58(3), 220-223.
[http://dx.doi.org/10.1159/000330116] [PMID: 21811060]
[241]
Mcfarlin, B.K.; Strohacker, K.A.; Kueht, M.L. Pomegranate seed oil consumption during a period of high-fat feeding reduces weight gain and reduces type 2 diabetes risk in CD-1 mice. Br. J. Nutr., 2009, 102(1), 54-59.