Role of Quercetin in DNA Repair: Possible Target to Combat Drug Resistance in Diabetes

Page: [670 - 682] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Diabetes Mellitus (DM) is referred to as hyperglycemia in either fasting or postprandial phases. Oxidative stress, which is defined by an excessive amount of reactive oxygen species (ROS) production, increased exposure to external stress, and an excessive amount of the cellular defense system against them, results in cellular damage. Increased DNA damage is one of the main causes of genomic instability, and genetic changes are an underlying factor in the emergence of cancer. Through covalent connections with DNA and proteins, quercetin has been demonstrated to offer protection against the creation of oxidative DNA damage. It has been found that quercetin shields DNA from possible oxidative stress-related harm by reducing the production of ROS. Therefore, Quercetin helps to lessen DNA damage and improve the ability of DNA repair mechanisms. This review mainly focuses on the role of quercetin in repairing DNA damage and compensating for drug resistance in diabetic patients. Data on the target topic was obtained from major scientific databases, including SpringerLink, Web of Science, Google Scholar, Medline Plus, PubMed, Science Direct, and Elsevier. In preclinical studies, quercetin guards against DNA deterioration by regulating the degree of lipid peroxidation and enhancing the antioxidant defense system. By reactivating antioxidant enzymes, decreasing ROS levels, and decreasing the levels of 8-hydroxydeoxyguanosine, Quercetin protects DNA from oxidative damage. In clinical studies, it was found that quercetin supplementation was related to increased antioxidant capacity and decreased risk of type 2 diabetes mellitus in the experimental group as compared to the placebo group. It is concluded that quercetin has a significant role in DNA repair in order to overcome drug resistance in diabetes.

[1]
Kelly TJ, Brown GW. Regulation of chromosome replication. Annu Rev Biochem 2000; 69(1): 829-80.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.829] [PMID: 10966477]
[2]
Xian D, Lai R, Song J, Xiong X, Zhong J. Emerging perspective: role of increased ROS and redox imbalance in skin carcinogenesis. Oxid Med Cell Longev 2019; 2019: 8127362..
[http://dx.doi.org/10.1155/2019/8127362]
[3]
Lee HB, Yu MR, Yang Y, Jiang Z, Ha H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 2003; 14(8) (Suppl. 3): S241-5.
[http://dx.doi.org/10.1097/01.ASN.0000077410.66390.0F] [PMID: 12874439]
[4]
Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2004; 34(12): 785-96.
[http://dx.doi.org/10.1111/j.1365-2362.2004.01429.x] [PMID: 15606719]
[5]
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54(6): 1615-25.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[6]
Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23(5): 599-622.
[http://dx.doi.org/10.1210/er.2001-0039] [PMID: 12372842]
[7]
Greenman IC, Gomez E, Moore CEJ, Herbert TP. Distinct glucose-dependent stress responses revealed by translational profiling in pancreatic β-cells. J Endocrinol 2007; 192(1): 179-87.
[http://dx.doi.org/10.1677/joe.1.06898] [PMID: 17210755]
[8]
Ayoub WS, Ritu , Zahoor I, et al. Exploiting the polyphenolic potential of honey in the prevention of chronic diseases. Food Chem Adv 2023; 3: 100373.
[http://dx.doi.org/10.1016/j.focha.2023.100373]
[9]
Gitika B, Sai Ram M, Sharma SK, Ilavazhagan G, Banerjee PK. Quercetin protects C6 glial cells from oxidative stress induced by tertiary-butylhydroperoxide. Free Radic Res 2006; 40(1): 95-102.
[http://dx.doi.org/10.1080/10715760500335447] [PMID: 16298764]
[10]
Azqueta A, Collins A. Polyphenols and DNA Damage: A Mixed Blessing. Nutrients 2016; 8(12): 785.
[http://dx.doi.org/10.3390/nu8120785] [PMID: 27918471]
[11]
Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr 2005; 81(1) (Suppl.): 215S-7S.
[http://dx.doi.org/10.1093/ajcn/81.1.215S] [PMID: 15640483]
[12]
Fenech MF, Bull CF, Van Klinken BJW. Protective effects of micronutrient supplements, phytochemicals and phytochemical-rich beverages and foods against dna damage in humans: a systematic review of randomized controlled trials and prospective studies. Adv Nutr 2023; 14(6): 1337-58.
[http://dx.doi.org/10.1016/j.advnut.2023.08.004] [PMID: 37573943]
[13]
Singh G, Thaker R, Sharma A, Parmar D. Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice. Environ Sci Pollut Res Int 2021; 28(16): 20517-36.
[http://dx.doi.org/10.1007/s11356-020-11740-w] [PMID: 33410021]
[14]
Alam W, Ali A, Martins AMC, Hussain Y, Khan H. Role of quercetin in DNA repair and dysregulated metabolism. PHYTONutrients 2022; 1: 31-47.
[15]
Goodarzi MT, Navidi AA, Rezaei M, Babahmadi-Rezaei H. Oxidative damage to DNA and lipids: correlation with protein glycation in patients with type 1 diabetes. J Clin Lab Anal 2010; 24(2): 72-6.
[http://dx.doi.org/10.1002/jcla.20328] [PMID: 20333759]
[16]
Tatsch E, Bochi GV, Piva SJ, et al. Association between DNA strand breakage and oxidative, inflammatory and endothelial biomarkers in type 2 diabetes. Mutat Res 2012; 732(1-2): 16-20.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.01.004] [PMID: 22285873]
[17]
Urbaniak SK, Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. 8-Oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a potential biomarker for gestational diabetes mellitus (GDM) development. Molecules 2020; 25(1): 202.
[http://dx.doi.org/10.3390/molecules25010202] [PMID: 31947819]
[18]
Franke SR, Molz P, Mai C, et al. High consumption of sucrose induces DNA damage in male Wistar rats. An Acad Bras Cienc 2017; 89(4): 2657-62.
[http://dx.doi.org/10.1590/0001-3765201720160659] [PMID: 29267792]
[19]
Witczak M, Wilczyński J, Gulczyńska E, et al. What is the impact of gestational diabetes mellitus on frequency of structural chromosome aberrations in pregnant women and their offspring? Mutat Res Genet Toxicol Environ Mutagen 2017; 818: 27-30.
[http://dx.doi.org/10.1016/j.mrgentox.2017.04.003] [PMID: 28477878]
[20]
Salimi M, Broumand B, Mozdarani H. Association of elevated frequency of micronuclei in peripheral blood lymphocytes of type 2 diabetes patients with nephropathy complications. Mutagenesis 2016; 31(6): 627-33.
[http://dx.doi.org/10.1093/mutage/gew029] [PMID: 27335338]
[21]
Grindel A, Brath H, Nersesyan A, Knasmueller S, Wagner KH. Association of genomic instability with HbA1c levels and medication in diabetic patients. Sci Rep 2017; 7(1): 41985.
[http://dx.doi.org/10.1038/srep41985] [PMID: 28150817]
[22]
Kilarkaje N, Alfarhan MW, Al-Hussaini H. Role of peroxisome proliferator-activated receptor-gamma in type 2 diabetes-induced testicular DNA damage and repair in leptin receptor-deficient obese mice. FASEB J 2020; 34(S1): 1-1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.05022]
[23]
Ciminera AK, Shuck SC, Termini J. Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance 2021; 4(10): e202101159.
[http://dx.doi.org/10.26508/lsa.202101159] [PMID: 34426491]
[24]
Panigrahi G, Dorsey T, Tang W, Candia J, Zhang A, Ambs S. AACR 2022.
[25]
Lima JE. In Type 2 Diabetes-From Pathophysiology to Modern Management. IntechOpen. 2019.
[26]
Bartoli-Leonard F, Wilkinson FL, Schiro A, Serracino Inglott F, Alexander MY, Weston R. Loss of SIRT1 in diabetes accelerates DNA damage-induced vascular calcification. Cardiovasc Res 2021; 117(3): 836-49.
[http://dx.doi.org/10.1093/cvr/cvaa134] [PMID: 32402066]
[27]
Sanyal AJ. NASH: A global health problem. Hepatol Res 2011; 41(7): 670-4.
[http://dx.doi.org/10.1111/j.1872-034X.2011.00824.x] [PMID: 21711426]
[28]
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867(4): 166044.
[http://dx.doi.org/10.1016/j.bbadis.2020.166044] [PMID: 33378699]
[29]
Kumar V, Agrawal R, Pandey A, et al. Compromised DNA repair is responsible for diabetes-associated fibrosis. EMBO J 2020; 39(11): e103477.
[http://dx.doi.org/10.15252/embj.2019103477] [PMID: 32338774]
[30]
Amy Zhong , Melissa Chang , Theresa Yu , et al. Aberrant DNA damage response and DNA repair pathway in high glucose conditions. J Cancer Res Updates 2018; 7(3): 64-74.
[http://dx.doi.org/10.6000/1929-2279.2018.07.03.1] [PMID: 30498558]
[31]
Dai W, Jiang LJFIE. Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front Endocrinol 2019; 10: 570.
[http://dx.doi.org/10.3389/fendo.2019.00570]
[32]
Patti M-E, Corvera SJEr. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 2010; 31: 364-95.
[http://dx.doi.org/10.1210/er.2009-0027]
[33]
Seo AY, Joseph AM, Dutta D, Hwang JCY, Aris JP, Leeuwenburgh C. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 2010; 123(15): 2533-42.
[http://dx.doi.org/10.1242/jcs.070490] [PMID: 20940129]
[34]
Yoon Y, Galloway CA, Jhun BS, Yu TJA. Mitochondrial dynamics in diabetes. Antioxid Redox Signal 2011; 14(3): 439-57.
[35]
Golay A, Ybarra J. Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab 2005; 19(4): 649-63.
[http://dx.doi.org/10.1016/j.beem.2005.07.010] [PMID: 16311223]
[36]
Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008; 7(1): 45-56.
[http://dx.doi.org/10.1016/j.cmet.2007.10.013] [PMID: 18177724]
[37]
García-Ruiz C, Baulies A, Mari M, García-Rovés PM, Fernandez-Checa JC. Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: Cause or consequence? Free Radic Res 2013; 47(11): 854-68.
[http://dx.doi.org/10.3109/10715762.2013.830717] [PMID: 23915028]
[38]
Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med 2006; 119(5) (Suppl. 1): S10-6.
[http://dx.doi.org/10.1016/j.amjmed.2006.01.009] [PMID: 16563942]
[39]
Lillioja S, Young AA, Culter CL, et al. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest 1987; 80(2): 415-24.
[http://dx.doi.org/10.1172/JCI113088]
[40]
Mogensen M, Sahlin K, Fernstrom M, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 2007; 56(6): 1592-1599..
[http://dx.doi.org/10.2337/db06-0981]
[41]
Dyck D, Peters S, Glatz J, et al. Functional differences in lipid metabolism in resting skeletal muscle of various fiber types. Am J Physiol 1997; 272(3(1)): E340-51.
[42]
Anderson EJ, Yamazaki H, Neufer PD. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration J Biol Chem 2007; 282(43): 31257-66.
[http://dx.doi.org/10.1074/jbc.M706129200]
[43]
Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 2020; 12(6): 1864.
[http://dx.doi.org/10.3390/nu12061864] [PMID: 32585827]
[44]
Singh AP, Singh R, Verma SS, et al. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39(5): 1851-91.
[http://dx.doi.org/10.1002/med.21565] [PMID: 30741437]
[45]
Crowley MJ, Holleman R, Klamerus ML, Bosworth HB, Edelman D, Heisler M. Factors associated with persistent poorly controlled diabetes mellitus: Clues to improving management in patients with resistant poor control. Chronic Illn 2014; 10(4): 291-302.
[http://dx.doi.org/10.1177/1742395314523653] [PMID: 24567193]
[46]
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2015; 58(3): 429-42.
[http://dx.doi.org/10.1007/s00125-014-3460-0] [PMID: 25583541]
[47]
Sonne DP, Hemmingsen B. Comment on American Diabetes Association. Standards of Medical Care in Diabetes—2017. Diabetes Care 2017;40(Suppl. 1):S1–S135. Diabetes Care 2017; 40(7): e92-3.
[http://dx.doi.org/10.2337/dc17-0299] [PMID: 28637892]
[48]
Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm--2016 executive summary. official j Am Coll Endocrinol 2016; 22(1): 84-113.
[49]
Mearns ES, Saulsberry WJ, White CM, et al. Efficacy and safety of antihyperglycaemic drug regimens added to metformin and sulphonylurea therapy in Type 2 diabetes: a network meta-analysis. Diabet Med 2015; 32(12): 1530-40.
[http://dx.doi.org/10.1111/dme.12837] [PMID: 26104021]
[50]
Gross JL, Kramer CK, Leitão CB, et al. Effect of antihyperglycemic agents added to metformin and a sulfonylurea on glycemic control and weight gain in type 2 diabetes: a network meta-analysis. Ann Intern Med 2011; 154(10): 672-9.
[http://dx.doi.org/10.7326/0003-4819-154-10-201105170-00007] [PMID: 21576535]
[51]
Lozano-Ortega G, Goring S, Bennett HA, Bergenheim K, Sternhufvud C, Mukherjee J. Network meta-analysis of treatments for type 2 diabetes mellitus following failure with metformin plus sulfonylurea. Curr Med Res Opin 2016; 32(5): 807-16.
[http://dx.doi.org/10.1185/03007995.2015.1135110] [PMID: 26700585]
[52]
Abdulsalim S, Peringadi Vayalil M, Miraj SS. New fixed dose chemical combinations: the way forward for better diabetes type II management? Expert Opin Pharmacother 2016; 17(16): 2207-14.
[http://dx.doi.org/10.1080/14656566.2016.1241235] [PMID: 27700188]
[53]
Scheen AJ. DPP-4 inhibitor plus SGLT-2 inhibitor as combination therapy for type 2 diabetes: from rationale to clinical aspects. Expert Opin Drug Metab Toxicol 2016; 12(12): 1407-17.
[http://dx.doi.org/10.1080/17425255.2016.1215427] [PMID: 27435042]
[54]
Scheen AJ. Pharmacokinetic Characteristics and Clinical Efficacy of an SGLT2 Inhibitor Plus DPP-4 Inhibitor Combination Therapy in Type 2 Diabetes. Clin Pharmacokinet 2017; 56(7): 703-18.
[http://dx.doi.org/10.1007/s40262-016-0498-9] [PMID: 28039605]
[55]
Bommer C, Sagalova V, Heesemann E, et al. Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes Care 2018; 41(5): 963-70.
[http://dx.doi.org/10.2337/dc17-1962] [PMID: 29475843]
[56]
Roth GA, Abate D, Abate KH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1736-88.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7] [PMID: 30496103]
[57]
Zhou B, Lu Y, Hajifathalian K, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 2016; 387(10027): 1513-30.
[http://dx.doi.org/10.1016/S0140-6736(16)00618-8] [PMID: 27061677]
[58]
Dunachie S, Chamnan P. The double burden of diabetes and global infection in low and middle-income countries. Trans R Soc Trop Med Hyg 2019; 113(2): 56-64.
[http://dx.doi.org/10.1093/trstmh/try124] [PMID: 30517697]
[59]
van Crevel R, van de Vijver S, Moore DAJ. The global diabetes epidemic: what does it mean for infectious diseases in tropical countries? Lancet Diabetes Endocrinol 2017; 5(6): 457-68.
[http://dx.doi.org/10.1016/S2213-8587(16)30081-X] [PMID: 27499355]
[60]
Carrillo-Larco RM, Altez-Fernandez C, Ugarte-Gil C. Is diabetes associated with malaria and malaria severity? A systematic review of observational studies. Wellcome Open Res 2019; 4: 136.
[http://dx.doi.org/10.12688/wellcomeopenres.15467.3] [PMID: 31976376]
[61]
Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019; 19(1): 56-66.
[http://dx.doi.org/10.1016/S1473-3099(18)30605-4] [PMID: 30409683]
[62]
Naylor NR, Atun R, Zhu N, et al. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob Resist Infect Control 2018; 7(1): 58.
[http://dx.doi.org/10.1186/s13756-018-0336-y] [PMID: 29713465]
[63]
Woolhouse M, Waugh C, Perry MR, Nair H. Global disease burden due to antibiotic resistance – state of the evidence. J Glob Health 2016; 6(1): 010306.
[http://dx.doi.org/10.7189/jogh.06.010306] [PMID: 27350872]
[64]
Pavlou S, Lindsay J, Ingram R, Xu H, Chen M. Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunol 2018; 19(1): 24.
[http://dx.doi.org/10.1186/s12865-018-0261-0] [PMID: 29996768]
[65]
Lecube A, Pachón G, Petriz J, Hernández C, Simó R. Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PLoS One 2011; 6(8): e23366.
[http://dx.doi.org/10.1371/journal.pone.0023366] [PMID: 21876749]
[66]
Knapp S. Diabetes and infection: is there a link?--A mini-review. Gerontology 2013; 59(2): 99-104.
[http://dx.doi.org/10.1159/000345107] [PMID: 23182884]
[67]
Lye WC, Chan RKT, Lee EJC, Kumarasinghe G. Urinary tract infections in patients with diabetes mellitus. J Infect 1992; 24(2): 169-74.
[http://dx.doi.org/10.1016/0163-4453(92)92876-K] [PMID: 1569307]
[68]
Liu B, Yi H, Fang J, Han L, Zhou M, Guo Y. Antimicrobial resistance and risk factors for mortality of pneumonia caused by Klebsiella pneumoniae among diabetics: a retrospective study conducted in Shanghai, China. Infect Drug Resist 2019; 12: 1089-98.
[http://dx.doi.org/10.2147/IDR.S199642] [PMID: 31123410]
[69]
Kurup R, Ansari AA. A study to identify bacteriological profile and other risk factors among diabetic and non-diabetic foot ulcer patients in a Guyanese hospital setting. Diabetes Metab Syndr 2019; 13(3): 1871-6.
[http://dx.doi.org/10.1016/j.dsx.2019.04.024] [PMID: 31235108]
[70]
Micek ST, Wunderink RG, Kollef MH, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 2015; 19(1): 219.
[PMID: 25944081]
[71]
Rogers MAM, Mody L, Chenoweth C, Kaufman SR, Saint S. Incidence of antibiotic-resistant infection in long-term residents of skilled nursing facilities. Am J Infect Control 2008; 36(7): 472-5.
[http://dx.doi.org/10.1016/j.ajic.2007.10.016] [PMID: 18786449]
[72]
Patolia S, Abate G, Patel N, Patolia S, Frey S. Risk factors and outcomes for multidrug-resistant Gram-negative bacilli bacteremia. Ther Adv Infect Dis 2018; 5(1): 11-8.
[http://dx.doi.org/10.1177/2049936117727497] [PMID: 29344356]
[73]
Saade EA, Suwantara N, Zabarsky TF, Wilson B, Donskey CJ. Fluoroquinolone-Resistant Escherichia coli Infections after Transrectal Biopsy of the Prostate in the Veterans Affairs Healthcare System. Pathog Immun 2016; 1(2): 243-57.
[http://dx.doi.org/10.20411/pai.v1i2.123] [PMID: 27774521]
[74]
Khurram IM, Khan SA, Khwaja AA, et al. Risk factors for clinical infection in patients colonized with methicillin resistant Staphylococcus aureus (MRSA). J Pak Med Assoc 2004; 54(8): 408-12.
[PMID: 15461207]
[75]
Saibal MAA, Rahman SHZ, Nishat L, et al. Community acquired pneumonia in diabetic and non-diabetic hospitalized patients: presentation, causative pathogens and outcome. Bangladesh Med Res Counc Bull 2013; 38(3): 98-103.
[http://dx.doi.org/10.3329/bmrcb.v38i3.14336] [PMID: 23540185]
[76]
Núñez SA, Lacal V, Núñez J, Serruto G, Zárate MS, Verón MT. Antibiotic Resistance in Community-Acquired Intra-Abdominal Infections: Diabetes Mellitus as a Risk Factor. Surg Infect (Larchmt) 2020; 21(1): 62-8.
[http://dx.doi.org/10.1089/sur.2019.032] [PMID: 31441705]
[77]
Pinheiro HS, Mituiassu AM, Carminatti M, Braga AM, Bastos MG. Urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in kidney transplant patients. Transplant Proc 2010; 42(2): 486-7.
[http://dx.doi.org/10.1016/j.transproceed.2010.02.002] [PMID: 20304172]
[78]
Park SH, Choi SM, Lee DG, et al. Impact of extended-spectrum β-lactamase production on treatment outcomes of acute pyelonephritis caused by escherichia coli in patients without health care-associated risk factors. Antimicrob Agents Chemother 2015; 59(4): 1962-8.
[http://dx.doi.org/10.1128/AAC.04821-14] [PMID: 25583722]
[79]
Nakamura A, Miyake K, Misawa S, et al. Meropenem as predictive risk factor for isolation of multidrug-resistant Pseudomonas aeruginosa. J Hosp Infect 2013; 83(2): 153-5.
[http://dx.doi.org/10.1016/j.jhin.2012.10.005] [PMID: 23201400]
[80]
Chen LF, Chiu CT, Lo JY, et al. Clinical characteristics and antimicrobial susceptibility pattern of hospitalised patients with community-acquired urinary tract infections at a regional hospital in Taiwan. Healthc Infect 2014; 19(1): 20-5.
[http://dx.doi.org/10.1071/HI13033] [PMID: 25580164]
[81]
Chiu CC, Lin TC, Wu RX, et al. Etiologies of community-onset urinary tract infections requiring hospitalization and antimicrobial susceptibilities of causative microorganisms. J microbiol immunol infect 2017; 50(6): 879-88.
[82]
Ramos Lázaro J, Smithson A, Jovè Vidal N, Batida Vila MT. Clinical predictors of ceftriaxone resistance in microorganisms causing febrile urinary tract infections in men. Emergencias 2018; 30(1): 21-7.
[83]
Bonadio M, Costarelli S, Morelli G, Tartaglia T. The influence of diabetes mellitus on the spectrum of uropathogens and the antimicrobial resistance in elderly adult patients with urinary tract infection. BMC Infect Dis 2006; 6(1): 54.
[http://dx.doi.org/10.1186/1471-2334-6-54] [PMID: 16545130]
[84]
Srinivas A, Chandrashekar U, Shivashankara K, Pruthvi B. Clinical profile of urinary tract infections in diabetics and non-diabetics. Australas Med J 2014; 7(1): 29-34.
[http://dx.doi.org/10.4066/AMJ.2014.1906] [PMID: 24567764]
[85]
Papazafiropoulou A, Daniil I, Sotiropoulos A, et al. Urinary tract infection, uropathogens and antimicrobial resistance in diabetic and nondiabetic patients. Diabetes Res Clin Pract 2009; 85(1): e12-3.
[http://dx.doi.org/10.1016/j.diabres.2009.04.020] [PMID: 19481285]
[86]
Ho HJ, Tan MX, Chen MI, et al. Interaction between Antibiotic Resistance, Resistance Genes, and Treatment Response for Urinary Tract Infections in Primary Care. J Clin Microbiol 2019; 57(9): e00143-19.
[http://dx.doi.org/10.1128/JCM.00143-19] [PMID: 31243084]
[87]
Wu YH, Chen PL, Hung YP, Ko WC. Risk factors and clinical impact of levofloxacin or cefazolin nonsusceptibility or ESBL production among uropathogens in adults with community-onset urinary tract infections. J microbiol immunol infect 2014; 47(3): 197-203.
[88]
Vinken JEM, Mol HE, Verheij TJM, et al. Antimicrobial resistance in women with urinary tract infection in primary care: No relation with type 2 diabetes mellitus. Prim Care Diabetes 2018; 12(1): 80-6.
[http://dx.doi.org/10.1016/j.pcd.2017.08.003] [PMID: 28919055]
[89]
Wright SW, Wrenn KD, Haynes ML. Trimethoprim-sulfamethoxazole resistance among urinary coliform isolates. J Gen Intern Med 1999; 14(10): 606-9.
[http://dx.doi.org/10.1046/j.1525-1497.1999.10128.x] [PMID: 10571705]
[90]
Madaras-Kelly KJ, Remington RE, Fan VS, Sloan KL. Predicting antibiotic resistance to community-acquired pneumonia antibiotics in culture-positive patients with healthcare-associated pneumonia. J Hosp Med 2012; 7(3): 195-202.
[http://dx.doi.org/10.1002/jhm.942] [PMID: 22038859]
[91]
Kim T, Chong YP, Park SY, et al. Risk factors for hospital-acquired pneumonia caused by carbapenem-resistant Gram-negative bacteria in critically ill patients: a multicenter study in Korea. Diagn Microbiol Infect Dis 2014; 78(4): 457-61.
[http://dx.doi.org/10.1016/j.diagmicrobio.2013.08.011] [PMID: 24462178]
[92]
Zhu L, Sha L, Li K, et al. Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats. Lipids Health Dis 2020; 19(1): 20.
[http://dx.doi.org/10.1186/s12944-019-1167-4] [PMID: 32028957]
[93]
Dearlove DJ, Hodson L. Intrahepatic triglyceride content: influence of metabolic and genetics drivers. Curr Opin Clin Nutr Metab Care 2022; 25(4): 241-7.
[http://dx.doi.org/10.1097/MCO.0000000000000838] [PMID: 35762159]
[94]
Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184: 114-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.03.019] [PMID: 35398495]
[95]
Rani DA, Anisha V. Role of antioxidant in the regulation of blood glucose level. IJHS 2022; 8(2): 148-51.
[http://dx.doi.org/10.22271/23957476.2022.v8.i2c.1303]
[96]
Sharma S, Bajgai J, Antonio JM, et al. Anti-Hyperglycemic Effect of Magnesium-Enhanced Alkaline-Reduced Water on High Glucose-Induced Oxidative Stress in Renal Tubular Epithelial Cells. Processes (Basel) 2022; 10(5): 919.
[http://dx.doi.org/10.3390/pr10050919]
[97]
Zhang X, Xu L, Chen H, et al. Novel Hydroxychalcone-Based Dual Inhibitors of Aldose Reductase and α-Glucosidase as Potential Therapeutic Agents against Diabetes Mellitus and Its Complications. J Med Chem 2022; 65(13): 9174-92.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00380] [PMID: 35749671]
[98]
Shi GJ, Li Y, Cao QH, et al. in vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother 2019; 109: 1085-99.
[http://dx.doi.org/10.1016/j.biopha.2018.10.130] [PMID: 30551359]
[99]
Hussain Y, Mirzaei S, Ashrafizadeh M, et al. Quercetin and its nano-scale delivery systems in prostate cancer therapy: paving the way for cancer elimination and reversing chemoresistance. Cancers (Basel) 2021; 13(7): 1602.
[http://dx.doi.org/10.3390/cancers13071602] [PMID: 33807174]
[100]
Bajpai VK, Alam MB, Ju MK, et al. Antioxidant mechanism of polyphenol-rich Nymphaea nouchali leaf extract protecting DNA damage and attenuating oxidative stress-induced cell death via Nrf2-mediated heme-oxygenase-1 induction coupled with ERK/p38 signaling pathway. Biomed Pharmacother 2018; 103: 1397-407.
[http://dx.doi.org/10.1016/j.biopha.2018.04.186] [PMID: 29864924]
[101]
Bostancıeri N, Elbe H, Eşrefoğlu M, Vardı N. Cardioprotective potential of melatonin, quercetin and resveratrol in an experimental model of diabetes. Biotech Histochem 2022; 97(2): 152-7.
[http://dx.doi.org/10.1080/10520295.2021.1918766] [PMID: 33906539]
[102]
Dibal NI, Garba SH, Jacks TW. Role of quercetin in the prevention and treatment of diseases: Mini review. Braz J Biol Sci 2018; 5(11): 647-56.
[http://dx.doi.org/10.21472/bjbs.051104]
[103]
Hatware K, Annapurna A. The effect of quercetin on blood glucose levels of normal and streptozotocin induced diabetic (Type I & type II) rats. Int J Pharm Chem Biol Sci 2014; 4(3): 613-9.
[104]
Zhang R, Yao Y, Wang Y, Ren G. Antidiabetic activity of isoquercetin in diabetic KK -Ay mice. Nutr Metab (Lond) 2011; 8(1): 85.
[http://dx.doi.org/10.1186/1743-7075-8-85] [PMID: 22133267]
[105]
Arya A, Jamil Al-Obaidi MM, Shahid N, et al. Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: A mechanistic study. Food Chem Toxicol 2014; 71: 183-96.
[http://dx.doi.org/10.1016/j.fct.2014.06.010] [PMID: 24953551]
[106]
Roat R, Rao V, Doliba NM, et al. Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6J mice. PLoS One 2014; 9(2): e86815.
[http://dx.doi.org/10.1371/journal.pone.0086815] [PMID: 24505268]
[107]
Kandasamy N, Ashokkumar N. Myricetin, a natural flavonoid, normalizes hyperglycemia in streptozotocin-cadmium-induced experimental diabetic nephrotoxic rats. Biomed Prevent Nutrit 2012; 2(4): 246-51.
[http://dx.doi.org/10.1016/j.bionut.2012.04.003]
[108]
Peng J, Li Q, Li K, et al. Quercetin improves glucose and lipid metabolism of diabetic rats: involvement of Akt signaling and SIRT1 J Diabetes Res 2017; 2017: 3417306.
[http://dx.doi.org/10.1155/2017/3417306]
[109]
Yang DK, Kang HS. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol Ther (Seoul) 2018; 26(2): 130-8.
[http://dx.doi.org/10.4062/biomolther.2017.254] [PMID: 29462848]
[110]
Das J, Mazumder PM. Quercetin as a modulator of diabetic macrovascular complications in murine and chick embryo models. Indian J Pharmaceut Educ Res 2018; 52(4): 594-601.
[http://dx.doi.org/10.5530/ijper.52.4.69]
[111]
Jaishree V, Narsimha S. Swertiamarin and quercetin combination ameliorates hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced type 2 diabetes mellitus in wistar rats. Biomed Pharmacother 2020; 130: 110561.
[http://dx.doi.org/10.1016/j.biopha.2020.110561] [PMID: 32795923]
[112]
Mahmoud MF, Hassan NA, El Bassossy HM, Fahmy A. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation. PLoS One 2013; 8(5): e63784.
[http://dx.doi.org/10.1371/journal.pone.0063784] [PMID: 23717483]
[113]
Jeong SM, Kang MJ, Choi HN, Kim JH, Kim JI. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract 2012; 6(3): 201-7.
[http://dx.doi.org/10.4162/nrp.2012.6.3.201] [PMID: 22808343]
[114]
El Gohary OA, Shoman AA, Samea TA. Protective effect of Quercetin on liver damage in Streptozotocin-induced Diabetic Rats. Physiol Int 2016; 103: 49-64.
[115]
Hussain S, Ahmed Z, Mahwi T, Aziz T. Quercetin dampens postprandial hyperglycemia in type 2 diabetic patients challenged with carbohydrates load. Int J Diabetes Res 2012; 1(3): 32-5.
[http://dx.doi.org/10.5923/j.diabetes.20120103.01]
[116]
Mazloom Z. The effect of quercetin supplementation on oxidative stress, glycemic control, lipid;profile and insulin resistance in type 2;diabetes: a randomized clinical trial J Heal Sci Surveil Sys 2014; 2(1): 8-14.
[117]
Yao Z, Gu Y, Zhang Q, et al. Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in Chinese adults. Eur J Nutr 2019; 58(2): 819-30.
[http://dx.doi.org/10.1007/s00394-018-1713-2] [PMID: 29754250]
[118]
Knekt P, Kumpulainen J, Järvinen R, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 2002; 76(3): 560-8.
[http://dx.doi.org/10.1093/ajcn/76.3.560] [PMID: 12198000]
[119]
Van den Eynde MDG, Geleijnse JM, Scheijen JLJM, et al. Quercetin, but not epicatechin, decreases plasma concentrations of methylglyoxal in adults in a randomized, double-blind, placebo-controlled, crossover trial with pure flavonoids. J Nutr 2018; 148(12): 1911-6.
[http://dx.doi.org/10.1093/jn/nxy236] [PMID: 30398646]
[120]
Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int J Prev Med 2013; 4(7): 777-85.
[PMID: 24049596]
[121]
Ostadmohammadi V, Milajerdi A, Ayati E, Kolahdooz F, Asemi Z. Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2019; 33(5): 1330-40.
[http://dx.doi.org/10.1002/ptr.6334] [PMID: 30848564]
[122]
Perše M. Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? Biomed Res Int 2013; 2013: 725710.
[123]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[124]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[125]
Tripathi S, Fhatima S, Parmar D, et al. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain. 3 Biotech 2022; 12(5): 116.
[126]
Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: An overview. Ageing Res Rev 2013; 12(1): 376-90.
[http://dx.doi.org/10.1016/j.arr.2012.10.004] [PMID: 23123177]
[127]
Nourazarian SM, Nourazarian A, Majidinia M, Roshaniasl E. Effect of root extracts of medicinal herb Glycyrrhiza glabra on HSP90 gene expression and apoptosis in the HT-29 colon cancer cell line. Asian Pac J Cancer Prev 2016; 16(18): 8563-6.
[http://dx.doi.org/10.7314/APJCP.2015.16.18.8563] [PMID: 26745117]
[128]
Russo GL. Ungaro, P.Epigenetics of cancer prevention. Elsevier 2019; pp. 187-202.
[http://dx.doi.org/10.1016/B978-0-12-812494-9.00009-3]
[129]
Tripathi S, Parmar D, Fathima S, Raval S, Singh G. Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced Oxidative Stress and DNA Damage by Stimulating Nrf2/HO-1 Pathway in the Experimental Model. Biol Trace Elem Res 2023; 201(5): 2427-41.
[http://dx.doi.org/10.1007/s12011-022-03358-5] [PMID: 35953644]
[130]
Oliveira-Brett AM, Diculescu VC. Electrochemical study of quercetin-DNA interactions: part I. Analysis in incubated solutions. Bioelectrochemistry 2004; 64(2): 133-41.
[PMID: 15296786]
[131]
Muthukumaran S, Sudheer AR, Menon VP, Nalini N. Protective effect of quercetin on nicotine-induced prooxidant and antioxidant imbalance and DNA damage in Wistar rats. Toxicology 2008; 243(1-2): 207-15.
[http://dx.doi.org/10.1016/j.tox.2007.10.006] [PMID: 18045763]
[132]
Kanakis CD, Tarantilis PA, Polissiou MG, Diamantoglou S, Tajmir-Riahi HA. An overview of DNA and RNA bindings to antioxidant flavonoids. Cell Biochem Biophys 2007; 49(1): 29-36.
[http://dx.doi.org/10.1007/s12013-007-0037-2] [PMID: 17873337]
[133]
Janjua NK, Siddiqa A, Yaqub A, Sabahat S, Qureshi R, Haque S. Spectrophotometric analysis of flavonoid–DNA binding interactions at physiological conditions. Spectrochim Acta A Mol Biomol Spectrosc 2009; 74(5): 1135-7.
[http://dx.doi.org/10.1016/j.saa.2009.09.022] [PMID: 19836298]
[134]
Majidinia M, Bishayee A, Yousefi B. Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82: 102679.
[http://dx.doi.org/10.1016/j.dnarep.2019.102679] [PMID: 31450085]
[135]
Gong C, Yang Z, Zhang L, Wang Y, Gong W, Liu Y. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. OncoTargets Ther 2017; 11: 17-27.
[http://dx.doi.org/10.2147/OTT.S147316] [PMID: 29317830]
[136]
Błasiak J, Trzeciak A, Gąsiorowska A, Drzewoski J, Małecka-Panas E. Vitamin C and quercetin modulate DNA-damaging effect of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Plant Foods Hum Nutr 2002; 57(1): 53-61.
[http://dx.doi.org/10.1023/A:1013165718960] [PMID: 11855621]
[137]
Błasiak J, Arabski M, Pertyński T, Małecka-Panas E, Woźniak K, Drzewoski J. DNA damage in human colonic mucosa cells evoked by nickel and protective action of quercetin - involvement of free radicals? Cell Biol Toxicol 2002; 18(4): 279-88.
[http://dx.doi.org/10.1023/A:1016059112829] [PMID: 12206140]
[138]
Muthukumaran S, Sudheer AR, Nalini N, Menon VP. Effect of quercetin on nicotine-induced biochemical changes and DNA damage in rat peripheral blood lymphocytes. Redox Rep 2008; 13(5): 217-24.
[http://dx.doi.org/10.1179/135100008X308948] [PMID: 18796241]
[139]
Liu CM, Ma JQ, Sun YZ. Quercetin protects the rat kidney against oxidative stress-mediated DNA damage and apoptosis induced by lead. Environ Toxicol Pharmacol 2010; 30(3): 264-71.
[http://dx.doi.org/10.1016/j.etap.2010.07.002] [PMID: 21787659]
[140]
Darband SG, Sadighparvar S, Yousefi B, et al. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis. Life Sci 2020; 253: 117584.
[http://dx.doi.org/10.1016/j.lfs.2020.117584] [PMID: 32220623]
[141]
Tanigawa S, Fujii M, Hou D. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 2007; 42(11): 1690-703.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.017] [PMID: 17462537]
[142]
Çelik H, Arinç E. Evaluation of the protective effects of quercetin, rutin, naringenin, resveratrol and trolox against idarubicin-induced DNA damage. J Pharm Pharm Sci 2010; 13(2): 231-41.
[143]
Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci 2014; 109(1): 8-14.
[http://dx.doi.org/10.1016/j.lfs.2014.06.005] [PMID: 24946265]
[144]
Singh P, Sharma S, Rath SK. A versatile flavonoid Quercetin: Study of its toxicity and differential gene expression in the liver of mice. Phytomedicine Plus 2022; 2(1): 100148.
[http://dx.doi.org/10.1016/j.phyplu.2021.100148]
[145]
Wang D, Li Y, Zhai QQ, Zhu YF, Liu BY, Xu Y. Quercetin ameliorates testosterone secretion disorder by inhibiting endoplasmic reticulum stress through the miR-1306-5p/HSD17B7 axis in diabetic rats. Bosn J Basic Med Sci 2022; 22(2): 191-204.
[PMID: 34582743]
[146]
Choi JS, Piao YJ, Kang KW. Effects of quercetin on the bioavailability of doxorubicin in rats: Role of CYP3A4 and P-gp inhibition by quercetin. Arch Pharm Res 2011; 34(4): 607-13.
[http://dx.doi.org/10.1007/s12272-011-0411-x] [PMID: 21544726]
[147]
Zhang L. Pan, M.Y.; Li, T.; Jin, Z.M.; Liu, Z.; Liu, Q.Y.; Liu, Y.; Ding, J.Y. Study on Optimal Extraction and Hypoglycemic Effect of Quercetin 2023; 2023: 8886503.