Cefradine Schiff Bases and their Metal Salts as Potential Anti-Infective Agents

Article ID: e140524229927

  • * (Excluding Mailing and Handling)

Abstract

Introduction: A series of schiff bases(3-8) were synthesized by the reaction of cefradine with six different aldehydes/ketones.

Method: These Schiff bases (3-8) were treated with different bases/salts (NaOH, KOH, Ca(OH)2, Ba(OH)2, Ag(NO)3) to get their metal salts. The structures of the products were ascertained by spectroscopic data. The synthesized compounds were tested for biological activities against Staphylococcus aureus (gram-positive bacterium) and Escherichia coli (gram-negative bacterium).

Results: In general, low activities in most of the synthesized compounds were observed.

Conclusion: A general reduction in the activities of most of the synthesized compounds in comparison to cefradine can be linked to the unavailability of the free amino group of cefradine by its involvement in the synthesis of imine derivatives.

[1]
Tadavi, S.K.; Yadav, A.A.; Bendre, R.S. Synthesis and characterization of a novel schiff base of 1,2-diaminopropane with substituted salicyaldehyde and its transition metal complexes: Single crystal structures and biological activities. J. Mol. Struct., 2018, 1152, 223-231.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.112]
[2]
Agarwal, R.K.; Garg, R.K.; Sindhu, S.K. Synthesis and magneto-spectral investigations of some six and nine coordinated complexes of lanthanides(III) derived from 4[N-(2′-hydroxy-1′-naphthalidene) amino]antipyrinethiosemicarbazone. J. Indian Chem. Soc., 2005, 2(3), 203-211.
[http://dx.doi.org/10.1007/BF03245923]
[3]
Obasi, L.N.; Kaior, G.U.; Rhyman, L.; Alswaidan, I.A.; Fun, H.K.; Ramasami, P. Synthesis, characterization, antimicrobial screening and computational studies of 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one. J. Mol. Struct., 2016, 1120, 180-186.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.037]
[4]
Raman, N.; Muthuraj, V.; Ravichandran, S.; Kulandaisamy, A. Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone and p-anisidine and their antimicrobial activity. Proc. Indian Acad. Sci. Chem. Sci., 2003, 115(3), 161-167.
[http://dx.doi.org/10.1007/BF02704255]
[5]
Baluja, S.; Solanki, A.; Kachhadia, N. Evaluation of biological activities of some Schiff bases and metal complexes. J. Indian Chem. Soc., 2006, 3(4), 312-317.
[http://dx.doi.org/10.4236/ijoc.2013.33A008]
[6]
Bayrak, H.; Demirbaş, A.; Karaoglu, S.A.; Demirbas, N. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(3), 1057-1066.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.019] [PMID: 18676062]
[7]
Hranjec, M.; Starčević, K.; Pavelić, S.K.; Lučin, P.; Pavelić, K.; Karminski Zamola, G. Synthesis, spectroscopic characterization and antiproliferative evaluation in vitro of novel Schiff bases related to benzimidazoles. Eur. J. Med. Chem., 2011, 46(6), 2274-2279.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.008] [PMID: 21439689]
[8]
Bayeh, Y.; Mohammed, F.; Gebrezgiabher, M.; Elemo, F.; Getachew, M.; Thomas, M. Synthesis, characterization and antibacterial activities of polydentate schiff bases, based on salicylaldehyde. Adv. Biol. Chem., 2020, 10(5), 127-139.
[http://dx.doi.org/10.4236/abc.2020.105010]
[9]
Izham, N.Z.M.; Yusoff, H.M.; Asari, A.b.; Bhat, I.U.H. Potential recognition layer in electrochemical sensor: a comparative characterization of p-cyano schiff base compounds. Biointerf. Res. Appl. Chem., 2022, 12(2), 1803-1813.
[http://dx.doi.org/10.33263/BRIAC122.18031813]
[10]
Moore, P.G.; Bhalvankar, R.B.; Pattar, S.C. Synthesis and biological activity of schiff bases of aminothiazoles. J. Indian Chem. Soc., 2001, 78, 474-475.
[11]
Pandeya, S.N.; Sriram, D.; Nath, G.; De Clercq, E. Synthesis and antimicrobial activity of Schiff and Mannich bases of isatin and its derivatives with pyrimidine. Farmaco, 1999, 54(9), 624-628.
[http://dx.doi.org/10.1016/S0014-827X(99)00075-0] [PMID: 10555264]
[12]
Pandeya, S.N.; Sriram, D.; Nath, G.; De Clercq, E. Synthesis, antibacterial, antifungal and anti-HIV activities of norfloxacin Mannich bases. Eur. J. Med. Chem., 2000, 35(2), 249-255.
[http://dx.doi.org/10.1016/S0223-5234(00)00125-2] [PMID: 10758286]
[13]
Przybylski, P.; Huczyński, A.; Pyta, K.; Brzeziński, B.; Bartl, F. Biological properties of schiff bases and azo derivatives of phenols. Curr. Org. Chem., 2009, 13(2), 124-148.
[http://dx.doi.org/10.2174/138527209787193774]
[14]
Bukhari, I.H.; Arif, M.; Akbar, J.; Khan, A.H. Characterization and biological evaluation of schiff base transition metal complexes with cephradine. Pak. J. Biol. Sci., 2005, 8, 614-617.
[http://dx.doi.org/10.3923/pjbs.2005.614.617]
[15]
Oshima, S.; Hirayama, N.; Kubono, K.; Kokusen, H.; Honjo, T. Ion-pair extraction behavior of divalent transition metal cations as charged complexes with N,N′-bis(2-pyridylmethylidene)-1,2-diiminoethane and its analogues. Anal. Chim. Acta, 2001, 441(1), 157-164.
[http://dx.doi.org/10.1016/S0003-2670(01)01078-9]
[16]
Iqbal, M.S.; Bukhari, I.H.; Arif, M. Preparation, characterization and biological evaluation of copper(II) and zinc(II) complexes with Schiff bases derived from amoxicillin and cephalexin. Appl. Organomet. Chem., 2005, 19(7), 864-869.
[http://dx.doi.org/10.1002/aoc.918]
[17]
Singh, P.; Goel, R.L.; Singh, B.P. Synthesis, characterization and biological activity of schiff bases. J. Indian Chem. Soc., 1975, 52, 958-959.
[18]
Díaz-Brochero, C.; Valderrama-Rios, M.C.; Nocua-Báez, L.C.; Cortés, J.A. First-generation cephalosporins for the treatment of complicated upper urinary tract infection in adults: A systematic literature review. Int. J. Infect. Dis., 2022, 116, 403-410.
[http://dx.doi.org/10.1016/j.ijid.2021.12.363] [PMID: 35017105]