Drug Delivery Letters

Author(s): Akash Vikal, Rashmi Maurya, Shuvadip Bhowmik, Preeti Patel, Ghanshyam Das Gupta and Balak Das Kurmi*

DOI: 10.2174/0122103031304556240430161553

DownloadDownload PDF Flyer Cite As
From Conventional to Cutting-edge: A Comprehensive Review on Drug Delivery Systems

Page: [226 - 243] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

The essential need for efficacious conveyance of therapeutics to specific tissues or cells, refinement of drug formulations, and the scalability of industrial production drives the present- day demand for enhanced drug delivery systems (DDS). Newly devised drugs often exhibit suboptimal biopharmaceutical properties, resulting in diminished patient adherence and adverse side effects. The paramount importance of site-specific drug delivery lies in its capacity to facilitate the targeted administration of diverse therapeutic agents, catering to both localized ailments and systemic treatments. Alongside targeted drug delivery strategies encompassing ligand-based targeting and stimuli-responsive systems, the advent of cutting-edge nanotechnologies such as nanoparticles, liposomes, and micelles has marked a paradigm shift. Additionally, personalized medicines have emerged as a consequential facet of drug delivery, emphasizing the customization of treatment approaches. Researchers have explored an excess of methodologies in the advancement of these formulation technologies, including stimuli-responsive drug delivery, 3D printing, gene delivery, and various other innovative approaches. This comprehensive review aims to provide a holistic understanding of the past, present, and future of drug delivery systems, offering insights into the transformative potential of emerging technologies.

Keywords: Conventional, drug delivery system, cutting-edge, nanotechnology, personalized medicine, pharmacogenomics, biopharmaceutical properties.

Graphical Abstract

[1]
Vargason, A.M.; Anselmo, A.C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng., 2021, 5(9), 951-967.
[http://dx.doi.org/10.1038/s41551-021-00698-w] [PMID: 33795852]
[2]
Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Siraj, A.E. Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc., 2021, 14, 1711-1724.
[http://dx.doi.org/10.2147/JMDH.S313968] [PMID: 34267523]
[3]
Park, H.; Otte, A.; Park, K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J. Control. Release, 2022, 342, 53-65.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.030] [PMID: 34971694]
[4]
Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; Nwadike, U.G.; Ogbodo, J.O.; Umeh, B.U.; Ossai, E.C.; Nwanguma, B.C. Advances in drug delivery systems, challenges and future directions. Heliyon, 2023, 9(6), e17488.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17488] [PMID: 37416680]
[5]
Gao, J.; Karp, J.M.; Langer, R.; Joshi, N. The Future of Drug Delivery. Chem. Mater., 2023, 35(2), 359-363.
[http://dx.doi.org/10.1021/acs.chemmater.2c03003 ] [PMID: 37799624]
[6]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Torres, R.M.P.; Torres, A.L.S.; Torres, D.L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[7]
Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 2021, 26(19), 5905.
[http://dx.doi.org/10.3390/molecules26195905] [PMID: 34641447]
[8]
Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[9]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[10]
Herman, T.F.; Santos, C. First-Pass Effect. In: StatPearls; StatPearls Publishing, 2023.
[11]
Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics, 2023, 15(2), 484.
[http://dx.doi.org/10.3390/pharmaceutics15020484 ] [PMID: 36839807]
[12]
Markovic, M.; Ben-Shabat, S.; Dahan, A. Prodrugs for Improved Drug Delivery: Lessons Learned from Recently Developed and Marketed Products. Pharmaceutics, 2020, 12(11), 1031.
[http://dx.doi.org/10.3390/pharmaceutics12111031 ] [PMID: 33137942]
[13]
Ng, L.H.; Ling, J.K.U.; Hadinoto, K. Formulation strategies to improve the stability and handling of oral solid dosage forms of highly hygroscopic pharmaceuticals and nutraceuticals. Pharmaceutics, 2022, 14(10), 2015.
[http://dx.doi.org/10.3390/pharmaceutics14102015 ] [PMID: 36297450]
[14]
Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moussa, M.N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem., 2014, 25(4), 363-376.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.002] [PMID: 24406273]
[15]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11, 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[16]
Aungst, B.J. Absorption enhancers: Applications and advances. AAPS J., 2012, 14(1), 10-18.
[http://dx.doi.org/10.1208/s12248-011-9307-4] [PMID: 22105442]
[17]
Bhattacharjee, H.; Loveless, V.; Thoma, L.A. Parenteral drug administration: Routes of administration and devices.Parenteral Medications, 4th ed; CRC Press, 2019, pp. 11-26.
[http://dx.doi.org/10.1201/9780429201400-3]
[18]
Jain, K.K. Drug delivery systems - An overview. Methods Mol. Biol., 2008, 437, 1-50.
[http://dx.doi.org/10.1007/978-1-59745-210-6_1] [PMID: 18369961]
[19]
Jin, J.F.; Zhu, L.L.; Chen, M.; Xu, H.M.; Wang, H.F.; Feng, X.Q.; Zhu, X.P.; Zhou, Q. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer. Adherence, 2015, 9, 923-942.
[PMID: 26170642]
[20]
Verma, P.; Thakur, A.S.; Deshmukh, K.; Jha, A.K.; Verma, S. Routes of drug administration. International J. Pharmaceutical Studies Res., 2010, 1(1), 54-59.
[21]
Hopkins, U.; Arias, C.Y. Large-volume IM injections: A review of best practices. Oncol. Nurse Advis., 2013, 4(1), 32-37.
[22]
Usach, I.; Martinez, R.; Festini, T.; Peris, J.E. Subcutaneous injection of drugs: Literature review of factors influencing pain sensation at the injection site. Adv. Ther., 2019, 36(11), 2986-2996.
[http://dx.doi.org/10.1007/s12325-019-01101-6] [PMID: 31587143]
[23]
Peltonen, S.E.; Hakoinen, S.; Celikkayalar, E.; Laaksonen, R.; Airaksinen, M. Incorrect aseptic techniques in medicine preparation and recommendations for safer practices: A systematic review. Eur. J. Hosp. Pharm. Sci. Pract., 2017, 24(3), 175-181.
[http://dx.doi.org/10.1136/ejhpharm-2016-001015] [PMID: 31156932]
[24]
Jones, S.C.A.; Prignano, F.; Goncalves, J.; Paul, M.; Sewerin, P. Understanding and minimising injection-site pain following subcutaneous administration of biologics: A narrative review. Rheumatol. Ther., 2020, 7(4), 741-757.
[http://dx.doi.org/10.1007/s40744-020-00245-0] [PMID: 33206343]
[25]
Ganesh, A.N.; Heusser, C.; Garad, S.; Félix, S.M.V. Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. Medicine in Drug Discovery, 2021, 9, 100079.
[http://dx.doi.org/10.1016/j.medidd.2020.100079]
[26]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[27]
Yuan, H.Y.; Cao, Y.; Kamra, A.; Duine, R.A.; Yan, P. Quantum magnonics: When magnon spintronics meets quantum information science. Phys. Rep., 2022, 965, 1-74.
[http://dx.doi.org/10.1016/j.physrep.2022.03.002]
[28]
Capek, I. Nanotechnology and nanomaterials; Studies in interface science, 2006, 23, pp. 1-69.
[29]
de Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[30]
Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines, 2021, 9(4), 359.
[http://dx.doi.org/10.3390/vaccines9040359] [PMID: 33918072]
[31]
Mallakpour, S.; Azadi, E.; Hussain, C.M. The latest strategies in the fight against the COVID-19 pandemic: The role of metal and metal oxide nanoparticles. New J. Chem., 2021, 45(14), 6167-6179.
[http://dx.doi.org/10.1039/D1NJ00047K]
[32]
Komarova, Y.A.; Kruse, K.; Mehta, D.; Malik, A.B. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ. Res., 2017, 120(1), 179-206.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306534 ] [PMID: 28057793]
[33]
Fricke, I.B.; Schelhaas, S.; Zinnhardt, B.; Viel, T.; Hermann, S.; Després, C.S.; Jacobs, A.H. In vivo bioluminescence imaging of neurogenesis – the role of the blood brain barrier in an experimental model of Parkinson’s disease. Eur. J. Neurosci., 2017, 45(7), 975-986.
[http://dx.doi.org/10.1111/ejn.13540] [PMID: 28194885]
[34]
Stefano, D.A. Nanotechnology in Targeted Drug Delivery. Int. J. Mol. Sci., 2023, 24(9), 8194.
[http://dx.doi.org/10.3390/ijms24098194] [PMID: 37175903]
[35]
Dmour, I.; Taha, M.O. Natural and semisynthetic polymers in pharmaceutical nanotechnology. In: Organic materials as smart nanocarriers for drug delivery; Applied Science Publishers, 2018; pp. 35-100.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00002-6]
[36]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[37]
Wang, F.; Tang, R.; Kao, J.L.F.; Dingman, S.D.; Buhro, W.E. Spectroscopic identification of tri-n-octylphosphine oxide (TOPO) impurities and elucidation of their roles in cadmium selenide quantum-wire growth. J. Am. Chem. Soc., 2009, 131(13), 4983-4994.
[http://dx.doi.org/10.1021/ja900191n] [PMID: 19296595]
[38]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[39]
Huh, Y.M.; Jun, Y.; Song, H.T.; Kim, S.; Choi, J.; Lee, J.H.; Yoon, S.; Kim, K.S.; Shin, J.S.; Suh, J.S.; Cheon, J. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc., 2005, 127(35), 12387-12391.
[http://dx.doi.org/10.1021/ja052337c] [PMID: 16131220]
[40]
Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules, 2020, 25(22), 5294.
[http://dx.doi.org/10.3390/molecules25225294] [PMID: 33202839]
[41]
Chen, Y.; Wei, C.; Lyu, Y.; Chen, H.; Jiang, G.; Gao, X. Biomimetic drug-delivery systems for the management of brain diseases. Biomater. Sci., 2020, 8(4), 1073-1088.
[http://dx.doi.org/10.1039/C9BM01395D] [PMID: 31728485]
[42]
Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev., 2001, 47(1), 65-81.
[http://dx.doi.org/10.1016/S0169-409X(00)00122-8 ] [PMID: 11251246]
[43]
Venkateswarlu, V.; Manjunath, K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release, 2004, 95(3), 627-638.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.005] [PMID: 15023472]
[44]
Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Bawab, A.A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[45]
Akbarzadeh, A.; Sadabady, R.R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Koshki, N.K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[46]
Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules, 2022, 27(4), 1372.
[http://dx.doi.org/10.3390/molecules27041372] [PMID: 35209162]
[47]
Daraee, H.; Etemadi, A.; Kouhi, M.; Alimirzalu, S.; Akbarzadeh, A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 381-391.
[http://dx.doi.org/10.3109/21691401.2014.953633] [PMID: 25222036]
[48]
Huang, X.; Caddell, R.; Yu, B.; Xu, S.; Theobald, B.; Lee, L.J.; Lee, R.J. Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer Res., 2010, 30(2), 463-466.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2501 ] [PMID: 20332455]
[49]
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv., 2007, 4(4), 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[50]
Daza, P.M.; Campia, I.; Kopecka, J.; Garzón, R.; Ghigo, D.; Rigant, C. Nanoparticle- and liposome-carried drugs: New strategies for active targeting and drug delivery across blood-brain barrier. Curr. Drug Metab., 2013, 14(6), 625-640.
[http://dx.doi.org/10.2174/1389200211314060001] [PMID: 23869808]
[51]
Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Sci., 2018, 2018, 6847971.
[http://dx.doi.org/10.1155/2018/6847971]
[52]
Bhattamisra, S.K.; Shak, A.T.; Xi, L.W.; Safian, N.H.; Choudhury, H.; Lim, W.M.; Shahzad, N.; Alhakamy, N.A.; Anwer, M.K.; Radhakrishnan, A.K.; Md, S. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int. J. Pharm., 2020, 579, 119148.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119148] [PMID: 32084576]
[53]
Fan, Y; Chen, M; Zhang, J; Maincent, P; Xia, X; Wu, W Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases., Critical Reviews™ in Therapeutic Drug Carrier Systems., 2018, 35(5), 433-467.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024697]
[54]
Negut, I.; Bita, B. Polymeric Micellar Systems-A Special Emphasis on “Smart” Drug Delivery. Pharmaceutics, 2023, 15(3), 976.
[http://dx.doi.org/10.3390/pharmaceutics15030976 ] [PMID: 36986837]
[55]
Rana, V.; Sharma, R. Recent advances in development of nano drug delivery. In: Applications of Targeted Nano Drugs and Delivery Systems; Elsevier, 2019; pp. 93-131.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00005-3]
[56]
Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to improve micelle stability for drug delivery. Nano Res., 2018, 11(10), 4985-4998.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[57]
Kazunori, K.; Glenn, S.K.; Masayuki, Y.; Teruo, O.; Yasuhisa, S. Block copolymer micelles as vehicles for drug delivery. J. Control. Release, 1993, 24(1-3), 119-132.
[http://dx.doi.org/10.1016/0168-3659(93)90172-2]
[58]
bayindir, S.Z.; Ergin, A.D.; Parmaksiz, M.; Elcin, A.E.; Elcin, Y.M.; Yuksel, N. Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies. J. Drug Deliv. Sci. Technol., 2016, 36, 120-129.
[http://dx.doi.org/10.1016/j.jddst.2016.10.003]
[59]
Sydow, K.; Nikolenko, H.; Lorenz, D.; Müller, R.H.; Dathe, M. Lipopeptide-based micellar and liposomal carriers: Influence of surface charge and particle size on cellular uptake into blood brain barrier cells. Eur. J. Pharm. Biopharm., 2016, 109, 130-139.
[http://dx.doi.org/10.1016/j.ejpb.2016.09.019] [PMID: 27702684]
[60]
Tian, C.; Asghar, S.; Xu, Y.; Chen, Z.; Zhang, J.; Ping, Q.; Xiao, Y. Tween 80-modified hyaluronic acid-ss-curcumin micelles for targeting glioma: Synthesis, characterization and their in vitro evaluation. Int. J. Biol. Macromol., 2018, 120(Pt B), 2579-2588.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.034] [PMID: 30195608]
[61]
Desai, P.P.; Patravale, V.B. Curcumin cocrystal micelles—Multifunctional nanocomposites for management of neurodegenerative ailments. J. Pharm. Sci., 2018, 107(4), 1143-1156.
[http://dx.doi.org/10.1016/j.xphs.2017.11.014] [PMID: 29183742]
[62]
Garello, F.; Pagoto, A.; Arena, F.; Buffo, A.; Blasi, F.; Alberti, D.; Terreno, E. MRI visualization of neuroinflammation using VCAM-1 targeted paramagnetic micelles. Nanomedicine, 2018, 14(7), 2341-2350.
[http://dx.doi.org/10.1016/j.nano.2017.10.002] [PMID: 29079529]
[63]
Shiraishi, K.; Wang, Z.; Kokuryo, D.; Aoki, I.; Yokoyama, M. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood–brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury. J. Control. Release, 2017, 253, 165-171.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.020] [PMID: 28322975]
[64]
Ferreiro, P.M.; Abelairas, M.A.; Criado, A.; Gómez, I.J.; Mosquera, J. Dendrimers: Exploring their wide structural variety and applications. Polymers, 2023, 15(22), 4369.
[http://dx.doi.org/10.3390/polym15224369] [PMID: 38006093]
[65]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39(2), 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[66]
Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W.; Meijer, E.W.; Paulus, W.; Duncan, R. Dendrimers. J. Control. Release, 2000, 65(1-2), 133-148.
[http://dx.doi.org/10.1016/S0168-3659(99)00246-1 ] [PMID: 10699277]
[67]
Vannucci, L.; Lai, M.; Chiuppesi, F.; Nelli, C.L.; Pistello, M. Viral vectors: A look back and ahead on gene transfer technology. New Microbiol., 2013, 36(1), 1-22.
[PMID: 23435812]
[68]
Perumal, O.P.; Inapagolla, R.; Kannan, S.; Kannan, R.M. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials, 2008, 29(24-25), 3469-3476.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.038 ] [PMID: 18501424]
[69]
Sonawane, N.D.; Szoka, F.C., Jr; Verkman, A.S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem., 2003, 278(45), 44826-44831.
[http://dx.doi.org/10.1074/jbc.M308643200] [PMID: 12944394]
[70]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Tincu, V.A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and Limitations of Dendrimers in Biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[71]
Igartúa, D.E.; Martinez, C.S.; Temprana, C.F.; Alonso, S.V.; Prieto, M.J. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int. J. Pharm., 2018, 544(1), 191-202.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.032] [PMID: 29678547]
[72]
Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell, 2020, 181(1), 151-167.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[73]
Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater., 2021, 6(4), 351-370.
[http://dx.doi.org/10.1038/s41578-020-00269-6] [PMID: 34950512]
[74]
Pawar, V.; Maske, P.; Khan, A.; Ghosh, A.; Keshari, R.; Bhatt, M.; Srivastava, R. Responsive Nanostructure for Targeted Drug Delivery. J. Nanotheranostics, 2023, 4(1), 55-85.
[75]
Bandyopadhyay, A.; Das, T.; Nandy, S.; Sahib, S.; Preetam, S.; Gopalakrishnan, A.V.; Dey, A. Ligand-based active targeting strategies for cancer theranostics. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(12), 3417-3441.
[http://dx.doi.org/10.1007/s00210-023-02612-4] [PMID: 37466702]
[76]
Bajracharya, R.; Song, J.G.; Patil, B.R.; Lee, S.H.; Noh, H.M.; Kim, D.H.; Kim, G.L.; Seo, S.H.; Park, J.W.; Jeong, S.H.; Lee, C.H.; Han, H.K. Functional ligands for improving anticancer drug therapy: Current status and applications to drug delivery systems. Drug Deliv., 2022, 29(1), 1959-1970.
[http://dx.doi.org/10.1080/10717544.2022.2089296 ] [PMID: 35762636]
[77]
Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther., 2022, 7(1), 39.
[http://dx.doi.org/10.1038/s41392-021-00868-x] [PMID: 35132063]
[78]
Liu, M.; Fang, X.; Yang, Y.; Wang, C. Peptide-enabled targeted delivery systems for therapeutic applications. Front. Bioeng. Biotechnol., 2021, 9, 701504.
[http://dx.doi.org/10.3389/fbioe.2021.701504] [PMID: 34277592]
[79]
Xie, S.; Sun, W.; Fu, T.; Liu, X.; Chen, P.; Qiu, L.; Qu, F.; Tan, W. Aptamer-Based Targeted Delivery of Functional Nucleic Acids. J. Am. Chem. Soc., 2023, 145(14), 7677-7691.
[http://dx.doi.org/10.1021/jacs.3c00841] [PMID: 36987838]
[80]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci., 2018, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[81]
Smith, B.A.H.; Bertozzi, C.R. The clinical impact of glycobiology: Targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov., 2021, 20(3), 217-243.
[http://dx.doi.org/10.1038/s41573-020-00093-1] [PMID: 33462432]
[82]
Zhang, M.; Hu, W.; Cai, C.; Wu, Y.; Li, J.; Dong, S. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater. Today Bio, 2022, 14, 100223.
[http://dx.doi.org/10.1016/j.mtbio.2022.100223] [PMID: 35243298]
[83]
Abdella, S.; Abid, F.; Youssef, S.H.; Kim, S.; Afinjuomo, F.; Malinga, C.; Song, Y.; Garg, S. pH and its applications in targeted drug delivery. Drug Discov. Today, 2023, 28(1), 103414.
[http://dx.doi.org/10.1016/j.drudis.2022.103414] [PMID: 36273779]
[84]
Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules, 2018, 24(1), 4.
[http://dx.doi.org/10.3390/molecules24010004] [PMID: 30577475]
[85]
Yoshida, T.; Lai, T.C.; Kwon, G.S.; Sako, K. pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv., 2013, 10(11), 1497-1513.
[http://dx.doi.org/10.1517/17425247.2013.821978] [PMID: 23930949]
[86]
Zhu, Y.J.; Chen, F. pH-responsive drug-delivery systems. Chem. Asian J., 2015, 10(2), 284-305.
[http://dx.doi.org/10.1002/asia.201402715] [PMID: 25303435]
[87]
Aghdam, H.S.J.; Nia, F.B.; Akbari, Z.Z.; Jabali, M.S.; motasadizadeh, H.; Farhadnejad, H. Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and HNT-AT nanohybrid Int. J. Biol. Macromol., 2018, 107(Pt B), 2436-2449.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.128] [PMID: 29101044]
[88]
Bolla, P.K.; Rodriguez, V.A.; Kalhapure, R.S.; Kolli, C.S.; Andrews, S.; Renukuntla, J. A review on pH and temperature responsive gels and other less explored drug delivery systems. J. Drug Deliv. Sci. Technol., 2018, 46, 416-435.
[http://dx.doi.org/10.1016/j.jddst.2018.05.037]
[89]
Abuwatfa, W.H.; Awad, N.S.; Pitt, W.G.; Husseini, G.A. Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers, 2022, 14(5), 925.
[http://dx.doi.org/10.3390/polym14050925] [PMID: 35267747]
[90]
Jha, S.; Sharma, P.K.; Malviya, R. Hyperthermia: Role and Risk Factor for Cancer Treatment. Achievements in the Life Sciences, 2016, 10(2), 161-167.
[http://dx.doi.org/10.1016/j.als.2016.11.004]
[91]
Lee, J.S.; Zhou, W.; Meng, F.; Zhang, D.; Otto, C.; Feijen, J. Thermosensitive hydrogel-containing polymersomes for controlled drug delivery. J. Control. Release, 2010, 146(3), 400-408.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.002] [PMID: 20561894]
[92]
Guo, X.; Li, D.; Yang, G.; Shi, C.; Tang, Z.; Wang, J.; Zhou, S. Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl. Mater. Interfaces, 2014, 6(11), 8549-8559.
[http://dx.doi.org/10.1021/am501422r] [PMID: 24804870]
[93]
Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21), 12273-12286.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[94]
Cao, Z.; Li, W.; Liu, R.; Li, X.; Li, H.; Liu, L.; Chen, Y.; Lv, C.; Liu, Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed. Pharmacother., 2019, 118, 109340.
[http://dx.doi.org/10.1016/j.biopha.2019.109340] [PMID: 31545284]
[95]
Law, B.; Weissleder, R.; Tung, C.H. Peptide-based biomaterials for protease-enhanced drug delivery. Biomacromolecules, 2006, 7(4), 1261-1265.
[http://dx.doi.org/10.1021/bm050920f] [PMID: 16602747]
[96]
Andresen, T.L.; Davidsen, J.; Begtrup, M.; Mouritsen, O.G.; Jørgensen, K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem., 2004, 47(7), 1694-1703.
[http://dx.doi.org/10.1021/jm031029r] [PMID: 15027860]
[97]
Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107.
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]
[98]
Rwei, A.Y.; Wang, W.; Kohane, D.S. Photoresponsive nanoparticles for drug delivery. Nano Today, 2015, 10(4), 451-467.
[http://dx.doi.org/10.1016/j.nantod.2015.06.004] [PMID: 26644797]
[99]
Tao, Y.; Chan, H.F.; Shi, B.; Li, M.; Leong, K.W. Light: A magical tool for controlled drug delivery. Adv. Funct. Mater., 2020, 30(49), 2005029.
[http://dx.doi.org/10.1002/adfm.202005029] [PMID: 34483808]
[100]
Tong, R.; Hemmati, H.D.; Langer, R.; Kohane, D.S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc., 2012, 134(21), 8848-8855.
[http://dx.doi.org/10.1021/ja211888a] [PMID: 22385538]
[101]
Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(6), e1571.
[http://dx.doi.org/10.1002/wnan.1571] [PMID: 31241251]
[102]
Price, P.M.; Mahmoud, W.E.; Ghamdi, A.A.A.; Bronstein, L.M. Magnetic drug delivery: Where the field is going. Front Chem., 2018, 6, 619.
[http://dx.doi.org/10.3389/fchem.2018.00619] [PMID: 30619827]
[103]
Huang, C.; Tang, Z.; Zhou, Y.; Zhou, X.; Jin, Y.; Li, D.; Yang, Y.; Zhou, S. Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. Int. J. Pharm., 2012, 429(1-2), 113-122.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.001] [PMID: 22406331]
[104]
Ballance, W.C.; Qin, E.C.; Chung, H.J.; Gillette, M.U.; Kong, H. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials, 2019, 217, 119292.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119292 ] [PMID: 31279098]
[105]
Li, R.; Peng, F.; Cai, J.; Yang, D.; Zhang, P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J. Pharmaceutical Sciences, 2020, 15(3), 311-325.
[http://dx.doi.org/10.1016/j.ajps.2019.06.003] [PMID: 32636949]
[106]
Tao, W.; He, Z. ROS-responsive drug delivery systems for biomedical applications. Asian J. Pharmaceutical Sciences, 2018, 13(2), 101-112.
[http://dx.doi.org/10.1016/j.ajps.2017.11.002] [PMID: 32104383]
[107]
Cheng, G.; He, Y.; Xie, L.; Nie, Y.; He, B.; Zhang, Z.; Gu, Z. Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier. Int. J. Nanomedicine, 2012, 7, 3991-4006.
[PMID: 22904624]
[108]
Wang, J.; Wang, Z.; Yu, J.; Kahkoska, A.R.; Buse, J.B.; Gu, Z. Glucose‐responsive insulin and delivery systems: Innovation and translation. Adv. Mater., 2020, 32(13), 1902004.
[http://dx.doi.org/10.1002/adma.201902004] [PMID: 31423670]
[109]
Webber, M.J.; Anderson, D.G. Smart approaches to glucose-responsive drug delivery. J. Drug Target., 2015, 23(7-8), 651-655.
[http://dx.doi.org/10.3109/1061186X.2015.1055749 ] [PMID: 26453161]
[110]
Volpatti, L.R.; Matranga, M.A.; Cortinas, A.B.; Delcassian, D.; Daniel, K.B.; Langer, R.; Anderson, D.G. Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. ACS Nano, 2020, 14(1), 488-497.
[http://dx.doi.org/10.1021/acsnano.9b06395] [PMID: 31765558]
[111]
Rahim, M.A.; Jan, N.; Khan, S.; Shah, H.; Madni, A.; Khan, A.; Jabar, A.; Khan, S.; Elhissi, A.; Hussain, Z.; Aziz, H.C.; Sohail, M.; Khan, M.; Thu, H.E. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers, 2021, 13(4), 670.
[http://dx.doi.org/10.3390/cancers13040670] [PMID: 33562376]
[112]
Fomina, N.; Sankaranarayanan, J.; Almutairi, A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev., 2012, 64(11), 1005-1020.
[http://dx.doi.org/10.1016/j.addr.2012.02.006] [PMID: 22386560]
[113]
Cros, R.M. Glucose-responsive insulin delivery systems. Endocrinol. Nutr., 2016, 63(4), 143-144.
[http://dx.doi.org/10.1016/j.endonu.2015.11.002] [PMID: 26724975]
[114]
Wang, R.C.; Wang, Z. Precision medicine: Disease subtyping and tailored treatment. Cancers, 2023, 15(15), 3837.
[http://dx.doi.org/10.3390/cancers15153837] [PMID: 37568653]
[115]
Ginsburg, G.S.; Willard, H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res., 2009, 154(6), 277-287.
[http://dx.doi.org/10.1016/j.trsl.2009.09.005] [PMID: 19931193]
[116]
Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; D’Agostino, Y.; Salvati, A.; Giudice, D.C.; Tesorio, P.; Rusciano, M.R. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes, 2020, 11(7), 747.
[http://dx.doi.org/10.3390/genes11070747 ] [PMID: 32640513]
[117]
T P, A.; M, S.S.; Jose, A.; Chandran, L.; Zachariah, S.M. Pharmacogenomics: The right drug to the right person. J. Clin. Med. Res., 2009, 1(4), 191-194.
[http://dx.doi.org/10.4021/jocmr2009.08.1255] [PMID: 22461867]
[118]
Oates, J.T.; Lopez, D. Pharmacogenetics: An important part of drug development with a focus on its application. Int. J. Biomed. Investig., 2018, 1(2), 111.
[PMID: 32467882]
[119]
Salih, S.; Elliyanti, A.; Alkatheeri, A.; AlYafei, F.; Almarri, B.; Khan, H. The role of molecular imaging in personalized medicine. J. Pers. Med., 2023, 13(2), 369.
[http://dx.doi.org/10.3390/jpm13020369] [PMID: 36836603]
[120]
Goetz, L.H.; Schork, N. J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril., 2018, 109(6), 952-963.
[http://dx.doi.org/10.1016/j.fertnstert.2018.05.006] [PMID: 29935653]
[121]
Husn, A.N.S.; Kenny, E.E. Personalized Medicine and the Power of Electronic Health Records. Cell, 2019, 177(1), 58-69.
[http://dx.doi.org/10.1016/j.cell.2019.02.039] [PMID: 30901549]
[122]
Ozomaro, U.; Wahlestedt, C.; Nemeroff, C.B. Personalized medicine in psychiatry: Problems and promises. BMC Med., 2013, 11(1), 132.
[http://dx.doi.org/10.1186/1741-7015-11-132] [PMID: 23680237]
[123]
Brittain, H.K.; Scott, R.; Thomas, E. The rise of the genome and personalised medicine. Clin. Med., 2017, 17(6), 545-551.
[http://dx.doi.org/10.7861/clinmedicine.17-6-545 ] [PMID: 29196356]
[124]
Raijada, D.; Wac, K.; Greisen, E.; Rantanen, J.; Genina, N. Integration of personalized drug delivery systems into digital health. Adv. Drug Deliv. Rev., 2021, 176, 113857.
[http://dx.doi.org/10.1016/j.addr.2021.113857] [PMID: 34389172]
[125]
Alghamdi, M.A.; Fallica, A.N.; Virzì, N.; Kesharwani, P.; Pittalà, V.; Greish, K. The promise of nanotechnology in personalized medicine. J. Pers. Med., 2022, 12(5), 673.
[http://dx.doi.org/10.3390/jpm12050673] [PMID: 35629095]
[126]
Raza, A.; Rasheed, T.; Nabeel, F.; Hayat, U.; Bilal, M.; Iqbal, H. Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release. Molecules, 2019, 24(6), 1117.
[http://dx.doi.org/10.3390/molecules24061117] [PMID: 30901827]
[127]
Cecchin, E.; Stocco, G. Pharmacogenomics and Personalized Medicine. Genes, 2020, 11(6), 679.
[http://dx.doi.org/10.3390/genes11060679] [PMID: 32580376]
[128]
Carrillo, W.M.; Klein, T.E.; Altman, R.B. Pharmacogenomics. In: Brenner's Encyclopedia of Genetics, Second Edition; Maloy, S.; Hughes, K., Eds.; Academic Press: San Diego, 2013; pp. 283-285.
[129]
Najjari, Z.; Sadri, F.; Varshosaz, J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J. Pharmaceutical Sciences, 2023, 18(6), 100873.
[http://dx.doi.org/10.1016/j.ajps.2023.100873] [PMID: 38173712]
[130]
Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Haq, U.M.I. 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 2022, 3, 33-42.
[http://dx.doi.org/10.1016/j.susoc.2021.09.004]
[131]
Aimar, A.; Palermo, A.; Innocenti, B. The role of 3D printing in medical applications: A state of the art. J. Healthc. Eng., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/5340616] [PMID: 31019667]
[132]
Mohapatra, Snehamayee; Kar, Rajat; Biswal, Prasanta; Bindhani, Sabitri Approaches of 3D printing in current drug delivery. Sensors International, 2022, 3, 100146.
[133]
Scheller, E.L.; Krebsbach, P.H. Gene therapy: Design and prospects for craniofacial regeneration. J. Dent. Res., 2009, 88(7), 585-596.
[http://dx.doi.org/10.1177/0022034509337480] [PMID: 19641145]
[134]
Nayerossadat, N.; Maedeh, T.; Ali, P. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1(1), 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[135]
Pan, X.; Veroniaina, H.; Su, N.; Sha, K.; Jiang, F.; Wu, Z.; Qi, X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J. Pharmaceutical Sciences, 2021, 16(6), 687-703.
[http://dx.doi.org/10.1016/j.ajps.2021.05.003] [PMID: 35027949]
[136]
Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 2022, 287, 121639.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121639 ] [PMID: 35779481]
[137]
Do, A.V.; Khorsand, B.; Geary, S.M.; Salem, A.K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater., 2015, 4(12), 1742-1762.
[http://dx.doi.org/10.1002/adhm.201500168] [PMID: 26097108]
[138]
Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev., 2013, 19(6), 485-502.
[http://dx.doi.org/10.1089/ten.teb.2012.0437] [PMID: 23672709]
[139]
Zhang, J.; Wehrle, E.; Rubert, M.; Müller, R. 3D bioprinting of human tissues: Biofabrication, bioinks, and bioreactors. Int. J. Mol. Sci., 2021, 22(8), 3971.
[http://dx.doi.org/10.3390/ijms22083971] [PMID: 33921417]
[140]
Kasoju, N.; Remya, N.S.; Sasi, R.; Sujesh, S.; Soman, B.; Kesavadas, C.; Muraleedharan, C.V.; Varma, P.R.H.; Behari, S. Digital health: Trends, opportunities and challenges in medical devices, pharma and bio-technology. CSI Transactions on ICT, 2023, 11(1), 11-30.
[http://dx.doi.org/10.1007/s40012-023-00380-3]
[141]
Raikar, A.S.; Kumar, P.; Raikar, G.V.S.; Somnache, S.N. Advances and Challenges in IoT-Based Smart Drug Delivery Systems: A Comprehensive Review. Applied System Innovation, 2023, 6(4), 62.
[http://dx.doi.org/10.3390/asi6040062]
[142]
Blakey, J.D.; Bender, B.G.; Dima, A.L.; Weinman, J.; Safioti, G.; Costello, R.W. Digital technologies and adherence in respiratory diseases: The road ahead. Eur. Respir. J., 2018, 52(5), 1801147.
[http://dx.doi.org/10.1183/13993003.01147-2018] [PMID: 30409819]
[143]
Mahara, G.; Tian, C.; Xu, X.; Wang, W. Revolutionising health care: Exploring the latest advances in medical sciences. J. Glob. Health, 2023, 13, 03042.
[http://dx.doi.org/10.7189/jogh.13.03042] [PMID: 37539846]
[144]
Pal, P.; Sambhakar, S.; Dave, V.; Paliwal, S.K.; Paliwal, S.; Sharma, M.; Kumar, A.; Dhama, N. A review on emerging smart technological innovations in healthcare sector for increasing patient’s medication adherence. Global Health J., 2021, 5(4), 183-189.
[http://dx.doi.org/10.1016/j.glohj.2021.11.006]
[145]
Dayer, L.; Heldenbrand, S.; Anderson, P.; Gubbins, P.O.; Martin, B.C. Smartphone medication adherence apps: Potential benefits to patients and providers. J. Am. Pharm. Assoc., 2013, 53(2), 172-181.
[http://dx.doi.org/10.1331/JAPhA.2013.12202] [PMID: 23571625]
[146]
Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics, 2023, 15(7), 1916.
[http://dx.doi.org/10.3390/pharmaceutics15071916 ] [PMID: 37514102]
[147]
Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci., 2021, 14(1), 86-93.
[http://dx.doi.org/10.1111/cts.12884] [PMID: 32961010]
[148]
Wilson, K.; Sullivan, M. Preventing medication errors with smart infusion technology. Am. J. Health Syst. Pharm., 2004, 61(2), 177-183.
[http://dx.doi.org/10.1093/ajhp/61.2.177] [PMID: 14750402]
[149]
Aspden, P.; Aspden, P. Preventing medication errors; National Academies Press: Washington, DC, 2007.
[150]
Hassan, E.; Badawi, O.; Weber, R.J.; Cohen, H. Using technology to prevent adverse drug events in the intensive care unit. Crit. Care Med., 2010, 38(S6), S97-S105.
[http://dx.doi.org/10.1097/CCM.0b013e3181dde1b4 ] [PMID: 20502181]
[151]
Conti, R.; Veenstra, D.L.; Armstrong, K.; Lesko, L.J.; Grosse, S.D. Personalized medicine and genomics: Challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med. Decis. Making, 2010, 30(3), 328-340.
[http://dx.doi.org/10.1177/0272989X09347014] [PMID: 20086232]
[152]
Overby, C.L.; Hornoch, T.P. Personalized medicine: Challenges and opportunities for translational bioinformatics. Per. Med., 2013, 10(5), 453-462.
[http://dx.doi.org/10.2217/pme.13.30] [PMID: 24039624]
[153]
Singh, D.B. The impact of pharmacogenomics in personalized medicine; Current Applications of Pharmaceutical Biotechnology, 2020, pp. 369-394.
[154]
Thind, M.; Kowey, P. The role of the food and drug administration in drug development: On the subject of proarrhythmia risk. J. Innov. Card. Rhythm Manag., 2020, 11(1), 3958-3967.
[http://dx.doi.org/10.19102/icrm.2020.110103] [PMID: 32368365]
[155]
Kepplinger, E.E. FDA’s expedited approval mechanisms for new drug products. Biotechnol. Law Rep., 2015, 34(1), 15-37.
[http://dx.doi.org/10.1089/blr.2015.9999] [PMID: 25713472]
[156]
Đorđević, S.; Gonzalez, M.M.; Sánchez, C.I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Fainaro, S.R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res., 2022, 12(3), 500-525.
[http://dx.doi.org/10.1007/s13346-021-01024-2] [PMID: 34302274]
[157]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]