One-pot Synthesis of Condensed Azepines

Page: [815 - 829] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Azepine is a privileged nitrogen-containing ring that has been found to display a wide range of biological activities. Azepine is a valuable skeleton in designing novel compounds in medicinal chemistry due to its interesting chemical and biological properties. The study on the synthesis of this ring system engenders a fascinating area of research owing to its potential to form an active pharmacophore for De Novo exploration. In this study, conventional and domino results were compared to access the diverse set of azepines in high yield. The domino approach has revolutionized the way through which the previously impossible yet significant transformations could be conceptualized, allowing the construction of difficult materials in one step. The aim of the present mini-review is to highlight the importance of the one-pot domino reaction for the synthesis of condensed azepines. This review also presents research on this subject from the past two decades.

Graphical Abstract

[1]
(a) Buntrock, R.E. Review of heterocyclic chemistry, 5th edition. J. Chem. Edu., 2012, 89(11), 1349-1350.;
(b) Yaduvanshi, N.; Tewari, S. Biogenic synthesis of Pd-Fe@ LLR nanocomposites as magnetically recyclable catalysts for CC and CN bond formation. Inorg. Chem. Commun., 2024, 161, 111927.;
(c) Joshi, P.; Sharma, S. Tinospora cordifolia ameliorates paclitaxel-induced neuropathic pain in albino rats. J. Ethnopharmacol., 2023, 321, 117559.;
(d) Jain, S.; Sharma, S.; Paliwal, A. Discovery of novel fatty acid amide hydrolase (FAAH) inhibitors as anti-Alzheimer’s agents through pharmacophore-based virtual screening, molecular docking and experimental validation. Med. Chem. Res., 2023, 33, 1-15.;
(e) Yadav, A.; Raghav, S.; Jangid, N.K.; Srivastava, A.; Jadoun, S.; Srivastava, M.; Dwivedi, J. Myrica esculenta leaf extract-assisted green synthesis of porous magnetic chitosan composites for fast removal of Cd (II) from water: Kinetics and thermodynamics of adsorption. Polymers (Basel), 2023, 15(21), 4339.
[http://dx.doi.org/10.3390/polym15214339] [PMID: 37960019];
(f) Joshi, P.; Verma, K. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother. Res., 2023.;
(g) Arya, N.; Jain, S. Current updates on green synthesis and biological properties of 4-Quinolone derivatives. J. Mol. Struct., 2023, 1294, 136565.
[2]
(a) Aldabbagh, F. Heterocyclic chemistry. Annu. Rep. Sect. B Org. Chem., 2013, 109, 126-145.
[http://dx.doi.org/10.1039/c3oc90009f];
(b) Panchal, J.; Jaiswal, S.; Jain, S.; Kumawat, J.; Sharma, A.; Jain, P.; Jain, S.; Verma, K.; Dwivedi, J.; Sharma, S. Development of novel bosentan analogues as endothelin receptor antagonists for pulmonary arterial hypertension. Eur. J. Med. Chem., 2023, 259, 115681.
[http://dx.doi.org/10.1016/j.ejmech.2023.115681];
(c) Joshi, P.; Bisht, A. Recent updates on clinical developments of curcumin and its derivatives. Phytother. Res., 2023.;
(d) Yaduvanshi, N.; Jaiswal, S. Exploration of catalytic activity of newly developed Pd/KLR and Pd-Cu/KLR nanocomposites for synthesis of biologically active novel heterocycles via suzuki cross-coupling reaction. J. Mol. Struct., 2023, 1294, 136395.;
(e) Verma, K.; Paliwal, S. New insights on mode of action of vasorelaxant activity of simvastatin. Inflammopharmacology, 2023, 31, 1-10.;
(f) Devi, M.; Jaiswal, S.; Yaduvanshi, N.; Jain, S.; Jain, S.; Verma, K.; Verma, R.; Kishore, D.; Dwivedi, J.; Sharma, S. Design, synthesis, molecular docking, and antibacterial study of aminomethyl triazolo substituted analogues of benzimidazolo[1, 4]-benzodiazepine. J. Mol. Struct., 2023, 1286, 135571.
[http://dx.doi.org/10.1016/j.molstruc.2023.135571];
(g) Bisht, A.; Gururani, R.; Jain, S.; Shukla, R.; Dwivedi, J.; Sharma, S. Cedrus deodara (Roxb. ex D.Don) G.Don bark fraction ameliorates metabolic, endocrine and ovarian dynamics in rats experiencing polycystic ovarian syndrome. J. Ethnopharmacol., 2023, 306, 116206.
[http://dx.doi.org/10.1016/j.jep.2023.116206] [PMID: 36690306];
h) Yaduvanshi, Y.; Jaiswal, S. Palladium nanoparticles and their composites: Green synthesis and applications with special emphasis to organic transformations. Inorg. Chem. Commun., 2023, 151, 110600.;
i) Devi, M.; Jaiswal, S.; Yaduvanshi, N.; Kaur, N.; Kishore, D.; Dwivedi, J.; Sharma, S. Design, synthesis, antibacterial evaluation and docking studies of triazole and tetrazole linked 1, 4‐benzodiazepine nucleus via click approach. Chem. Select, 2023, 8(6), e202204710.
[http://dx.doi.org/10.1002/slct.202204710]
[3]
(a) Mueller, R.H.; DiPardo, R.M. Stereo- and regioselective total synthesis of the hydropyrido [2,1,6-de] I quinolizine ladybug defensive alkaloids. J. Org. Chem., 1984, 49, 2217-2231.
[http://dx.doi.org/10.1021/jo00186a029];
(b) Gururani, R.; Dwivedi, J.; Sharma, S. Tylophora indica (Burm. f.) Merr alleviates tracheal smooth muscle hyperresponsiveness in ovalbumin‐induced allergic‐asthma model in guinea‐pigs: Evidences from ex vivo, in silico and in vivo studies. Fundam. Clin. Pharmacol., 2023.;
(c) Kishore, D.; Dwivedi, J.; Sharma, S. One-pot mediated synthesis of pyrimidine and quinazoline annulated derivatives of nitrogen containing five membered rings through their nitrile derivatives as antibacterial agents. Bull. Chem. Soc. Ethiop., 2023, 37(5), 1193-1208.
[http://dx.doi.org/10.4314/bcse.v37i5.12];
(d) Joshi, P.; Bisht, A.; Joshi, S.; Semwal, D.; Nema, N.K.; Dwivedi, J.; Sharma, S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother. Res., 2022, 36(8), 3143-3180.
[http://dx.doi.org/10.1002/ptr.7522] [PMID: 35790042];
(e) Joshi, P.; Joshi, S.; Semwal, D.K.; Verma, K.; Dwivedi, J.; Sharma, S. Role of curcumin in ameliorating hypertension and associated conditions: A mechanistic insight. Mol. Cell. Biochem., 2022, 477(10), 2359-2385.
[http://dx.doi.org/10.1007/s11010-022-04447-8] [PMID: 35569080]
[4]
(a) Patil, P.S.; Lee, C.C.; Huang, Y.W.; Zulueta, M.M.L.; Hung, S.C. Regioselective and stereoselective benzylidene installation and one-pot protection of d-mannose. Org. Biomol. Chem., 2013, 11(16), 2605-2612.
[http://dx.doi.org/10.1039/c3ob40079d] [PMID: 23446759];
(b) Sain, S.; Devi, M.; Jaiswal, S. Synthesis and theoretical studies of biologically active thieno nucleus incorporated tri and tetracyclic nitrogen containing heterocyclics scaffolds via Suzuki cross‐coupling reaction. Chem. Biodivers., 2022, 19(12), 202200540.;
(c) Jaiswal, S.; Devi, M.; Sharma, N.; Rathi, K.; Dwivedi, J.; Sharma, S. Emerging approaches for synthesis of 1,2,3-triazole derivatives. A review. Org. Prep. Proced. Int., 2022, 54(5), 387-422.
[http://dx.doi.org/10.1080/00304948.2022.2069456];
(d) Bisht, A.; Jain, S.; Misra, A.; Dwivedi, J.; Paliwal, S.; Sharma, S. Cedrus deodara (Roxb. ex D.Don) G.Don: A review of traditional use, phytochemical composition and pharmacology. J. Ethnopharmacol., 2021, 279, 114361.
[http://dx.doi.org/10.1016/j.jep.2021.114361] [PMID: 34166738];
(e) Panchal, J.; Jain, S.; Jain, P.K.; Kishore, D.; Dwivedi, J. Greener approach toward synthesis of biologically actives ‐TRIAZINE (TCT) derivatives: A recent update. J. Heterocycl. Chem., 2021, 58(11), 2049-2066.
[http://dx.doi.org/10.1002/jhet.4343];
(f) Joshi, P.; Joshi, S.; Semwal, D.; Bisht, A.; Paliwal, S.; Dwivedi, J.; Sharma, S. Curcumin: An insight into molecular pathways involved in anticancer activity. Mini Rev. Med. Chem., 2021, 21(17), 2420-2457.
[http://dx.doi.org/10.2174/18755607MTEzhNTgE1] [PMID: 33480345]
[5]
(a) Herkommer, D.; Schmalzbauer, B.; Menche, D. Sequential catalysis for stereoselective synthesis of complex polyketides. Nat. Prod. Rep., 2014, 31(4), 456-467.
[http://dx.doi.org/10.1039/C3NP70093C] [PMID: 24362363];
(b) Verma, K.; Pant, M.; Paliwal, S.; Dwivedi, J.; Sharma, S. An insight on multicentric signaling of angiotensin II in cardiovascular system: A recent update. Front. Pharmacol., 2021, 12, 734917.
[http://dx.doi.org/10.3389/fphar.2021.734917] [PMID: 34489714];
(c) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734];
(d) Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and biological attributes of pyrimidine derivatives: A recent update. Curr. Org. Synth., 2021, 18(8), 790-825.
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770]
[6]
(a) Huang, Y.; Shen, H.C.; Yin, W. One-pot synthesis of useful heterocycles in medicinal chemistry using a cascade strategy. Green Chem., 2012, 41, 580-585.;
(b) Joshi, P.; Joshi, S.; Semwal, D.K.; Bisht, A.; Sharma, S.; Dwivedi, J. Chemical composition, antioxidative and antimicrobial activities of turmeric spent oleoresin. Ind. Crops Prod., 2021, 162, 113278.
[http://dx.doi.org/10.1016/j.indcrop.2021.113278];
(c) Shukla, S.; Dwivedi, J.; Yaduvanshi, N.; Jain, S. Medicinal and biological significance of phenoxazine derivatives. Mini Rev. Med. Chem., 2021, 21(12), 1541-1555.
[http://dx.doi.org/10.2174/1389557520666201214102151] [PMID: 33319658];
(d) Arora, S.; Arora, D.; Kumar, S. Selective synthesis of novel pyridopyrimido annulated analogues of azepinones from Beckmann rearrangement of corresponding oximes by the 2,4,6-trichloro-1,3,5-triazine and dimethyl formamide reagent. J. Chem. Sci., 2021, 133, 1-13.;
(e) Sharma, S.; Wabaidur, S.M.; Verma, V.P. Synthesis, biological evaluation and molecular docking of pyrimidine and quinazoline derivatives of 1, 5-benzodiazepine as potential anticancer agents. J. King Saud Univ. Sci., 2020, 32(2), 1486-1495.
[7]
(a) Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2(11), 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a];
(b) Misra, A.; Dwivedi, J.; Shukla, S.; Kishore, D.; Sharma, S. Bacterial cell leakage potential of newly synthesized quinazoline derivatives of 1,5‐benzodiazepines analogue. J. Heterocycl. Chem., 2020, 57(4), 1545-1558.
[http://dx.doi.org/10.1002/jhet.3879];
(c) Gururani, R.; Patel, S.; Yaduvanshi, N.; Dwivedi, J.; Paliwal, S.; Sharma, S. Tylophora indica (Burm. f.) merr: An insight into phytochemistry and pharmacology. J. Ethnopharmacol., 2020, 262, 113122.
[http://dx.doi.org/10.1016/j.jep.2020.113122];
(d) Misra, A.; Jain, S.; Kishore, D.; Dave, V.; Reddy, K.R.; Sadhu, V.; Dwivedi, J.; Sharma, S. A facile one pot synthesis of novel pyrimidine derivatives of 1,5-benzodiazepines via domino reaction and their antibacterial evaluation. J. Microbiol. Methods, 2019, 163, 105648.
[http://dx.doi.org/10.1016/j.mimet.2019.105648] [PMID: 31195033];
(e) Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The synthetic and biological attributes of pyrazole derivatives: A review. Mini Rev. Med. Chem., 2018, 18(11), 918-947.
[http://dx.doi.org/10.2174/1389557517666170927160919] [PMID: 28971774];
(f) Arora, D.; Dwivedi, J.; Kumar, S.; Kishore, D. Greener approach toward the generation of dimedone derivatives. Synth. Commun., 2018, 48(2), 115-134.
[http://dx.doi.org/10.1080/00397911.2017.1387924]
[8]
(a) Gu, Y. Multicomponent reactions in unconventional solvents: State of the art. Green Chem., 2012, 14(8), 2091-2128.
[http://dx.doi.org/10.1039/c2gc35635j];
(b) Arora, D.; Dwivedi, J.; Arora, S.; Kumar, S.; Kishore, D. Organocatalyzed synthesis and antibacterial activity of novel quinolino annulated analogues of azepinones. J. Heterocycl. Chem., 2018, 55(9), 2178-2187.
[http://dx.doi.org/10.1002/jhet.3260];
(c) Dhall, E.; Jain, S.; Mishra, A.; Dwivedi, J.; Sharma, S. Synthesis and evaluation of some phenyl substituted azetidine containing 1,2,4‐triazole derivatives as antibacterial agents. J. Heterocycl. Chem., 2018, 55(12), 2859-2869.
[http://dx.doi.org/10.1002/jhet.3357]
[9]
Ramachary, D.B.; Jain, S. Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: An emerging technology in organic synthesis. Org. Biomol. Chem., 2011, 9(5), 1277-1300.
[http://dx.doi.org/10.1039/C0OB00611D] [PMID: 21120241]
[10]
Yamamoto, Y. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes. Chem. Soc. Rev., 2014, 43(5), 1575-1600.
[http://dx.doi.org/10.1039/C3CS60369E] [PMID: 24336638]
[11]
Du, Z.; Shao, Z. Combining transition metal catalysis and organocatalysis-an update. Chem. Soc. Rev., 2013, 42(3), 1337-1378.
[http://dx.doi.org/10.1039/C2CS35258C] [PMID: 23154522]
[12]
Ivantsova, M.N.; Tokareva, M.I.; Mironov, M.A. Multicomponent interphase synthesis of heterocyclic compounds (Review). Chem. Heterocycl. Compd., 2012, 48(4), 584-600.
[http://dx.doi.org/10.1007/s10593-012-1031-1]
[13]
(a) Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G. Recent developments in the synthesis of five- and six-membered heterocycles using molecular iodine. Chemistry, 2012, 18(18), 5460-5489.
[http://dx.doi.org/10.1002/chem.201100324] [PMID: 22488798];
(b) Jaiswal, S.; Dwivedi, J.; Kishore, D.; Sharma, S. Green methodologies for tetrazole synthesis from different starting materials: A recent update. Curr. Org. Chem., 2024, 28(2), 134-160.
[http://dx.doi.org/10.2174/0113852728283721240109092312]
[14]
Bhosale, D.; Mali, S.N.; Thorat, B.R.; Wavhal, S.S.; Bhagat, D.S.; Borade, R.M. Synthesis, molecular docking, and in vitro antimycobacterial studies on N′-arylidene-4-nitrobenzohydrazides. Recent Adv. Anti-Inf. Drug Discovery, 2022, 17(1), 69-83.
[http://dx.doi.org/10.2174/1570193X19666220531154544] [PMID: 35642111]
[15]
Li, M.; Cao, H.; Wang, Y.; Lv, X.L.; Wen, L.R. One-pot multicomponent cascade reaction of N,S-ketene acetal: Solvent-free synthesis of imidazo[1,2-a]thiochromeno[3,2-e]pyridines. Org. Lett., 2012, 14(13), 3470-3473.
[http://dx.doi.org/10.1021/ol301441v] [PMID: 22734942]
[16]
Gómez Baraibar, Á.; Reichert, D.; Mügge, C.; Seger, S.; Gröger, H.; Kourist, R. A one‐pot cascade reaction combining an encapsulated decarboxylase with a metathesis catalyst for the synthesis of bio‐based antioxidants. Angew. Chem. Int. Ed., 2016, 55(47), 14823-14827.
[http://dx.doi.org/10.1002/anie.201607777] [PMID: 27754591]
[17]
Zhang, F.; Jiang, H.; Li, X.; Wu, X.; Li, H. Amine-functionalized GO as an active and reusable acid–base bifunctional catalyst for one-pot cascade reactions. ACS Catal., 2014, 4(2), 394-401.
[http://dx.doi.org/10.1021/cs400761r]
[18]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[19]
Ishwar Bhat, S. One‐pot construction of bis‐heterocycles through isocyanide based multicomponent reactions. Chem. Select, 2020, 5(27), 8040-8061.
[http://dx.doi.org/10.1002/slct.202002154]
[20]
Khan, A.T.; Lal, M.; Khan, M.M. Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett., 2010, 51(33), 4419-4424.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.069]
[21]
Sampath, M.; Loh, T.P. Highly enantio-, regio- and diastereo-selective one-pot [2 + 3]-cycloaddition reaction via isomerization of 3-butynoates to allenoates. Chem. Sci. (Camb.), 2010, 1(6), 739-742.
[http://dx.doi.org/10.1039/c0sc00123f]
[22]
Rajeshkumar, V.; Neelamegam, C.; Anandan, S. A one-pot metal-free protocol for the synthesis of chalcogenated furans from 1,4-enediones and thiols. Org. Biomol. Chem., 2019, 17(4), 982-991.
[http://dx.doi.org/10.1039/C8OB03051K] [PMID: 30632591]
[23]
Leas, D.A.; Dong, Y.; Vennerstrom, J.L.; Stack, D.E. One-pot, metal-free conversion of anilines to aryl bromides and iodides. Org. Lett., 2017, 19(10), 2518-2521.
[http://dx.doi.org/10.1021/acs.orglett.7b00771] [PMID: 28481557]
[24]
Reinhard, R.; Glaser, M.; Neumann, R.; Maas, G. Tri- and tetracyclic azepine derivatives by thermally induced cyclization of aminoallenes and semicyclic 2-dienamines. J. Org. Chem., 1997, 62(22), 7744-7751.
[http://dx.doi.org/10.1021/jo9710036]
[25]
Li, S.S.; Zhou, L.; Wang, L.; Zhao, H.; Yu, L.; Xiao, J. Organocatalytic C (sp3)–H functionalization via carbocation-initiated cascade[1,5]-hydride transfer/cyclization: Synthesis of dihydrodibenzo [b, e] azepines. Org. Lett., 2018, 20(1), 138-141.
[http://dx.doi.org/10.1021/acs.orglett.7b03492] [PMID: 29239184]
[26]
Liu, K.; Teng, H.L.; Wang, C.J. Et3N-catalyzed tandem formal [4 + 3] annulation/decarboxylation/isomerization of methyl coumalate with imine esters: Access to functionalized azepine derivatives. Org. Lett., 2014, 16(17), 4508-4511.
[http://dx.doi.org/10.1021/ol5020569] [PMID: 25144855]
[27]
Kotipalli, T.; Janreddy, D.; Kavala, V.; Kuo, C.W.; Kuo, T.S.; Chen, M.L.; He, C.H.; Yao, C.F. BF3•OEt2-mediated one pot synthesis of 10-indolyl-dibenzo[b,f]azepine derivatives via tandem ring expansion and C–C bond formation. RSC Advances, 2014, 4(88), 47833-47840.
[http://dx.doi.org/10.1039/C4RA08723B]
[28]
Erdoğan, M.; Daştan, A. Synthesis of N-substituted dibenzoazepine–pyridazine derivatives as potential neurologically active drugs. Synth. Commun., 2020, 50(24), 3845-3853.
[http://dx.doi.org/10.1080/00397911.2020.1828925]
[29]
Li, W.; Shi, R.; Chen, S.; Zhang, X.; Peng, W.; Chen, S.; Li, J.; Xu, X.M.; Zhu, Y.P.; Wang, X. Synthesis of diverse pentasubstituted pyrroles by a gold (I)-catalyzed cascade rearrangement-cyclization of tertiary enamide. J. Org. Chem., 2022, 87(5), 3014-3024.
[http://dx.doi.org/10.1021/acs.joc.1c02837] [PMID: 35073080]
[30]
Zhang, Y.F.; Duan, W.D.; Chen, J.; Hu, Y. Base-promoted Cascade reactions of 3-(1-Alkynyl) chromones with pyridinium ylides to chromeno [2, 3-d] azepine derivatives. J. Org. Chem., 2019, 84(7), 4467-4472.
[http://dx.doi.org/10.1021/acs.joc.8b03210] [PMID: 30843702]
[31]
Zhang, S.; Chen, F.; He, Y.M.; Fan, Q.H. Asymmetric hydrogenation of dibenzo [c, e] azepine derivatives with chiral cationic ruthenium diamine catalysts. Org. Lett., 2019, 21(14), 5538-5541.
[http://dx.doi.org/10.1021/acs.orglett.9b01859] [PMID: 31259558]
[32]
Shaabani, A.; Hooshmand, S.E.; Nazeri, M.T.; Afshari, R.; Ghasemi, S. Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles. Tetrahedron Lett., 2016, 57(33), 3727-3730.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.005]
[33]
Barani, K.K.; Mohammadi, M.; Ghambarian, M.; Azizi, Z. Fe3O4/ZnO@ MWCNT promoted green synthesis of biological active of new azepinooxazepine derivatives: Combination of experimental and theoretical study. Polycycl. Aromat. Compd., 2023, 44, 1-27.
[34]
Zamani Hargalani, F.; Shafaei, F.; Khandan, S.; Rostami-Charati, F. Green synthesis and biological activity investigation of new Pyrimidotriazinoazepines. Polycycl. Aromat. Compd., 2023, 2023, 1-15.
[35]
Kadhim, M.M.; Tabarsaei, N.; Ghorchibeigi, M.; Sadeghi Meresht, A. New MCRs in ionic liquid: Green synthesis and biological activity investigation of new pyrazoloazepines: Application of Ag/Fe3O4/CdO@MWCNT MNCs in reduction of organic pollutant. Polycycl. Aromat. Compd., 2023, 43(7), 5785-5806.
[http://dx.doi.org/10.1080/10406638.2022.2106253]
[36]
Kohestani, T.; Sayyed-Alangi, S.Z.; Hossaini, Z.; Baei, M.T. Ionic liquid as an effective green media for the synthesis of (5Z, 8Z)-7H-pyrido[2,3-d]azepine derivatives and recycable Fe3O4/TiO2/multi-wall cabon nanotubes magnetic nanocomposites as high performance organometallic nanocatalyst. Mol. Divers., 2022, 26(3), 1441-1454.
[http://dx.doi.org/10.1007/s11030-021-10269-5] [PMID: 34304343]
[37]
Venkata Prasad, J.; Prabhakar, M.; Manjulatha, K.; Rambabu, D.; Anand Solomon, K.; Gopi Krishna, G.; Anil Kumar, K. Efficient catalyst-free domino approach for the synthesis of novel 2-benzazepine derivatives in water. Tetrahedron Lett., 2010, 51(23), 3109-3111.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.020]
[38]
Shiva Prasad, K.; Costa, R.A.; Branches, A.D.S.; Oliveira, K.M.T. Novel route for the synthesis of azepine derivative using tin-based catalyst: Spectroscopic characterization and theoretical investigations. J. Mol. Struct., 2019, 1178, 491-499.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.050]
[39]
Gracias, V.; Gasiecki, A.F.; Djuric, S.W. Synthesis of fused imidazo azepine derivatives by sequential van Leusen/enyne metathesis reactions. Tetrahedron Lett., 2005, 46(52), 9049-9052.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.089]
[40]
Vijay Kumar, H.; Naik, N. Synthesis and antioxidant properties of some novel 5H-dibenz[b,f]azepine derivatives in different in vitro model systems. Eur. J. Med. Chem., 2010, 45(1), 2-10.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.016] [PMID: 19846240]
[41]
Kommidi, D.R.; Pagadala, R.; Varkolu, M.; Koorbanally, N.A.; Moodley, B. New route for the synthesis of thiazolidine 2,4dione azepine derivatives. J. Heterocycl. Chem., 2017, 54(2), 1071-1076.
[http://dx.doi.org/10.1002/jhet.2676]
[42]
Yeramanchi, L.; Nagarapu, L.; Mallepalli, R.; Bantu, R. Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for the one-pot synthesis of N-substituted azepines under catalyst-free conditions. Synlett, 2011, 2011(18), 2730-2732.
[http://dx.doi.org/10.1055/s-0031-1289542]
[43]
Romo, P.E.; Isaza, J.H.; Insuasty, B.; Abonia, R.; del Crespo, M.P.; Quiroga, J. Synthesis of pyrazolo[3,4-b]azepines and their antioxidant and antibacterial studies. Monatsh. Chem., 2019, 150(8), 1503-1511.
[http://dx.doi.org/10.1007/s00706-019-02479-3]
[44]
Soliman, H.A.; Salama, T.A. Silicon-mediated highly efficient synthesis of 1,8-dioxo-octahydroxanthenes and their transformation to novel functionalized pyrano-tetrazolo[1,5-a] azepine derivatives. Chin. Chem. Lett., 2013, 24(5), 404-406.
[http://dx.doi.org/10.1016/j.cclet.2013.03.021]
[45]
Sun, Y.W.; Wang, L.Z. One-pot synthesis of novel functionalized benzodiazepines via three-component or domino reactions. New J. Chem., 2018, 42(24), 20032-20040.
[http://dx.doi.org/10.1039/C8NJ04893B]
[46]
Yang, W.L.; Li, W.; Yang, Z.T.; Deng, W.P. Organocatalytic regiodivergent ring expansion of cyclobutanones for the enantioselective synthesis of azepino[1, 2-a] indoles and cyclohepta [b] indoles. Org. Lett., 2020, 22(10), 4026-4032.
[http://dx.doi.org/10.1021/acs.orglett.0c01406] [PMID: 32363878]
[47]
Dai, Z.; Zhu, J.; Wang, J.; Su, W.; Yang, F.; Zhou, Q. Phosphine‐catalyzed chemoselective [4+3] cycloaddition of alminine esters and β′‐acetoxy allenoates for divergent synthesis of azepines. Adv. Synth. Catal., 2020, 362(3), 545-551.
[http://dx.doi.org/10.1002/adsc.201901132]
[48]
Cravotto, G.; Barge, A.; Füzerová, S.; Upadhyaya, D.; Garella, D.; Aime, S.; Tei, L. A new, easy access to the 6-aminoperhydro-1, 4-diazepine scaffold under ultrasound and microwave irradiation. Synthesis, 2008, 2008(12), 1879-1882.
[http://dx.doi.org/10.1055/s-2008-1067035]
[49]
Ramesh, K.; Murthy, S.N.; Nageswar, Y.V.D. Novel and efficient aqueous phase synthesis of N-substituted azepines via tandem Michael addition and cyclization in the presence of β-cyclodextrin. Tetrahedron Lett., 2011, 52(18), 2362-2366.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.082]
[50]
Inazumi, T.; Harada, E.; Mizukoshi, T.; Kuroki, Y.; Kakehi, A.; Noguchi, M. Studies on fused pyrimidine derivatives. Part 13. Thermal ene reaction of 6-(alk-2-enylamino)-5-[(substituted imino)methyl]-1,3-dimethylpyrimidine-2,4(1H,3H)-diones leading to pyrimido[4,5-b]azepines. J. Chem. Soc., Perkin Trans. 1, 1994, (5), 565-570.
[http://dx.doi.org/10.1039/p19940000565]
[51]
Liu, X.; Wang, J.; Dong, G. Modular entry to functionalized tetrahydrobenzo [b] azepines via the palladium/norbornene cooperative catalysis enabled by a C7-modified norbornene. J. Am. Chem. Soc., 2021, 143(26), 9991-10004.
[http://dx.doi.org/10.1021/jacs.1c04575] [PMID: 34161077]
[52]
Yang, T.; Guo, X.; Yin, Q.; Zhang, X. Intramolecular asymmetric reductive amination: Synthesis of enantioenriched dibenz[C,E]azepines. Chem. Sci. (Camb.), 2019, 10(8), 2473-2477.
[http://dx.doi.org/10.1039/C8SC04482A] [PMID: 30881676]
[53]
Wu, H.; Wang, L. Expedient green-chemistry approaches for a one-pot synthesis of two series of novel 1,5-benzodiazepines via domino reactions. New J. Chem., 2020, 44(25), 10428-10440.
[http://dx.doi.org/10.1039/C9NJ06332C]
[54]
Nagaraju, K.; Gurubrahamam, R.; Chen, K. Organocatalytic diastereoselective synthesis of diazoaryl-benzo[b]azepine derivatives. J. Org. Chem., 2020, 85(11), 7060-7067.
[http://dx.doi.org/10.1021/acs.joc.0c00431] [PMID: 32406229]
[55]
Ouyang, W.; Rao, J.; Li, Y.; Liu, X.; Huo, Y.; Chen, Q.; Li, X. Recent achievements in the Rhodium‐catalyzed concise construction of medium N‐heterocycles, azepines and azocines. Adv. Synth. Catal., 2020, 362(24), 5576-5600.
[http://dx.doi.org/10.1002/adsc.202001040]
[56]
Casnati, A.; Fontana, M.; Coruzzi, G.; Aresta, B.M.; Corriero, N.; Maggi, R.; Maestri, G.; Motti, E.; Della Ca’, N. Enhancing reactivity and selectivity of Aryl Bromides: A complementary approach to dibenzo[b,f]azepine derivatives. ChemCatChem, 2018, 10(19), 4346-4352.
[http://dx.doi.org/10.1002/cctc.201800940]
[57]
Tietze, L.F.; Levy, L.M. The Mizoroki–Heck reaction in domino processes. The Mizoroki-Heck Reaction; Wiley: Hoboken, New Jersey, 2009, p. 281.
[http://dx.doi.org/10.1002/9780470716076.ch8]
[58]
Hu, T.; Ye, Z.; Zhu, K.; Xu, K.; Wu, Y.; Zhang, F. Synthesis of tribenzo [b, d, f] azepines via cascade π-extended decarboxylative annulation involving cyclic diaryliodonium salts. Org. Lett., 2020, 22(2), 505-509.
[http://dx.doi.org/10.1021/acs.orglett.9b04269] [PMID: 31904242]
[59]
Mahesh, K.; Ravi, K.; Rathod, P.K.; Leelavathi, P. Convenient synthesis of quinoline-fused triazolo-azepine/oxepine derivatives through Pd-catalyzed C–H functionalisation of triazoles. New J. Chem., 2020, 44(6), 2367-2373.
[http://dx.doi.org/10.1039/C9NJ05254B]
[60]
Božinović N.; Šolaja, B.; Opsenica, I. Microwave-assisted synthesis of azepines via nucleophilic aromatic substitution. J. Serb. Chem. Soc., 2016, 81(11), 1225-1230.
[http://dx.doi.org/10.2298/JSC160824074B]
[61]
Pagar, V.V.; Liu, R.S. Gold-catalyzed cycloaddition reactions of ethyl diazoacetate, nitrosoarenes, and vinyldiazo carbonyl compounds: Synthesis of isoxazolidine and benzo[b]azepine derivatives. Angew. Chem. Int. Ed., 2015, 54(16), 4923-4926.
[http://dx.doi.org/10.1002/anie.201500340] [PMID: 25702833]
[62]
Yao, X.; Shao, Y.; Hu, M.; Xia, Y.; Cheng, T.; Chen, J. Palladium-catalyzed cascade reaction of o-cyanobiaryls with arylboronic acids: Synthesis of 5-arylidene-7-aryl-5H-dibenzo[c,e]azepines. Org. Lett., 2019, 21(19), 7697-7701.
[http://dx.doi.org/10.1021/acs.orglett.9b02351] [PMID: 31393128]
[63]
Niu, B.; Nie, Q.; Huang, B.; Cai, M. Heterogeneous Gold(I)‐Catalyzed Oxidative ring expansion of 2‐Alkynyl‐1,2‐Dihydropyridines or ‐Quinolines towards functionalized Azepines or Benzazepines. Adv. Synth. Catal., 2019, 361(17), 4065-4074.
[http://dx.doi.org/10.1002/adsc.201900512]
[64]
Ge, G.C.; Ding, C.H.; Hou, X.L. Palladacycle-catalyzed cascade reaction of bicyclic alkenes with alkynyl imines: Synthesis of polycyclic 5H-benzo[b]azepines. Org. Chem. Front., 2014, 1(4), 382-385.
[http://dx.doi.org/10.1039/C4QO00030G]
[65]
Jalal, S.; Bera, K.; Sarkar, S.; Paul, K.; Jana, U. Efficient synthesis of functionalized dihydroquinolines, quinolines and dihydrobenzo[b]azepine via an iron(III) chloride-catalyzed intramolecular alkyne–carbonyl metathesis of alkyne tethered 2-amino benzaldehyde/acetophenone derivatives. Org. Biomol. Chem., 2014, 12(11), 1759-1770.
[http://dx.doi.org/10.1039/C3OB42292E] [PMID: 24500306]
[66]
Schultz, E.E.; Lindsay, V.N.G.; Sarpong, R. Expedient synthesis of fused azepine derivatives using a sequential rhodium(II)-catalyzed cyclopropanation/1-aza-Cope rearrangement of dienyltriazoles. Angew. Chem. Int. Ed., 2014, 53(37), 9904-9908.
[http://dx.doi.org/10.1002/anie.201405356] [PMID: 25044869]
[67]
Shiva Kumar, K.; Siddi Ramulu, M.; Rajesham, B.; Kumar, N.P.; Voora, V.; Kancha, R.K. FeCl3 catalysed 7-membered ring formation in a single pot: A new route to indole-fused oxepines/azepines and their cytotoxic activity. Org. Biomol. Chem., 2017, 15(20), 4468-4476.
[http://dx.doi.org/10.1039/C7OB00715A] [PMID: 28497830]
[68]
Ishikura, M.; Namerikawa, Y.; Yamada, K.; Abe, T. Reaction of Nβ-benzylserotonin with α β-unsaturated and aryl aldehydes in the presence of a base. Heterocycles, 2009, 77(2), 825.
[http://dx.doi.org/10.3987/COM-08-S(F)98]
[69]
He, Y.; Song, L.; Liu, C.; Wu, D.; Li, Z.; Van Meervelt, L.; Van der Eycken, E.V. Access to polycyclic azepino[5,4, 3-cd] indoles via a gold-catalyzed post-Ugi dearomatization cascade. J. Org. Chem., 2020, 85(23), 15092-15103.
[http://dx.doi.org/10.1021/acs.joc.0c01972] [PMID: 33200934]
[70]
Ghimire, G.; Söderberg, B.C.G. Short syntheses of the tricyclic indole alkaloids cimitrypazepine and fargesine. Tetrahedron Lett., 2016, 57(34), 3873-3876.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.061]
[71]
Motornov, V.; Beier, P. Chemoselective aza-[4+3]-annulation of N-perfluoroalkyl-1,2,3-triazoles with 1,3-dienes: Access to N-perfluoroalkyl-substituted azepines. J. Org. Chem., 2018, 83(24), 15195-15201.
[http://dx.doi.org/10.1021/acs.joc.8b02472] [PMID: 30516987]
[72]
Wang, L.; Huang, J.; Peng, S.; Liu, H.; Jiang, X.; Wang, J. Palladium-catalyzed oxidative cycloaddition through C-H/N-H activation: Access to benzazepines. Angew. Chem. Int. Ed. Engl., 2013, 52(6), 1768-1772.
[73]
Abe, T.; Yamada, K. Concise syntheses of hyrtioreticulins C and D via a C-4 Pictet–Spengler reaction: Revised signs of specific rotations. J. Nat. Prod., 2017, 80(2), 241-245.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00008] [PMID: 28134528]
[74]
Abe, T.; Yamada, K.; Haruyama, T. C4 pictet–spengler reactions for the synthesis of core structures in hyrtiazepine alkaloids. Synthesis, 2017, 49(18), 4141-4150.
[http://dx.doi.org/10.1055/s-0036-1588438]