Evaluation of Novel Benzo-annelated 1,4-dihydropyridines as MDR Modulators in Cancer Cells

Page: [1047 - 1055] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Multidrug resistance (MDR) is the main problem in anticancer therapy today. Causative transmembrane efflux pumps in cancer cells have been reconsidered as promising anticancer target structures to restore anticancer drug sensitivity by various strategies, including MDR modulators. MDR modulators interfere with the efflux pumps and improve the cellular efficiency of chemotherapeutics. So far, only a few candidates have gone through clinical trials with disappointing results because of low specificity and toxic properties.

Aim: This study aimed to find novel MDR modulators to effectively combat multidrug resistance in cancer cells.

Objective: We synthesized various novel benzo-annelated 1,4-dihydropyridines to evaluate them as MDR modulators towards ABCB1 in cancer cells.

Methods: Synthesized compounds were purified by column chromatography. The MDR modulation of ABCB1 was determined in cellular efflux assays using the flow cytometry technique and cellular fluorescent measurements by the use of each fluorescent substrate.

Results: Compounds were yielded in a two-step reaction with structurally varied components. Further, substituent- dependent effects on the determined MDR inhibiting properties towards ABCB1 were discussed. Cellular studies prove that there is no toxicity and restoration of cancer cell sensitivity towards the used anticancer drug.

Conclusion: Novel MDR modulators could be identified with favorable methoxy and ester group functions. Their use in both ABCB1 non-expressing and overexpressing cells proves a selective toxicity-increasing effect of the applied anticancer agent in the ABCB1 overexpressing cells, whereas the toxicity effect of the anticancer drug was almost unchanged in the non-expressing cells. These results qualify our novel compounds as perspective anticancer drugs compared to MDR modulators with nonselective toxicity properties.

Graphical Abstract

[1]
Gupta, S.K.; Singh, P.; Ali, V.; Verma, M. Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncol. Rev., 2020, 14(2), 448.
[http://dx.doi.org/10.4081/oncol.2020.448] [PMID: 32676170]
[2]
Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet, 2020, 395(10229), 1078-1088.
[http://dx.doi.org/10.1016/S0140-6736(20)30164-1] [PMID: 32222192]
[3]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[4]
Stefan, S.M. Multi-target ABC transporter modulators: What next and where to go? Future Med. Chem., 2019, 11(18), 2353-2358.
[http://dx.doi.org/10.4155/fmc-2019-0185] [PMID: 31516029]
[5]
Fojo, A.; Hamilton, T.C.; Young, R.C.; Ozols, R.F. Multidrug resistance in ovarian cancer. Cancer, 1987, 60(S8), 2075-2080.
[http://dx.doi.org/10.1002/1097-0142(19901015)60:8+<2075:AIDCNCR2820601521>3.0.CO;2-F] [PMID: 3308067]
[6]
Gottesman, M.M.; Lavi, O.; Hall, M.D.; Gillet, J.P. Towards a better understanding of the complexity of cancer drug resistance. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 85-102.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103111]
[7]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[8]
Kim, C.W.; Asai, D.; Kang, J.H.; Kishimura, A.; Mori, T.; Katayama, Y. Reversal of efflux of an anticancer drug in human drug-resistant breast cancer cells by inhibition of protein kinase Cα (PKCα) activity. Tumour Biol., 2016, 37(2), 1901-1908.
[http://dx.doi.org/10.1007/s13277-015-3963-4] [PMID: 26323260]
[9]
Fan, Y.; Tao, T.; Guo, Z.; Wah To, K.K.; Chen, D.; Wu, S.; Yang, C.; Li, J.; Luo, M.; Wang, F.; Fu, L. Lazertinib improves the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 overexpression cancer cells in vitro, in vivo, and ex vivo. Mol. Ther. Oncolytics, 2022, 24, 636-649.
[http://dx.doi.org/10.1016/j.omto.2022.02.006] [PMID: 35284628]
[10]
Shukla, S.; Sauna, Z.E.; Ambudkar, S.V. Evidence for the interaction of imatinib at the transport-substrate site(s) of the multidrug-resistance-linked ABC drug transporters ABCB1 (P-glycoprotein) and ABCG2. Leukemia, 2008, 22(2), 445-447.
[http://dx.doi.org/10.1038/sj.leu.2404897] [PMID: 17690695]
[11]
Ahmed, J.I.I.; Abdul Hamid, A.A.; Abd Halim, K.B.; Che Has, A.T. P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon, 2022, 8(6), e09777.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09777] [PMID: 35789865]
[12]
Dohse, M.; Robey, R.W.; Brendel, C.; Bates, S.; Neubauer, A.; Scharenberg, C. Efflux of the tyrosine kinase inhibitor imatinib and nilotinib (AMN107) is mediated by ABCB1 (MDR1)-Type P-glycoprotein. Blood, 2006, 108(11), 1367.
[http://dx.doi.org/10.1182/blood.V108.11.1367.1367]
[13]
Hegedűs, C.; Özvegy-Laczka, C.; Apáti, Á.; Magócsi, M.; Német, K.; Őrfi, L.; Kéri, G.; Katona, M.; Takáts, Z.; Váradi, A.; Szakács, G.; Sarkadi, B. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: Implications for altered anti-cancer effects and pharmacological properties. Br. J. Pharmacol., 2009, 158(4), 1153-1164.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00383.x] [PMID: 19785662]
[14]
Hilgeroth, A.; Hemmer, M.; Coburger, C. The impact of the induction of multidrug resistance transporters in therapies by used drugs: Recent studies. Mini Rev. Med. Chem., 2012, 12(11), 1127-1134.
[http://dx.doi.org/10.2174/138955712802762130] [PMID: 22512559]
[15]
Christie, E.L.; Pattnaik, S.; Beach, J.; Copeland, A.; Rashoo, N.; Fereday, S.; Hendley, J.; Alsop, K.; Brady, S.L.; Lamb, G.; Pandey, A.; deFazio, A.; Thorne, H.; Bild, A.; Bowtell, D.D.L. Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer. Nat. Commun., 2019, 10(1), 1295.
[http://dx.doi.org/10.1038/s41467-019-09312-9] [PMID: 30894541]
[16]
Werner, P.; Hilgeroth, A. MDR inhibitors for anticancer therapy. Anticancer. Agents Med. Chem., 2022, 22(7), 1242-1243.
[http://dx.doi.org/10.2174/1871520621666210922112404] [PMID: 34551702]
[17]
Poku, V.O.; Iram, S.H. A critical review on modulators of Multidrug Resistance Protein 1 in cancer cells. PeerJ, 2022, 10, e12594.
[http://dx.doi.org/10.7717/peerj.12594] [PMID: 35036084]
[18]
Le Borgne, M.; Falson, P.; Boumendjel, A. Drug candidates targeting multidrug resistance in cancer and infections. Eur. J. Med. Chem., 2023, 249, 115173.
[http://dx.doi.org/10.1016/j.ejmech.2023.115173] [PMID: 36738554]
[19]
Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother., 2023, 162, 114643.
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[20]
Zou, J.Y.; Chen, Q.L.; Luo, X.C.; Damdinjav, D.; Abdelmohsen, U.R.; Li, H.Y.; Battulga, T.; Chen, H.B.; Wang, Y.Q.; Zhang, J.Y. Natural products reverse cancer multidrug resistance. Front. Pharmacol., 2024, 15, 1348076.
[http://dx.doi.org/10.3389/fphar.2024.1348076] [PMID: 38572428]
[21]
Chien, P.Y.; Lan, Y.H.; Wu, I.T.; Huang, Y.P.; Hung, C.C. Mosloflavone from Fissistigma petelotii ameliorates oncogenic multidrug resistance by STAT3 signaling modulation and P-glycoprotein blockade. Phytomedicine, 2024, 123, 155210.
[http://dx.doi.org/10.1016/j.phymed.2023.155210] [PMID: 38006807]
[22]
Li-Blatter, X.; Beck, A.; Seelig, A. P-glycoprotein-ATPase modulation: The molecular mechanisms. Biophys. J., 2012, 102(6), 1383-1393.
[http://dx.doi.org/10.1016/j.bpj.2012.02.018] [PMID: 22455921]
[23]
Coley, H.M. Overcoming multidrug resistance in cancer: Clinical studies of p-glycoprotein inhibitors. Methods Mol. Biol., 2010, 596, 341-358.
[http://dx.doi.org/10.1007/978-1-60761-416-6_15] [PMID: 19949931]
[24]
Cornwell, M.M.; Pastan, I.; Gottesman, M.M. Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J. Biol. Chem., 1987, 262(5), 2166-2170.
[http://dx.doi.org/10.1016/S0021-9258(18)61633-3] [PMID: 2434476]
[25]
Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Eur. J. Pharm. Sci., 2000, 11(4), 265-283.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[26]
Kawase, M.; Motohashi, N. New multidrug resistance reversal agents. Curr. Drug Targets, 2003, 4(1), 31-43.
[http://dx.doi.org/10.2174/1389450033347064] [PMID: 12528988]
[27]
Traube, M.; Hongo, M.; McAllister, R.G., Jr; McCallum, R.W. Correlation of plasma levels of nifedipine and cardiovascular effects after sublingual dosing in normal subjects. J. Clin. Pharmacol., 1985, 25(2), 125-129.
[http://dx.doi.org/10.1002/j.1552-4604.1985.tb02812.x] [PMID: 3886708]
[28]
Baumert, C.; Hilgeroth, A. Recent advances in the development of P-gp inhibitors. Anticancer. Agents Med. Chem., 2009, 9(4), 415-436.
[http://dx.doi.org/10.2174/1871520610909040415] [PMID: 19442042]
[29]
Saponara, S.; Kawase, M.; Shah, A.; Motohashi, N.; Molnar, J.; Ugocsai, K.; Sgaragli, G.; Fusi, F. 3,5-Dibenzoyl-4-(3-phenoxyphenyl)-1,4-dihydro-2,6-dimethylpyridine (DP7) as a new multidrug resistance reverting agent devoid of effects on vascular smooth muscle contractility. Br. J. Pharmacol., 2004, 141(3), 415-422.
[http://dx.doi.org/10.1038/sj.bjp.0705635] [PMID: 14718255]
[30]
Syed, S.B.; Arya, H.; Fu, I.H.; Yeh, T.K.; Periyasamy, L.; Hsieh, H.P.; Coumar, M.S. Targeting P-glycoprotein: Investigation of piperine analogs for overcoming drug resistance in cancer. Sci. Rep., 2017, 7(1), 7972.
[http://dx.doi.org/10.1038/s41598-017-08062-2] [PMID: 28801675]
[31]
Seelig, A. P-Glycoprotein: One mechanism, many tasks and the consequences for pharmacotherapy of cancers. Front. Oncol., 2020, 10, 576559.
[http://dx.doi.org/10.3389/fonc.2020.576559] [PMID: 33194688]
[32]
Tinoush, B.; Shirdel, I.; Wink, M. Phytochemicals: Potential Lead Molecules for MDR Reversal. Front. Pharmacol., 2020, 11, 832.
[http://dx.doi.org/10.3389/fphar.2020.00832] [PMID: 32636741]
[33]
Jaramillo, A.C.; Al Saig, F.; Cloos, J.; Jansen, G.; Peters, G.J. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resist., 2018, 1(1), 6-29.
[http://dx.doi.org/10.20517/cdr.2018.02]