Current Drug Therapy

Author(s): Dilpreet Singh* and Sonima Prasad

DOI: 10.2174/0115748855316358240427052701

DownloadDownload PDF Flyer Cite As
Brain Targeted Drug Delivery System for Microglial Diseases: Recent Developments in Neuroinflammation and Neurodegeneration

Page: [122 - 125] Pages: 4

  • * (Excluding Mailing and Handling)

Keywords: Innovation, neuroinflammation, neurodegeneration, microglial diseases, drug delivery, precision, nanotechnology, therapy, central nervous system, immunomodulation.

[1]
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64(7): 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[2]
Yu Y, He S, Kong L, et al. Brain-targeted multifunctional micelles delivering Oridonin and Phillyrin for synergistic therapy of Alzheimer’s disease. J Drug Deliv Sci Technol 2023; 87: 104794.
[http://dx.doi.org/10.1016/j.jddst.2023.104794]
[3]
Bashyal S, Thapa C, Lee S. Recent progresses in exosome-based systems for targeted drug delivery to the brain. J Control Release 2022; 348: 723-44.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.011] [PMID: 35718214]
[4]
Chen J, Shan S, Xia B, Zhang L, Liang XJ. Brain‐targeted exosomes‐based drug delivery system to overcome the treatment bottleneck of brainstem glioma. Advanced Functional Materials 2023; 33(33): 2302378.
[http://dx.doi.org/10.1002/adfm.202302378]
[5]
Kuhad A, Bhandari R, Paliwal JK. Enhanced bioavailability and higher uptake of brain-targeted surface engineered delivery system of naringenin developed as a therapeutic for autism spectrum disorder. Curr Drug Deliv 2023; 20(2): 158-82.
[http://dx.doi.org/10.2174/1567201819666220303101506] [PMID: 35240971]
[6]
Cerqueira SR, Oliveira JM, Silva NA, et al. Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small 2013; 9(5): 738-49.
[http://dx.doi.org/10.1002/smll.201201888] [PMID: 23161735]
[7]
Liu J, Yang B, Ke J, Li W, Suen WC. Antibody-based drugs and approaches against amyloid-β species for Alzheimer’s disease immunotherapy. Drugs Aging 2016; 33(10): 685-97.
[http://dx.doi.org/10.1007/s40266-016-0406-x] [PMID: 27699633]
[8]
Mitra S, Gera R, Sundheimer J, et al. The microglial challenge to encapsulated cell mediated drug delivery in brain tissue. Alzheimers Dement 2023; 19(S7): e068237.
[http://dx.doi.org/10.1002/alz.068237]
[9]
Singh M, Mazumder B. Recent advancements in nanodiamond mediated brain targeted drug delivery and bioimaging of brain ailments: A holistic review. Pharm Nanotechnol 2022; 10(1): 42-55.
[http://dx.doi.org/10.2174/2211738510666211222111938] [PMID: 34951376]
[10]
Huang D, Wang Q, Cao Y, et al. Multiscale NIR-II imaging-guided brain-targeted drug delivery using engineered cell membrane nanoformulation for alzheimer’s disease therapy. ACS Nano 2023; 17(5): 5033-46.
[http://dx.doi.org/10.1021/acsnano.2c12840] [PMID: 36867454]
[11]
Yang F, Zhao D, Cheng M, et al. mTOR-mediated immunometabolic reprogramming nanomodulators enable sensitive switching of energy deprivationinduced microglial polarization for Alzheimer’s disease management. ACS Nano 2023; 17(16): 15724-41.
[http://dx.doi.org/10.1021/acsnano.3c03232] [PMID: 37565731]
[12]
Veselov VV, Eroshchenko NN, Trukhan VM, Zvyagin AV, Nosyrev AE. Using liposomal and intranasal drugs and pioglitazone for the treatment and prevention of alzheimer’s disease (Review). Pharm Chem J 2023; 57(1): 1-9.
[http://dx.doi.org/10.1007/s11094-023-02845-w]
[13]
Rezaie J, Akbari A, Rahbarghazi R. Inhibition of extracellular vesicle biogenesis in tumor cells: A possible way to reduce tumorigenesis. Cell Biochem Funct 2022; 40(3): 248-62.
[http://dx.doi.org/10.1002/cbf.3695] [PMID: 35285964]
[14]
Sun Y, Zabihi M, Li Q, et al. Drug permeability: From the blood–brain barrier to the peripheral nerve barriers. Adv Ther 2023; 6(4): 2200150.
[http://dx.doi.org/10.1002/adtp.202200150] [PMID: 37649593]
[15]
Rassu G, Sorrenti M, Catenacci L, et al. Conjugation, prodrug, and co-administration strategies in support of nanotechnologies to improve the therapeutic efficacy of phytochemicals in the central nervous system. Pharmaceutics 2023; 15(6): 1578.
[http://dx.doi.org/10.3390/pharmaceutics15061578] [PMID: 37376027]
[16]
Malong L, Napoli I, Casal G, et al. Characterization of the structure and control of the blood-nerve barrier identifies avenues for therapeutic delivery. Dev Cell 2023; 58(3): 174-191.e8.
[http://dx.doi.org/10.1016/j.devcel.2023.01.002] [PMID: 36706755]