Respiratory Disorders in Rett Syndrome
  • * (Excluding Mailing and Handling)

Abstract

Rett Syndrome (RTT) is a rare and severe neurodevelopmental disorder affecting children in the early stages of infancy and associated with a MECP2 mutation in 95-97% of individuals with typical RTT. Nearly all of the patients show breathing abnormalities during their lifespan, both in wake and sleep and respiratory illness represents an important cause of morbidity and mortality in RTT. Pathogenic mechanisms underlying breath-holding and other breathing abnormalities in RTT are mainly related to dysautonomia and an alteration in respiratory control at different levels, including several regions of the central and peripheral nervous system. Pathogenic variants in the MECP2 gene have been implicated in the dysfunction of respiratory pathways, affecting chemosensitivity and the response to neurotransmitters. In addition, frequent comorbidities such as scoliosis, dysphagia, sleep disorders, and epilepsy can further impair the respiratory function in these patients.

[1]
Rett A. About a peculiar cerebral atrophic syndrome in hyperammonemia in children [On a unusual brain atrophy syndrome in hyperammonemia in childhood]. Vienna Med Weekly 1966; 116(37): 723-6. German.
[2]
Hagberg B, Aicardi J, Dias K, Ramos O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases. Ann Neurol 1983; 14(4): 471-9.
[http://dx.doi.org/10.1002/ana.410140412] [PMID: 6638958]
[3]
Petriti U, Dudman DC, Scosyrev E, Leon LS. Global prevalence of Rett syndrome: Systematic review and meta-analysis. Syst Rev 2023; 12(1): 5.
[http://dx.doi.org/10.1186/s13643-023-02169-6] [PMID: 36642718]
[4]
Amir RE, den Veyver VIB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23(2): 185-8.
[http://dx.doi.org/10.1038/13810] [PMID: 10508514]
[5]
Chin EWM, Goh ELK. MeCP2 dysfunction in rett syndrome and neuropsychiatric disorders. Methods Mol Biol 2019; 2011: 573-91.
[http://dx.doi.org/10.1007/978-1-4939-9554-7_33] [PMID: 31273722]
[6]
Ramirez JM, Amarante KM, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. Handb Clin Neurol 2022; 189: 139-51.
[http://dx.doi.org/10.1016/B978-0-323-91532-8.00018-5] [PMID: 36031301]
[7]
Amaddeo A, Sanctis DL, Arroyo JO, Khirani S, Buisson BN, Fauroux B. Polysomnographic findings in Rett syndrome. Eur J Paediatr Neurol 2019; 23(1): 214-21.
[http://dx.doi.org/10.1016/j.ejpn.2018.09.003] [PMID: 30262236]
[8]
Neul JL, Fang P, Barrish J, et al. Specific mutations in Methyl-CpG-Binding Protein 2 confer different severity in Rett syndrome. Neurology 2008; 70(16): 1313-21.
[http://dx.doi.org/10.1212/01.wnl.0000291011.54508.aa] [PMID: 18337588]
[9]
Demarest S, Knight PEM, Olson HE, et al. Severity assessment in CDKL5 deficiency disorder. Pediatr Neurol 2019; 97: 38-42.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.03.017] [PMID: 31147226]
[10]
Percy AK, Lane J, Annese F, Warren H, Skinner SA, Neul JL. When Rett syndrome is due to genes other than MECP2. Transl Sci Rare Dis 2018; 3(1): 49-53.
[http://dx.doi.org/10.3233/TRD-180021] [PMID: 29682453]
[11]
Percy AK, Lane JB, Childers J, et al. Rett syndrome: North American database. J Child Neurol 2007; 22(12): 1338-41.
[http://dx.doi.org/10.1177/0883073807308715] [PMID: 18174548]
[12]
Kaufmann WE, Glaze DG, Christodoulou J, et al. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann Neurol 2010; 68(6): 944-50.
[http://dx.doi.org/10.1002/ana.22124] [PMID: 21154482]
[13]
Aldosary M, Bakheet AA, Dhalaan AH, et al. Rett Syndrome, a Neurodevelopmental Disorder, Whole-Transcriptome, and Mitochondrial Genome Multiomics Analyses Identify Novel Variations and Disease Pathways. OMICS 2020; 24(3): 160-71.
[http://dx.doi.org/10.1089/omi.2019.0192] [PMID: 32105570]
[14]
Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2017; 13(1): 37-51.
[http://dx.doi.org/10.1038/nrneurol.2016.186] [PMID: 27934853]
[15]
Romano A, Caprì T, Semino M, Bizzego I, Rosa DG, Fabio RA. Gross Motor, Physical Activity and Musculoskeletal Disorder Evaluation Tools for Rett Syndrome: A Systematic Review. Dev Neurorehabil 2020; 23(8): 485-501.
[http://dx.doi.org/10.1080/17518423.2019.1680761] [PMID: 31668104]
[16]
Panayotis N, Ehinger Y, Felix MS, Roux JC. State-of-the-art therapies for Rett syndrome. Dev Med Child Neurol 2023; 65(2): 162-70.
[http://dx.doi.org/10.1111/dmcn.15383] [PMID: 36056801]
[17]
Fabio R, Gangemi A, Semino M, et al. Effects of Combined Transcranial Direct Current Stimulation with Cognitive Training in Girls with Rett Syndrome. Brain Sci 2020; 10(5): 276.
[http://dx.doi.org/10.3390/brainsci10050276] [PMID: 32370253]
[18]
Coorey B, Haase F, Ellaway C, Clarke A, Lisowski L, Gold WA. Gene Editing and Rett Syndrome: Does It Make the Cut? CRISPR J 2022; 5(4): 490-9.
[http://dx.doi.org/10.1089/crispr.2022.0020] [PMID: 35881862]
[19]
MacKay J, Leonard H, Wong K, Wilson A, Downs J. Respiratory morbidity in Rett syndrome: An observational study. Dev Med Child Neurol 2018; 60(9): 951-7.
[http://dx.doi.org/10.1111/dmcn.13726] [PMID: 29536504]
[20]
Tarquinio DC, Hou W, Neul JL, et al. The course of awake breathing disturbances across the lifespan in Rett syndrome. Brain Dev 2018; 40(7): 515-29.
[http://dx.doi.org/10.1016/j.braindev.2018.03.010] [PMID: 29657083]
[21]
Carroll JL, Agarwal A. Development of ventilatory control in infants. Paediatr Respir Rev 2010; 11(4): 199-207.
[http://dx.doi.org/10.1016/j.prrv.2010.06.002] [PMID: 21109177]
[22]
Carotenuto M, Esposito M, D’Aniello A, et al. Polysomnographic findings in Rett syndrome: A case–control study. Sleep Breath 2013; 17(1): 93-8.
[http://dx.doi.org/10.1007/s11325-012-0654-x] [PMID: 22392651]
[23]
Mayer WDE, Lieske SP, Boothby CM, et al. Autonomic nervous system dysregulation: Breathing and heart rate perturbation during wakefulness in young girls with Rett syndrome. Pediatr Res 2006; 60(4): 443-9.
[http://dx.doi.org/10.1203/01.pdr.0000238302.84552.d0] [PMID: 16940240]
[24]
Singh J, Lanzarini E, Santosh P. Autonomic dysfunction and sudden death in patients with Rett syndrome: A systematic review. J Psychiatry Neurosci 2020; 45(3): 150-81.
[http://dx.doi.org/10.1503/jpn.190033] [PMID: 31702122]
[25]
Manti S, Parisi GF, Giacchi V, et al. Pilot study shows right ventricular diastolic function impairment in young children with obstructive respiratory disease. Acta Paediatr 2019; 108(4): 740-4.
[http://dx.doi.org/10.1111/apa.14574] [PMID: 30194783]
[26]
Singh J, Lanzarini E, Santosh P. Autonomic Characteristics of Sudden Unexpected Death in Epilepsy in Children—A Systematic Review of Studies and Their Relevance to the Management of Epilepsy in Rett Syndrome. Front Neurol 2021; 11: 632510.
[http://dx.doi.org/10.3389/fneur.2020.632510] [PMID: 33613425]
[27]
Herrera JA, Ward CS, Wehrens XHT, Neul JL. Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis. Hum Mol Genet 2016; 25(22): ddw326.
[http://dx.doi.org/10.1093/hmg/ddw326] [PMID: 28159985]
[28]
Ashhad S, Kam K, Negro DCA, Feldman JL. Breathing Rhythm and Pattern and Their Influence on Emotion. Annu Rev Neurosci 2022; 45(1): 223-47.
[http://dx.doi.org/10.1146/annurev-neuro-090121-014424] [PMID: 35259917]
[29]
Amore G, Spoto G, Ieni A, et al. A Focus on the Cerebellum: From Embryogenesis to an Age-Related Clinical Perspective. Front Syst Neurosci 2021; 15: 646052.
[http://dx.doi.org/10.3389/fnsys.2021.646052] [PMID: 33897383]
[30]
Dutschmann M, Dick TE. Pontine mechanisms of respiratory control. Compr Physiol 2012; 2(4): 2443-69.
[http://dx.doi.org/10.1002/cphy.c100015] [PMID: 23720253]
[31]
Abdala AP, Toward MA, Dutschmann M, Bissonnette JM, Paton JFR. Deficiency of GABAergic synaptic inhibition in the Kölliker–Fuse area underlies respiratory dysrhythmia in a mouse model of Rett syndrome. J Physiol 2016; 594(1): 223-37.
[http://dx.doi.org/10.1113/JP270966] [PMID: 26507912]
[32]
Dhingra RR, Zhu Y, Jacono FJ, Katz DM, Galán RF, Dick TE. Decreased Hering-Breuer input-output entrainment in a mouse model of Rett syndrome. Front Neural Circuits 2013; 7: 42.
[http://dx.doi.org/10.3389/fncir.2013.00042] [PMID: 23565077]
[33]
Voituron N, Zanella S, Menuet C, Dutschmann M, Hilaire G. Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 2009; 168(1-2): 109-18.
[http://dx.doi.org/10.1016/j.resp.2009.05.013] [PMID: 19524074]
[34]
Jiang C, Cui N, Zhong W, Johnson CM, Wu Y. Breathing abnormalities in animal models of Rett syndrome a female neurogenetic disorder. Respir Physiol Neurobiol 2017; 245: 45-52.
[http://dx.doi.org/10.1016/j.resp.2016.11.011] [PMID: 27884797]
[35]
Huang TW, Kochukov MY, Ward CS, et al. Progressive Changes in a Distributed Neural Circuit Underlie Breathing Abnormalities in Mice Lacking MeCP2. J Neurosci 2016; 36(20): 5572-86.
[http://dx.doi.org/10.1523/JNEUROSCI.2330-15.2016] [PMID: 27194336]
[36]
Mezzedimi C, Livi W, Felice DC, Cocca S. Dysphagia in Rett Syndrome: A Descriptive Study. Ann Otol Rhinol Laryngol 2017; 126(9): 640-5.
[http://dx.doi.org/10.1177/0003489417723033] [PMID: 28766954]
[37]
Ramirez JM, Amarante KM, Wang JDJ, et al. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology 2020; 35(6): 375-90.
[http://dx.doi.org/10.1152/physiol.00008.2020] [PMID: 33052774]
[38]
Abraham SS, Taragin B, Djukic A. Co-occurrence of dystonic and dyskinetic tongue movements with oral apraxia in post-regression dysphagia in classical rett syndrome years of life 1 through 5. Dysphagia 2015; 30(2): 128-38.
[http://dx.doi.org/10.1007/s00455-014-9587-9] [PMID: 25533180]
[39]
Marseglia GL, Manti S, Chiappini E, et al. Chronic cough in childhood: A systematic review for practical guidance by the Italian Society of Pediatric Allergy and Immunology. Allergol Immunopathol 2021; 49(2): 133-54.
[http://dx.doi.org/10.15586/aei.v49i2.44] [PMID: 33641305]
[40]
Kida H, Takahashi T, Nakamura Y, et al. Pathogenesis of Lethal Aspiration Pneumonia in Mecp2-null Mouse Model for Rett Syndrome. Sci Rep 2017; 7(1): 12032.
[http://dx.doi.org/10.1038/s41598-017-12293-8] [PMID: 28931890]
[41]
Bongiovanni A, Manti S, Parisi GF, et al. Focus on gastroesophageal reflux disease in patients with cystic fibrosis. World J Gastroenterol 2020; 26(41): 6322-34.
[http://dx.doi.org/10.3748/wjg.v26.i41.6322] [PMID: 33244195]
[42]
Murgia V, Manti S, Licari A, Filippo DM, Ciprandi G, Marseglia GL. Upper Respiratory Tract Infection-Associated Acute Cough and the Urge to Cough: New Insights for Clinical Practice. Pediatr Allergy Immunol Pulmonol 2020; 33(1): 3-11.
[http://dx.doi.org/10.1089/ped.2019.1135] [PMID: 33406022]
[43]
Leonardi S, Cuppari C, Lanzafame A, et al. Exhaled breath temperature in asthmatic children. J Biol Regul Homeost Agents 2015; 29(2) (S1): 47-54.
[PMID: 26634587]
[44]
Marcus CL, Carroll JL, McColley SA, et al. Polysomnographic characteristics of patients with Rett syndrome. J Pediatr 1994; 125(2): 218-24.
[http://dx.doi.org/10.1016/S0022-3476(94)70196-2] [PMID: 8040765]
[45]
Tascini G, Dell’Isola GB, Mencaroni E, Di Cara G, Striano P, Verrotti A. Sleep disorders in rett syndrome and rett-related disorders: a narrative review. Front Neurol 2022; 13: 817195.
[http://dx.doi.org/10.3389/fneur.2022.817195] [PMID: 35299616]
[46]
Li Q, Loh DH, Kudo T, et al. Circadian rhythm disruption in a mouse model of Rett syndrome circadian disruption in RTT. Neurobiol Dis 2015; 77: 155-64.
[http://dx.doi.org/10.1016/j.nbd.2015.03.009] [PMID: 25779967]
[47]
Blue ME, Kaufmann WE, Bressler J, et al. Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice. Anat Rec 2011; 294(10): 1624-34.
[http://dx.doi.org/10.1002/ar.21380] [PMID: 21901842]
[48]
Johnston MV, Ammanuel S, O’Driscoll C, Wozniak A, Naidu S, Kadam SD. Twenty-four hour quantitative-EEG and in-vivo glutamate biosensor detects activity and circadian rhythm dependent biomarkers of pathogenesis in Mecp2 null mice. Front Syst Neurosci 2014; 8: 118.
[http://dx.doi.org/10.3389/fnsys.2014.00118] [PMID: 25018705]
[49]
Kadam SD, Sullivan BJ, Goyal A, Blue ME, Smith-Hicks C. Rett syndrome and CDKL5 deficiency disorder: From bench to clinic. Int J Mol Sci 2019; 20(20): 5098.
[http://dx.doi.org/10.3390/ijms20205098] [PMID: 31618813]
[50]
Nomura Y. Early behavior characteristics and sleep disturbance in Rett syndrome. Brain Dev 2005; 27(1): S35-42.
[http://dx.doi.org/10.1016/j.braindev.2005.03.017] [PMID: 16182496]
[51]
Mainieri G, Montini A, Nicotera A, Rosa DG, Provini F, Loddo G. The Genetics of Sleep Disorders in Children: A Narrative Review. Brain Sci 2021; 11(10): 1259.
[http://dx.doi.org/10.3390/brainsci11101259] [PMID: 34679324]
[52]
Reiss AL, Faruque F, Naidu S, et al. Neuroanatomy of Rett syndrome: A volumetric imaging study. Ann Neurol 1993; 34(2): 227-34.
[http://dx.doi.org/10.1002/ana.410340220] [PMID: 8338347]
[53]
Armstrong DD. Rett syndrome neuropathology review 2000. Brain Dev 2001; 23(S1): S72-6.
[http://dx.doi.org/10.1016/S0387-7604(01)00332-1] [PMID: 11738845]
[54]
Moser SJ, Weber P, Lütschg J. Rett syndrome: Clinical and electrophysiologic aspects. Pediatr Neurol 2007; 36(2): 95-100.
[http://dx.doi.org/10.1016/j.pediatrneurol.2006.10.003] [PMID: 17275660]
[55]
Saby JN, Peters SU, Roberts TPL, Nelson CA, Marsh ED. Evoked potentials and EEG analysis in rett syndrome and related developmental encephalopathies: towards a biomarker for translational research. Front Integr Nuerosci 2020; 14: 30.
[http://dx.doi.org/10.3389/fnint.2020.00030] [PMID: 32547374]
[56]
Ammanuel S, Chan WC, Adler DA, et al. Heightened delta power during slow-wave-sleep in patients with rett syndrome associated with poor sleep efficiency. PLoS One 2015; 10(10): e0138113.
[http://dx.doi.org/10.1371/journal.pone.0138113] [PMID: 26444000]
[57]
Ramirez JM, Garcia AJ III, Anderson TM, et al. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol 2013; 189(2): 344-53.
[http://dx.doi.org/10.1016/j.resp.2013.06.004] [PMID: 23770311]
[58]
Selim BJ, Junna MR, Morgenthaler TI. Therapy for sleep hypoventilation and central apnea syndromes. Curr Treat Options Neurol 2012; 14(5): 427-37.
[http://dx.doi.org/10.1007/s11940-012-0188-3] [PMID: 22923141]
[59]
Ward CS, Huang TW, Herrera JA, et al. Loss of MeCP2 function across several neuronal populations impairs breathing response to acute hypoxia. Front Neurol 2020; 11: 593554.
[http://dx.doi.org/10.3389/fneur.2020.593554] [PMID: 33193060]
[60]
Tabata M, Kurosawa H, Kikuchi Y, et al. Role of GABA within the nucleus tractus solitarii in the hypoxic ventilatory decline of awake rats. Am J Physiol Regul Integr Comp Physiol 2001; 281(5): R1411-9.
[http://dx.doi.org/10.1152/ajpregu.2001.281.5.R1411] [PMID: 11641110]
[61]
Ramirez JM, Ward CS, Neul JL. Breathing challenges in Rett Syndrome: Lessons learned from humans and animal models. Respir Physiol Neurobiol 2013; 189(2): 280-7.
[http://dx.doi.org/10.1016/j.resp.2013.06.022] [PMID: 23816600]
[62]
Kline DD, Ogier M, Kunze DL, Katz DM. Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci 2010; 30(15): 5303-10.
[http://dx.doi.org/10.1523/JNEUROSCI.5503-09.2010] [PMID: 20392952]
[63]
Moreira TS, Takakura AC, Colombari E, Guyenet PG. Activation of 5-hydroxytryptamine type 3 receptor-expressing C-fiber vagal afferents inhibits retrotrapezoid nucleus chemoreceptors in rats. J Neurophysiol 2007; 98(6): 3627-37.
[http://dx.doi.org/10.1152/jn.00675.2007] [PMID: 17928558]
[64]
Paton JFR. Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse. J Neurophysiol 1998; 79(5): 2365-73.
[http://dx.doi.org/10.1152/jn.1998.79.5.2365] [PMID: 9582212]
[65]
Zhang X, Su J, Cui N, Gai H, Wu Z, Jiang C. The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome. Am J Physiol Cell Physiol 2011; 301(3): C729-38.
[http://dx.doi.org/10.1152/ajpcell.00334.2010] [PMID: 21307341]
[66]
Bissonnette JM, Schaevitz LR, Knopp SJ, Zhou Z. Respiratory phenotypes are distinctly affected in mice with common Rett syndrome mutations MeCP2 T158A and R168X. Neuroscience 2014; 267: 166-76.
[http://dx.doi.org/10.1016/j.neuroscience.2014.02.043] [PMID: 24626160]
[67]
Stallworth JL, Dy ME, Buchanan CB, et al. Hand stereotypies. Neurology 2019; 92(22): e2594-603.
[http://dx.doi.org/10.1212/WNL.0000000000007560] [PMID: 31053667]
[68]
Lorman FRM, Kurian JR, Auger AP. MeCP2 regulates GFAP expression within the developing brain. Brain Res 2014; 1543: 151-8.
[http://dx.doi.org/10.1016/j.brainres.2013.11.011] [PMID: 24269336]
[69]
Lioy DT, Garg SK, Monaghan CE, et al. A role for glia in the progression of Rett’s syndrome. Nature 2011; 475(7357): 497-500.
[http://dx.doi.org/10.1038/nature10214] [PMID: 21716289]
[70]
Viemari JC, Roux JC, Tryba AK, et al. Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci 2005; 25(50): 11521-30.
[http://dx.doi.org/10.1523/JNEUROSCI.4373-05.2005] [PMID: 16354910]
[71]
Stettner GM, Huppke P, Brendel C, Richter DW, Gärtner J, Dutschmann M. Breathing dysfunctions associated with impaired control of postinspiratory activity in Mecp2 −/y knockout mice. J Physiol 2007; 579(3): 863-76.
[http://dx.doi.org/10.1113/jphysiol.2006.119966] [PMID: 17204503]
[72]
Felice DC, Rossi M, Leoncini S, et al. Inflammatory lung disease in Rett syndrome. Mediators Inflamm 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/560120] [PMID: 24757286]
[73]
Halbach NSJ, Smeets EEJ, van den Braak N, et al. Genotype–phenotype relationships as prognosticators in Rett syndrome should be handled with care in clinical practice. Am J Med Genet A 2012; 158A(2): 340-50.
[http://dx.doi.org/10.1002/ajmg.a.34418] [PMID: 22190343]
[74]
Dempsey JA, Xie A, Patz DS, Wang D. Physiology in medicine: Obstructive sleep apnea pathogenesis and treatment--considerations beyond airway anatomy. J Appl Physiol 1985; 116(1): 3-12.
[http://dx.doi.org/10.1152/japplphysiol.01054.2013]
[75]
Turovsky E, Karagiannis A, Abdala AP, Gourine AV. Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome. J Physiol 2015; 593(14): 3159-68.
[http://dx.doi.org/10.1113/JP270369] [PMID: 25981852]
[76]
Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest 2020; 130(10): 5042-51.
[http://dx.doi.org/10.1172/JCI137560] [PMID: 32730232]
[77]
Semenza GL, Prabhakar NR. The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol 2018; 596(15): 2977-83.
[http://dx.doi.org/10.1113/JP275696] [PMID: 29359806]
[78]
Rio DR, Moya EA, Iturriaga R. Carotid body potentiation during chronic intermittent hypoxia: Implication for hypertension. Front Physiol 2014; 5: 434.
[http://dx.doi.org/10.3389/fphys.2014.00434] [PMID: 25429271]
[79]
Garcia AJ III, Zanella S, Dashevskiy T, et al. Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBötzinger Complex. Front Neurosci 2016; 10: 4.
[http://dx.doi.org/10.3389/fnins.2016.00004] [PMID: 26869872]
[80]
Garcia AJ III, Dashevskiy T, Khuu MA, Ramirez JM. Chronic Intermittent Hypoxia Differentially Impacts Different States of Inspiratory Activity at the Level of the preBötzinger Complex. Front Physiol 2017; 8: 571.
[http://dx.doi.org/10.3389/fphys.2017.00571] [PMID: 28936176]
[81]
Leoncini S, Felice DC, Signorini C, et al. Oxidative stress in Rett syndrome: Natural history, genotype, and variants. Redox Rep 2011; 16(4): 145-53.
[http://dx.doi.org/10.1179/1351000211Y.0000000004] [PMID: 21888765]
[82]
Shulyakova N, Andreazza AC, Mills LR, Eubanks JH. Mitochondrial dysfunction in the pathogenesis of rett syndrome: implications for mitochondria-targeted therapies. Front Cell Neurosci 2017; 11: 58.
[http://dx.doi.org/10.3389/fncel.2017.00058] [PMID: 28352216]
[83]
Abdala AP, Lioy DT, Garg SK, Knopp SJ, Paton JFR, Bissonnette JM. Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome. Am J Respir Cell Mol Biol 2014; 50(6): 1031-9.
[http://dx.doi.org/10.1165/rcmb.2013-0372OC] [PMID: 24351104]
[84]
Chao HT, Chen H, Samaco RC, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 2010; 468(7321): 263-9.
[http://dx.doi.org/10.1038/nature09582] [PMID: 21068835]
[85]
Ide S, Itoh M, Goto Y. Defect in normal developmental increase of the brain biogenic amine concentrations in the mecp2-null mouse. Neurosci Lett 2005; 386(1): 14-7.
[http://dx.doi.org/10.1016/j.neulet.2005.05.056] [PMID: 15975715]
[86]
Katz DM. Brain-derived neurotrophic factor and Rett syndrome. Handb Exp Pharmacol 2014; 220: 481-95.
[http://dx.doi.org/10.1007/978-3-642-45106-5_18] [PMID: 24668484]
[87]
Manti S, Xerra F, Spoto G, et al. Neurotrophins: Expression of Brain–Lung Axis Development. Int J Mol Sci 2023; 24(8): 7089.
[http://dx.doi.org/10.3390/ijms24087089] [PMID: 37108250]
[88]
Dhingra RR, Dutschmann M, Dick TE. Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice. Respir Physiol Neurobiol 2016; 226: 110-4.
[http://dx.doi.org/10.1016/j.resp.2016.01.007] [PMID: 26840837]
[89]
Hodges MR, Tattersall GJ, Harris MB, et al. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci 2008; 28(10): 2495-505.
[http://dx.doi.org/10.1523/JNEUROSCI.4729-07.2008] [PMID: 18322094]
[90]
Ray RS, Corcoran AE, Brust RD, et al. Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 2011; 333(6042): 637-42.
[http://dx.doi.org/10.1126/science.1205295] [PMID: 21798952]
[91]
Richerson GB. Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis. Nat Rev Neurosci 2004; 5(6): 449-61.
[http://dx.doi.org/10.1038/nrn1409] [PMID: 15152195]
[92]
Guideri F, Acampa M, Blardi P, de Lalla A, Zappella M, Hayek Y. Cardiac dysautonomia and serotonin plasma levels in Rett syndrome. Neuropediatrics 2004; 35(1): 36-8.
[http://dx.doi.org/10.1055/s-2004-815789] [PMID: 15002050]
[93]
Abdala APL, Dutschmann M, Bissonnette JM, Paton JFR. Correction of respiratory disorders in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 2010; 107(42): 18208-13.
[http://dx.doi.org/10.1073/pnas.1012104107] [PMID: 20921395]
[94]
Samaco RC, Hogart A, LaSalle JM. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 2005; 14(4): 483-92.
[http://dx.doi.org/10.1093/hmg/ddi045] [PMID: 15615769]
[95]
Young JI, Hong EP, Castle JC, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci 2005; 102(49): 17551-8.
[http://dx.doi.org/10.1073/pnas.0507856102] [PMID: 16251272]
[96]
Toward MA, Abdala AP, Knopp SJ, Paton JFR, Bissonnette JM. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice. Exp Physiol 2013; 98(3): 842-9.
[http://dx.doi.org/10.1113/expphysiol.2012.069872] [PMID: 23180809]
[97]
Sabus A, Feinstein J, Romani P, Goldson E, Blackmer A. Management of self-injurious behaviors in children with neurodevelopmental disorders: a pharmacotherapy overview. Pharmacotherapy 2019; 39(6): 645-64.
[http://dx.doi.org/10.1002/phar.2238] [PMID: 30793794]
[98]
Lamberti M, Siracusano R, Italiano D, et al. Head-to-head comparison of aripiprazole and risperidone in the treatment of ADHD symptoms in children with autistic spectrum disorder and ADHD: A pilot, open-label, randomized controlled study. Paediatr Drugs 2016; 18(4): 319-29.
[http://dx.doi.org/10.1007/s40272-016-0183-3] [PMID: 27278054]
[99]
Rosa DG, Dicanio D, Nicotera AG, Mondello P, Cannavò L, Gitto E. Efficacy of intravenous hydrocortisone treatment in refractory neonatal seizures: a report on three cases. Brain Sci 2020; 10(11): 885.
[http://dx.doi.org/10.3390/brainsci10110885] [PMID: 33233684]
[100]
Pintaudi M, Calevo MG, Vignoli A, et al. Antiepileptic drugs in rett syndrome. Eur J Paediatr Neurol 2015; 19(4): 446-52.
[http://dx.doi.org/10.1016/j.ejpn.2015.02.007] [PMID: 25814391]
[101]
Rosa DG, Lenzo P, Parisi E, et al. Role of plasma homocysteine levels and MTHFR polymorphisms on IQ scores in children and young adults with epilepsy treated with antiepileptic drugs. Epilepsy Behav 2013; 29(3): 548-51.
[http://dx.doi.org/10.1016/j.yebeh.2013.09.034] [PMID: 24183735]
[102]
Cicaloni V, Pecorelli A, Cordone V, et al. A proteomics approach to further highlight the altered inflammatory condition in Rett syndrome. Arch Biochem Biophys 2020; 696: 108660.
[http://dx.doi.org/10.1016/j.abb.2020.108660] [PMID: 33159892]
[103]
Rana KS, Nair MN. Rett’s syndrome following bronchopneumonia. Indian Pediatr 2004; 41(3): 297-8.
[PMID: 15064530]
[104]
Manti S, Tosca MA, Licari A, et al. Cough Remedies for Children and Adolescents: Current and Future Perspectives. Paediatr Drugs 2020; 22(6): 617-34.
[http://dx.doi.org/10.1007/s40272-020-00420-4] [PMID: 32929686]
[105]
Anderson A, Wong K, Jacoby P, Downs J, Leonard H. Twenty years of surveillance in Rett syndrome: What does this tell us? Orphanet J Rare Dis 2014; 9(1): 87.
[http://dx.doi.org/10.1186/1750-1172-9-87] [PMID: 24942262]
[106]
Downs J, Torode I, Wong K, et al. The natural history of scoliosis in females with rett syndrome. Spine 2016; 41(10): 856-63.
[http://dx.doi.org/10.1097/BRS.0000000000001399] [PMID: 26679887]
[107]
Proesmans M, Vreys M, Huenaerts E, et al. Respiratory morbidity in children with profound intellectual and multiple disability. Pediatr Pulmonol 2015; 50(10): 1033-8.
[http://dx.doi.org/10.1002/ppul.23114] [PMID: 25327770]
[108]
Downs J, Leonard H, Wong K, Newton N, Hill K. Quantification of walking-based physical activity and sedentary time in individuals with Rett syndrome. Dev Med Child Neurol 2017; 59(6): 605-11.
[http://dx.doi.org/10.1111/dmcn.13398] [PMID: 28164278]
[109]
Cheng H, Du C, Zhang Y, et al. Potent hERG channel inhibition by sarizotan, an investigative treatment for Rett Syndrome. J Mol Cell Cardiol 2019; 135: 22-30.
[http://dx.doi.org/10.1016/j.yjmcc.2019.07.012] [PMID: 31362019]